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call rk4(v,dv,nvar,x,h,v,derivs)
if (x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx (k+1)=x Store intermediate steps.
do 12 i=1,nvar
y(i,k+1)=v(i)
enddo 12
enddo 13
return
END
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16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored. _

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance, most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single
and double sequences share a starting point, so the total is 11. This is to be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are
achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?
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16.2 Adaptive Stepsize Control for Runge-Kutta 709

e big step

} two small steps

—_—
X

Figure 16.2.1.  Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two steps.
Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the stepsize
on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from z to = + 2k by y(z + 2h)
and the two approximate solutions by y1 (one step 2k) and yo (2 steps each of size
k). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(z + 2h) = y1 + (2h)°¢ + O(R®) +. ..

(16.2.1)
y(z + 2h) = y2 + 2(h%)¢ + O(R®) + ...

where, to order k5, the value ¢ remains constant over the step. [Taylor series
expansion tells us the ¢ is a number whose order of magnitude is y ()(z)/5!.] The
first expression in (16.2.1) involves (2k)® since the stepsize is 2h, while the second
expression involves 2(h®) since the error on each step is h°$. The difference between
the two numerical estimates is a convenient indicator of truncation error

A=y —us (16.2.2)

1t is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h© and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(z + 2h), namely,

ylz+2h) =y + 1—A5' + O(R®) (16.2.3)
This estimate is accurate to fifth order, one order higher than the original Runge-
Kutta steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring izs truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
A as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”
An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function
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710 Chapter 16.  Integration of Ordinary Differential Equations

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the error
estimate is based on independent function evaluations. However, experience has
shown that this concern is not a problem in practice. Accordingly, embedded Runge-
Kutta formulas, which are roughly a factor of two more efficient, have superseded
algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

kl = hf(xna yn)
ko = hf(zn + agh,yn + ba1k1)

(16.2.4)
ke = hf(zs + agh, yn + be1k1 + - - - + besks)
Ynil = Yn + 1kt + coka + csks + caks + csks + ceke + O(h®)

The embedded fourth-order formula is
y;‘LH = yp + Ctky + ko + ks +ciks + cEks + cgke + O(hs) (16.2.5)

and so the error estimate is

6
A=ypg — y:,,+1 = Z(Cz — C:)kz (1626)

=1

The particular values of the various constants that we favor are those found by Cash
and Karp[2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between A
and h? According to (16.2.4) — (16.2.5), A scales as h3. If we take a step hg
and produce an error A1, therefore, the step ko that would have given some other
value Ag is readily estimated as

0.2
Bo (16.2.7)

ho="h
0 LA,

Henceforth we will let A denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If A; is larger than Ag in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If Ay is
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16.2 Adaptive Stepsize Control for Runge-Kutta 711

Cash-Karp Parameters for Embedded Runga-Kutta Method
7 a; bi; c ¢l
1 37 2825
378 27648
1 1
2 z £ 0 0
3 3 3 2 250 18575
10 10 20 621 48384
4 3 3 3 [ 125 13525
5 10 10 5 594 55296
11 5 70 35 277
5 1 T 54 2 27 27 0 14336
6 7 1631 175 575 44275 253 512 1
g 55296 512 13824 110592 1096 1771 4
j= 1 2 3 4 5

smaller than Ag, on the other hand, then the equation tells how much we can safely
increase the stepsize for the next step. Yocal extrapolation consists in accepting
the fifth order value y,1, even though the error estimate actually applies to the
fourth order value y7 ;.

Our notation hides the fact that A is actually a vector of desired accuracies,
one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender” equation.

How is A, the desired accuracy, related to some looser prescription like “get a
solution good to one part in 105”7 That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors, Ag = ey, where ¢ is the number like 10-% or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set Ao
equal to € times those maximum values.

A convenient way to fold these considerations into a generally useful stepper
routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call that y(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(l:n), and also an overall tolerance level eps. Then the desired accuracy
for the ith equation will be taken to be

Ag = eps x yscal(i) (16.2.8)

If you desire constant fractional errors, plug y into the yscal calling slot (no need
to copy the values into a different array). If you desire constant absolute errors
relative to some maximum values, set the elements of yscal equal to those maximum
values. A useful “trick” for getting constant fractional errors except “very” near
zero crossings is to set yscal(i) equal to |y (i)| + | x dydx (i)|. (The routine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may be unusually sensitive
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712 Chapter 16.  Integration of Ordinary Differential Equations

about a “global” accumulation of errors, from beginning to end of the integration
and in the worst possible case where the errors all are presumed to add with the
same sign. Then, the smaller the stepsize h, the smaller the value A that you will
need to impose. Why? Because there will be more steps between your starting
and ending values of . In such cases you will want to set yscal proportional to
h, typically to something like

Ap = ¢h x dydx (i) (16.2.9)

This enforces fractional accuracy ¢ not on the values of y but (much more stringently)
on the increments to those values at each step. But now look back at (16.2.7). If Ag
has an implicit scaling with h, then the exponent 0.20 is no longer correct: When
the stepsize is reduced from a too-large value, the new predicted value A 1 will fail to
meet the desired accuracy when yscal is also altered to this new h value. Instead
of 0.20 = 1/5, we must scale by the exponent 0.25 = 1/4 for things to work out.

The exponents 0.20 and 0.25 are not really very different. This motivates us
to adopt the following pragmatic approach, one that frees us from having to know
in advance whether or not you, the user, plan to scale your yscal’s with stepsize.
Whenever we decrease a stepsize, let us use the larger value of the exponent (whether
we need it or not!), and whenever we increase a stepsize, let us use the smaller
exponent. Furthermore, because our estimates of error are not exact, but only
accurate to the leading order in h, we are advised to put in a safety factor S which is
a few percent smaller than unity. Equation (16.2.7) is thus replaced by

0.20
Sha | 52 Ao > A
ho = Al 0.25 (16.2.10)
Shl ——9- Ao < A1
1

We have found this prescription to be a reliable one in practice.
Here, then, is a stepper program that takes one “quality-controlled” Runge-
Kutta step.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)

INTEGER n,NMAX

REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)

EXTERNAL derivs

PARAMETER (NMAX=50) Maximum number of equations.

USES derivs, rkck
Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y{1:n) and its derivative
dydx(1:n) at the starting value of the independent variable x. Also input are the stepsize
to be attempted htry, the required accuracy eps, and the vector yscal(l:n) against
which the error is scaled. On output, ¥ and x are replaced by their new values, hdid is the
stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs
is the user-supplied subroutine that computes the right-hand side derivatives.

INTEGER i

REAL errmax,h,htemp,xnew,yerr (NMAX) ,ytemp (NMAX) ,SAFETY,PGROV,

PSHRNK, ERRCON

PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)
The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.

h=htry Set stepsize to the initial trial value.

call rkck(y,dydx,n,x,h,ytenp,yerr,derivs) Take a step.
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16.2 Adaptive Stepsize Control for Runge-Kutta 713

errmax=0. Evaluate accuracy.
don i=1i,n
errmax=max(errmax,abs(yerr(i)/yscal(i)))

enddo 1
errmax=errmax/eps Scale relative to required tolerance.
if(errmax.gt.1.)then Truncation error too large, reduce stepsize.
htemp=SAFETY*h* (errmax**PSHRNK)
h=sign(max(abs(htemp),0.1%abs(h)),h) No more than a factor of 10.
xnew=x+h
if (xnew.eq.x)pause ’stepsize underflow in rkgs’
goto 1 For another try.
else Step succeeded. Compute size of next step.

if (errmax.gt.ERRCON)then
hnext=SAFETYx*h* (errmax**PGROW)
else No more than a factor of 5 increase.
hnext=5.x*h
endif
hdid=h
x=x+h
do 12 i=1,n
y(i)=ytemp(i)
enddo 12
return
endif
END

The routine rkqs calls the routine rkck to take a Cash-Karp Runge-Kutta step:

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.
USES derivs
Given values for n variables y and their derivatives dydx known at X, use the fifth-order
Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth-order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.
INTEGER i
REAL ak2(NMAX) ,ak3(NMAX) ,ak4 (NMAX) ,ak5(NMAX) ,ak6 (NMAX),
ytemp(NMAX) ,A2,A3,44,45,46,B21,B31,B32,B41,B42,B43,B51,
B52,B53,B54,B61,B62,863,B64,B65,C1,C3,C4,C6,DC1,DC3,
DC4,DC5,DC6
PARAMETER (A2=.2,A3=.3,A44=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54. ,B52=2.5,
B53=-70./27.,B54=35./27. ,B61=1631./55296. ,B62=176./512.,
B63=575./13824. ,B64=44275./110592. ,B65=253./4096.,
C€1=37./378.,03=250./621.,04=125./594.,C6=512./1771.,
DC1=C1-2825./27648.,DC3=C3-18575./48384.,
DC4=C4-13525, /55296. ,DC5=-277./14336.,DC6=C6-.25)

don i=1,n First step.
ytemp (i)=y (1) +B21*h*dydx (i)

enddo 11

call derivs(x+A2+h,ytemp,ak2) Second step.

do1z i=1,n
ytemp(i)=y(i)+h* (B31*dydx (i)+B32%ak2(i))
enddo 12
call derivs(x+A3xh,ytemp,ak3) Third step.
do13 i=1,n
ytemp(i)=y(i)+h*(B41*dydx (i)+B42xak2(i)+B43*ak3(i))
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714 Chapter 16.  Integration of Ordinary Differential Equations

enddo 13
call derivs(x+A4*h,ytemp,ak4) Fourth step.
do s i=1,n
ytemp (i)=y(i)+h* (B51*dydx (1)+B52%ak2 (i) +B53*ak3(i)+
B54xak4(i))
enddo 14
call derivs(x+Ab*h,ytemp,ak5) Fifth step.
dois i=i,n
ytemp (i)=y (i)+h* (B61xdydx (i) +B62+ak2 (i) +B63*ak3(i)+

B64*ak4 (i)+B65*ak5(1))
enddo 15
call derivs(x+A6%h,ytemp,ak6) Sixth step.
dois i=1,n Accumulate increments with proper weights.
yout (1) =y (i) +h* (Cl*dydx (1) +C3*ak3 (1) +Cé*ak4 (i) +
C6*ak6(i))
enddo 16

dow7 i=1,n
Estimate error as difference between fourth and fifth order methods.
yerr (i)=h*(DCi*dydx (1) +DC3*ak3 (i) +DC4*ak4 (i) +DCE*ak5 (1)
+DC6*ak6 (1))
enddo 17
return
END

Noting that the above routines are all in single precision, don’t be too greedy in
specifying eps. The punishment for excessive greediness is interesting and worthy of
Gilbert and Sullivan’s Mikado: The routine can always achieve an apparent zero error
by making the stepsize so small that quantities of order hy’ add to quantities of order
y as if they were zero. Then the routine chugs happily along taking infinitely many
infinitesimal steps and never changing the dependent variables one iota. (You guard
against this catastrophic loss of your computer budget by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a personal workstation you guard against it by not taking too long a
lunch hour while your program is running.)

Here is a full-fledged “driver” for Runge-Kutta with adaptive stepsize control.
We warmly recommend this routine, or one like it, for a variety of problems, notably
including garden-variety ODESs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). For storage of intermediate results (if you desire to
inspect them) we assume a common block path, which can hold up to KMAXX steps.
Because steps occur at unequal intervals results are stored only at intervals greater
than dxsav. Also in the block is kmax, indicating the number of steps that can be
stored. If kmax=0 there is no intermediate storage, and the rest of the common block
need not exist. Otherwise you should set kmax = KMAXX. Storage of steps stops
if kmax is exceeded, except that the ending values are always stored. Again, these
controls are merely indicative of what you might need. The routine odeint should
be customized to the problem at hand.

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,hl,hmin,nok,nbad,derivs ,rkqgs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX

REAL eps,hi,hmin,x1,x2,ystart (avar),TINY

EXTERNAL derivs,rkqs

PARAMETER (MAXSTP=10000,NMAX=50,KMAXX=200,TINY=1.e~30)

Runge-Kutta driver with adaptive stepsize control. Integrate the starting values ystart (1:nvar)

from x1 to x2 with accuracy eps, storing intermediate results in the common block /path/.
hi should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can
be zero). On output nok and nbad are the number of good and bad (but retried and
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16.2 Adaptive Stepsize Control for Runge-Kutta 715

fixed) steps taken, and ystart is replaced by values at the end of the integration interval.
derivs is the user-supplied subroutine for calculating the right-hand side derivative, while
rkqs is the name of the stepper routine to be used. /path/ contains its own information
about how often an intermediate value is to be stored.

INTEGER i,kmax,kount,nstp

REAL dxsav,h,hdid,hnext,x,xsav,dydx (NMAX) ,xp (KMAXX) ,y (NMAX),

yp(NMAX, KMAXX) , yscal (NMAX)

COMMON /path/ kmax,kount,dxsav,Xp,yp
User storage for intermediate results. Preset dxsav and kmax.

x=x1

h=sign(h1l,x2-x1)

nok=0

nbad=0

kount=0

do 11 i=1,nvar
y{i)=ystart(i)

enddo 1
if (kmax.gt.0) xsav=x-2.*dxsav Assures storage of first step.
do 16 nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
do 12 i=1,nvar
Scaling used to monitor accuracy. This general-purpose choice can be modified if need

be.
yscal (i)=abs(y(i))+abs(h*dydx(i})+TINY
enddo 12
if (kmax.gt.0)then
if (abs(x-xsav).gt.abs(dxsav)) then Store intermediate results.
if (kount.lt.kmax-1)then
kount=kount+1
xp (kount)=x
do 13 i=1,nvar
yp(i,kount)=y (i)
enddo 13
Xsav=x
endif
endif
endif
if ((x+h-x2) *(x+h-x1) .gt.0.) h=x2-x If stepsize can overshoot, decrease.

call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if (hdid.eq.h)then
nok=nok+1
else
nbad=nbad+1
endif
if ((x-x2)*(x2-x1).ge.0.)then Are we done?
do 14 i=1,nvar
ystart (i)=y(i)
enddo 14
if (kmax.ne.0)then
kount=kount+1 Save final step.
xp (kount)=x
do1s i=1,nvar
yp(i,kount)=y(i)
enddo 15
endif
return Normal exit.
endif
if (abs(hnext).lt.hmin) pause ’stepsize smaller than minimum in odeint’
h=hnext
enddo 16
pause ’too many steps in odeint’
return
END
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716 Chapter 16.  Integration of Ordinary Differential Equations

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201—
222. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software Ill, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257—275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93—
121.

Forsythe, G.E., Malcoim, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(z) from a point z to a point = + H by a sequence of n
substeps each of size h,

h=H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is  + 1. The formulas for the method are

2o = y(z)
20 + hf(z, 20)
Zmal = Zm—1 + 2hf(z + mh, zm) for m=1,2,...,n—1

2

I

1
ylz+ H) =y, = -2-[zn + zp_1 +hf(z+ H, z,)]
(1632)

Here the 2’s are intermediate approximations which march along in steps of k, while
yn 1s the final approximation to y(z + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for large 2) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns
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