{ "cells": [ { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Lab 6: The Lorentz equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List of Problems \n", "\n", "[Problem Experiment: Investigation of the behaviour of solutions](#prob_experiment)\n", "\n", "[Problem Steady-states: Find the stationary points of the Lorenz system](#prob_steady-states)\n", "\n", "[Problem Eigenvalues: Find the eigenvalues of the stationary point (0,0,0)](#prob_eigenvalues)\n", "\n", "[Problem Stability: Discuss the effect of r on the stability of the solution](#prob_stability)\n", "\n", "[Problem Adaptive: Adaptive time-stepping for the Lorenz equations](#prob_adaptive)\n", "\n", "[Problem Sensitivity: Sensitivity to initial conditions](#prob_sensitivity)\n", "\n", "\n", "\n", "
\n", "\n", "## Objectives \n", "\n", "In this lab, you will investigate the transition to chaos in the Lorenz\n", "equations – a system of non-linear ordinary differential equations.\n", "Using interactive examples, and analytical and numerical techniques, you\n", "will determine the stability of the solutions to the system, and\n", "discover a rich variety in their behaviour. You will program both an\n", "adaptive and non-adaptive Runge-Kuttan code for the problem, and\n", "determine the relative merits of each.\n", "\n", "
\n", "\n", "## Readings\n", "\n", "There is no required reading for this lab, beyond the contents of the\n", "lab itself. Nevertheless, the original 1963 paper by Lorenz  is\n", "worthwhile reading from a historical standpoint.\n", "\n", "If you would like additional background on any of the following topics,\n", "then refer to Appendix B for the following:\n", "\n", "- **Easy Reading:**\n", "\n", " - Gleick  (1987) [pp. 9-31], an interesting overview of the\n", " science of chaos (with no mathematical details), and a look at\n", " its history.\n", "\n", " - Palmer (1993) has a short article on Lorenz’ work and\n", " concentrating on its consequences for weather prediction.\n", "\n", "- **Mathematical Details:**\n", "\n", " - Sparrow (1982), an in-depth treatment of the mathematics\n", " behind the Lorenz equations, including some discussion of\n", " numerical methods.\n", " \n", " - The original equations by Saltzman (1962) and the\n", " first Lorentz (1963) paper on the computation.\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "
\n", "\n", "## Introduction \n", "\n", "\n", "For many people working in the physical sciences, the *butterfly\n", "effect* is a well-known phrase. But even if you are unacquainted\n", "with the term, its consequences are something you are intimately\n", "familiar with. Edward Lorenz investigated the feasibility of performing\n", "accurate, long-term weather forecasts, and came to the conclusion that\n", "*even something as seemingly insignificant as the flap of a\n", "butterfly’s wings can have an influence on the weather on the other side\n", "of the globe*. This implies that global climate modelers must\n", "take into account even the tiniest of variations in weather conditions\n", "in order to have even a hope of being accurate. Some of the models used\n", "today in weather forecasting have up to *a million unknown\n", "variables!*\n", "\n", "With the advent of modern computers, many people believed that accurate\n", "predictions of systems as complicated as the global weather were\n", "possible. Lorenz’ studies (Lorenz, 1963), both analytical and numerical, were\n", "concerned with simplified models for the flow of air in the atmosphere.\n", "He found that even for systems with considerably fewer variables than\n", "the weather, the long-term behaviour of solutions is intrinsically\n", "unpredictable. He found that this type of non-periodic, or\n", "*chaotic* behaviour, appears in systems that are described\n", "by non-linear differential equations.\n", "\n", "The atmosphere is just one of many hydrodynamical systems, which exhibit\n", "a variety of solution behaviour: some flows are steady; others oscillate\n", "between two or more states; and still others vary in an irregular or\n", "haphazard manner. This last class of behaviour in a fluid is known as\n", "*turbulence*, or in more general systems as\n", "*chaos*. Examples of chaotic behaviour in physical systems\n", "include\n", "\n", "- thermal convection in a tank of fluid, driven by a heated plate on\n", " the bottom, which displays an irregular patter of “convection rolls”\n", " for certain ranges of the temperature gradient;\n", "\n", "- a rotating cylinder, filled with fluid, that exhibits\n", " regularly-spaced waves or irregular, nonperiodic flow patterns under\n", " different conditions;\n", "\n", "- the Lorenzian water wheel, a mechanical system, described in\n", " [Appendix A](#sec_water-wheel).\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One of the simplest systems to exhibit chaotic behaviour is a system of\n", "three ordinary differential equations, studied by Lorenz, and which are\n", "now known as the *Lorenz equations* (see\n", "equations ([eq: lorentz](#eq_lorentz)). They are an idealization of\n", "a more complex hydrodynamical system of twelve equations describing\n", "turbulent flow in the atmosphere, but which are still able to capture\n", "many of the important aspects of the behaviour of atmospheric flows. The\n", "Lorenz equations determine the evolution of a system described by three\n", "time-dependent state variables, $x(t)$, $y(t)$ and $z(t)$. The state in\n", "Lorenz’ idealized climate at any time, $t$, can be given by a single\n", "point, $(x,y,z)$, in *phase space*. As time varies, this\n", "point moves around in the phase space, and traces out a curve, which is\n", "also called an *orbit* or *trajectory*. \n", "\n", "The video below shows an animation of the 3-dimensional phase space trajectories\n", "of $x, y, z$ for the Lorenz equations presented below. It is calculated with\n", "the python script by written by Jake VanderPlas: [lorenz_ode.py](https://github.com/phaustin/numeric/blob/lab6/lab6/lorenz_ode.py)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgOCwgICAgICggLCAgIDQoKCAgICAgICAgICAgICAgIChANCAgOCggIDRUNDhERExMTCAwWGBYSGBASExIBBQUFCAcIDwkJDxQUDw8UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/AABEIAWgB4AMBIgACEQEDEQH/xAAcAAEAAgMBAQEAAAAAAAAAAAAABQYCAwQHAQj/xABjEAABAwICBAYMCAcMBwcCBwADAAIEAQUSEwYRIiMUITIzQ1MHJDE0QlJjc4OTo7MVQURRVGJkw2FxcnSEkdMWJVWBgpKUoaSxtOM1ZaLBwtHwRZWytcTU4Rd1CIWlprbk8f/EABoBAQADAQEBAAAAAAAAAAAAAAACAwQFAQb/xAA7EQEAAgEDAgQEAgcFCQAAAAAAAgMSBCIyARMFEUJSFCMzYkNyFSExgqKy8DRBU5LCBiVEUWNxg5Pi/9oADAMBAAIRAxEAPwD9hoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIsEQZrBFxHvEdtcOPE7xW7xVzvhHkO1FF8NkV5EdzW+MR+WlATq90oW/ks/5qnv8Atih3Eoii/g43xyzfzQ/8k+B3fSpP89O/b7TNKLNRHwU+nclGTgEinclO/lMTuXe07iXRRGOY3usG/wDJflp8MMpzzCC/KYvfiY+o7iUWa0gMx1MTHNc36qzWiFnSfFNmiIvQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEWCDNYIuWdPYNuJ7lCc4Q5Dp1qLNdG66jjsqUn1ebYsKAKXaLiGH4ht5x/nvmUjFCxtNQ24WrP8237YI7pOFluO/jkF1N6sf/ADXfEgCZyGNaulQ2kGkcGM3HOlBjjrxUzCZePi6LrlfDTQi87aWWaptdM5Rf9GWecdvXS/3qjf2jfexWL42khK7cy0wm+KGGeaT18g4fcq/BNcUVNpohNd3xpDeHeZbboX+HjrH9wLf4Y0h/71MmAuiKms0Dw83e9IW1+Z1x4T/iAFT9zd5bzOkJ3/VlW63SP8PkpieS5Js17tMSptZ2kYuMkG3TWfPDlmhk9RO3XtkB2Qre2uC4Uk20urkzw8HH/TeZ9qvO30FhJZxVriHiE7xhrRU0pnKpnM8Zu7J+pS43tdRrm1bVteS5q+rHPTR9O1Ds+1y2+ex9NbHfyerXUuGdbWOrjbsG6xq5hz3srhk8nrG82oZzhyM00iwY/XTEs1t6JiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIsEGawRctymNZTi2iO2Gt8dVznhDIYXKe1lGt1YiO5LW9ItEGA6rs+RhcbwW9GFZ2mDVu9LtGd3XeIpFUwplPdJDkKI0n0hiRh0JLJRlHVy2NpTGQ5OpCLpqqEvulZ3FJbrSMcidSm9K+vaVv4vljm/KPjyaLq0a0REF7pRiPl3F9NqafnKcXMgF8hj+RCtqaPrW9y6VrTXaIevXrwik3clPj8jA2a+WJ+JS+j2h1ujuzRRmulO5Uo7uEzSflTJG+cpqXJYxrnle1jW+E5Q3wuYle049XM7mefdi9D0hlXO7FOMMlgUdLvkVnOyAtd4uNcNLC5/HKkHLTVzbX8Hj+wUiC2xR02AhZ+SxUznJPGEXFTSeP4I5b/AMiIaqx/dI74rfcPUh/bqT4cPxsScOb4pP5ip733GcUWLSGnhQ59P0bH/h1n+6eH4ZXM84Iw1I8Ob9Zv8hZ8JFXuvane+4zgRJon0xCK17fqvWUgDXtcx7GvY7utdzajJWj8N+3lNa7rBuyyfrAtFYU0fe8jNb1cj9sru5J5hCXFF10CGKuO0Sz2wnLywUzIBPOwTbr1OStVdL5MbYvsTJZyKXGPvLYTz/TW/wBNuvKqdj34dHNHKY6MSvFTM5snmTqa4q/kuV0LoTRwa4hmvbR7Ktex1MTXNfmDesjha6mGrcTVSJGicmLV0iwva1tXYyW0v+jpXmK/9nn8zu9nmlOaJaTxpNCUHiHJFXCWKalWSYxPKi+9U5w80GygSBriZieDxekGpYElr6NeyutrlsqoiVHcNzjhbia7ljXPwnR1yjwQ4ppFpiSWva17HYmuW5bq7M0xERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREGiYZrWue52y1R9ojOc7hBucdyW9WJaNecVzegE/1hVNrFX82eSnlMVEvt2kSiktdpK5lGPqOZcG8fA/niQ/8AWHuv7ujS68SXkZabY7DLK3GaRTj+C4Tq89+cl6IX91KKwaO2WPGCGLFHgEymqlO7q5O9LxbR10OK5r0dskaMIceKJohNpydXLJs6yld0x64ab1Y3K7aq5MdmbJ1cmnNj8/1C13KcV5HRYddTqcRTdGD8Hn12QIAAMws1YeXVzucIRZp2ZLdsXJCsVKuaaVXhBqdzEztcPmQqSIfVxMa57vqrDA5/KxUH4vWLqYFtKYWtVEPtRlLJoyCu5b8LfFas+Bip4DVvWav+GigwWaLBW+XQEeFte61qLNQwgOV8NnxbH5Kw3re47G36y7Vgo9iPpHC/KfRzCtxUdyhkYot1sOHjhPq8PxxSP9wboFPnC11ONaH1e3lbTPGVE9nJOE2q0XURaVwV2m7Dhu5wfnlEaYaKsPVkqObgtxFTdTBspmeFuT/SI1epXZdbWwlWnE7BIbyTM+P8Buvjrba7pidkHbgkt8HrKdcFaYXJTj7URohpNUj3wZwmxboJlHPDmVwHH9LhV+UR/d9xWwirmm2jrJLBuaV8eYB1TR5I6b2MXuemBxbwXx/qWrQvSAhs6NKFkXGO7LODFXD4WVLD10Y3Er1SRlscJ2axu5dzjer8spQb21pipyUeouDun5HRv5Hk/Irny89PP7EOM00iwWa2piIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIsEBR1+kOa3UznHvwNUhWqiIj8w5H15AthvnfjWW7d8pC6fpd0CM1jGib4KjtMr6yLHfIcxz368oYW01klSjV3EcP1qkrqU2qJa2cMuBZT+OHbXljRqd0Z7n8ul18zzI/wBIWyuEYJ1pbQaxPAJ5JT824yX0kSi+PJ6oX2YPMjp8zV1X6YWtWxI1cJybTidQLrl23ie0QnFrxup3G6+WXqVosMCo2ueatKnftlcs91i6LfBjCCNrGclvrCFW8YXa8b9p3gt8RYAY6rs138ldSrhXluUs0WCir3fBCwsdied9NbI4245BFq8hKqEuGk0NlXMqXGRvRgYaST1EdcLbJMNtTjVEKurtWOSrKbNOnmc6b+LUpWJwUTcqKDU1vghYvJ3VVckN8uLhreZ1eatj6N8aRIDH/uzl9x3rwRW5vpjv+4UgQx/CyWflbxctLkz6eH+Sz/5UPiuvpqV4e61pGa9U7oLc/wDJkmH9wsa3mYzVn22Th1asQCilf5q3/CQ/pof5v/yusJi17mWVv1Xp8V19VRhCXG1qt2kMQtcsRm52rm3buQz0MhS2tQlyBDLhZMAz6uYz75cnApwOOGThIPo8h+89BM/bfMra7q7OL3fHksyKNsl7CbE1mJhR8sJG4ChUkvJwS5OV4XNriZyfCauW5wBma2tK6iM22EbzgSqUXKdjm1xs5PhNWKyGH5F9bhstzxYgHpgki5bf1b4P2dQ+m1iK+orjAoyl1itrUeKnfcbXv7YfyBvZk1VUveYDn0YeO6jZIttjvif5E34F1Wq4MKNr6bPgOb0gy9Sr6ZpSi59GLyKSAMqO52B/gurvGF6UJ6eCcWr/AGV2z4bXscyv8l3Vqn3fDBnNmN2bdcDDDJpxUHFuXHweZ6bmSfkhV6WicPOKpxWaQ5zHNfzjNhy7VFTt2RpvBfuX/tlKrHT7fYhBmiItSYiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWawQcl2kNYMj6+CxarFGwCbr5Ttty59IdqoAU7jy7Xm+PWphZaN1spKec1b7Id1LHiErH77K8cOMyurjlSK5AP2voV26LWYcaOCIPVgCKjMTu69/TF/v8A5ygJ1OEXeODobZG4a/8APp+fHhepBw7+kKz32XQYiG4sTW7LfHL0K2T2xaYI4NM6S53Qxn5dOLnJPx+p/wB6liVxOweC3bctFtjZAGs5VWs4/KFXVEZqa3xuW5YftLpt6IorSW7ZQ8TGY5D3ZIh9cVboQQnNo0hu7mupFisaWW9mKjXV3YB8nON5FarZawx6OI9ziyScbzuZ2wb/ACfIr7Z7c2ONz31zJZXYykpyzl/9usjvLR+GmB8xzPRgEqbpy+nUp47pPtyktpRuc5+J3Jjj3hFsdGO+nG/IH8TRt3nrlV9KNLIcJ2QIZJd0Jt5LOcrTrpp/k4Nn/a5tRLNDrpOpQl7mPYOvyIGxGH6H9tneiU66IVp9KJ2/VljBI3PS/R0daNrIbJJyNwwtx/w+tcP/ANVovyey3J7fyIY/v1Zrdo9ZwUawUcb3N2OQaSRTvCX6tiK7D6tWd47eiq4xeef/AFUj9NY7kxv6ET79dVs020cLWm/dDf8AFnCNCqz0vM/1q9cJf8cR389Q16s9qNRzJUVrcXhODlp3uh29LP0u0Yj4KVEVskDqcl2rb9OsYsmnIE5zSfRz/cqjV0CmxdZtHp7g+HWKTeRieg+f8WUt9m0/iFdwO8jbb7izxiahv8wfrvIqicKrEvhravpb1wuVtBIq120KULkkbsSA/tgJZ7w/HWHKa1kltOLVXdyhdcD9ioBulsWlcDjlM5vIkBjGLXzJtwtl0vAzsaJ0K5NK3bYUcbLIAvXA4QoQ1OPy7HsKZy3RivaKk2fSyY7FHLa5NZgm0zG0dHGMnlQb9SXw5cP4JJ/S4asnKC2FUk0PZrh6N3J8moa4toA9JHFSOd+AvFyJHQmWJ7zJc1zX22U38l4SLinX5jxkBIgT8Lm5L9zmf4dYs1kKZLHe7cA4ZEWQ3GErChe3ySg+x9czOESHKdimwjVhHrx6z9RM9MDKN/KKuHR/TWHl5UgzhlFqC6pglHr6ki5bjdYo7hCuUeQEgJWVaZNWv6Z1XfBZvX54f0lbKb4zQnROM18OFr2uZXkuXNZTOqzC/nGbDlIKLfsH1+CX3qpv2TjJTYlFmsEWoZoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLBedRCYMUvF4LBKbUPo9xvkv8AnLgTTS7cHhz5lNWIEOUennAhVOi4qafchOxhXG243GtKVrOuUp7ePj4LC7QB/h/aqVulMcmIHwWZsl/uALLQW2ZEGDDrTmocULvO0DvkstcUiYbXTVjFGb6Dnvbmqp3dWyCSOzE9rPF23LtXFF43Ef8AXwLtUKPcpYKsWatTyCT397izY0f5q9fL+6/krq00kEyaBDXVIkP4Mz6mdz5vQhz6/wAldL442MDDY3UOjMH5AgK66faqyV45ScsmRXZJSmsr9gTfE8sqtp1pC6M0dut9M27ytbteChMj55Z/1buimrveRAFMu0lu7G3AJrecJ5EPniqt9i2ykpQt7uG3Nluq/i48A/BCLxurFx80vaa+1Ap3S78uCT0G0NBDbWRJfnzyvxkO6mYQhf8A3CtTY5HbRXOY3q2rOIF2txi847kt6kSo930xzXEFDdrjjZtyWvyx/wBO5mPHUPP3I3Tnct8+8RRbqtaUfy8pjKvJ+qPRR37qCcpkMjW+MR4Rf31XlgrtOM0jba9o4vhScHB4OV5E8jfXDz25Vdl20TtmXf7pM8PLhB7VH7Ayh3Jy4xVXdK6P1334/ZXver3rsosGIxmQpJmiY99cl4ai4vL6+JcGhGms24VkR9UaG4TKF3fbuYI6pQJc9mxHuN7ihbyn3CLw0bxdTkZC5bFGis4Q/B8NhK/Oe2J2uSP+g8ytXThLOLNXraZW5VWf53o14lWUNaUlXokg1OVGabhGZ+g29RWkVuhy47YgdHp7yVZjoWrAW6rPTzj5yktCb08gMVph22IGj8D8W6IDz8GP3vIVkZo5NJgJJu0l9dWvDHEKEP8Aa/1qqHWp0emqtjPY8ztGk+kcZw7NcwW5oya2R5Uo5ia+ojn4OD2ytz33Rj2MlXi2iqxmy7g3OemkHWd70BtsgRY8zNcf4iGmGJX+9V7sbsg1HItk+NDFPivphkcGD20LoZH5z1qu7+nlHGRfTO359XNuvZDUYOXXSqFwsQi1YNorcDMF1PPrui3kLmjL+7TU17MeFwrNme4VjtU+A2rXtEBleQ9rY/JL5HiWu3SgAlFDRj+DyO2mNyTbErpw/fKGn8Sq6wwl6PyHSm6XzI+tGDmErxA0yiO+qWPbP/T5K7o/wxtuFdbPKc7YxPh4MHnuDnU7KkW13OgC7zkb/IXG+1WN3cjwKO8ZrAjIqZayjknjNBzJV9Cdsg1ut5qE1Ru155h1eXoO+AKP01kxzx5YJuj9xiGeIrKSGwgycsvQGz7fndLqU7M0Ni1C6sUkoD2sxsyZpiDGUPkta32qBc3DHIiXhzmuZjy5sQMn28fJU4dasl2UsVd7Hd2tcmPFLDuhI0xwmY43C65g5XMn7RneVVouI7sNrn1rHmNZTG3FTg0hUewwjMkXe3z7PEnjHJ+ExuDk1wiutHGO0QJHlwHr6Zd8WJbWVoOBcrjZjcikY9TUjf0G4bn1KnqtHCcVPe9y5RtKxNozhYZEXX4Rmbqvpw7pWKOdjqYmOa9rvCaqRGuN4E3U+CGfDbsY4hsqb/QpG5P65arLWzne6luOSFPpx1A3Nt0kfn7ZI/ZKmuEsFucJPQEVYrcbgDikhrJDq56KzWX00P8AYqatVzAZmOO9j2/VXsJoTpk7VmsEU0WaIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwf3EQnccq58Dqi9F+bc7xjFeoTstsq+C6N9Im2uH/Ee5R8/2OtTejXMj9L75QfZK462MXj6QQPYBPI+4Xum4RU08Fvr8blC6I17WYWvKJUpvXmUjcn4RGd4rCvXFaWYYYfqwxe5VF/Js9DttvNtXUsAdxqzqrqYbIqVfPqfPDTwYsch6+dkOyG+yEdbbiXXQzqcor+CtWjR1+st1keNIyf6OFbWt1vhsd4DCmcvLN98Y+xn/AA1D0/BSVcLZYGd7hbw0/H/EAPvvYr0clWOfqpxDD71ecdiU9Cmvt7dXXU00owu+eLH3IP8AwhX3SuceTnQIrnDhxtuZJb0hP4NB96rbpttlP6sfRDmx0i0nJMkPt8Vr6xBsq8rmkqOkqnFyj9DA4vSKhPyH0CWRikRWvwQbcPdjnF+mZH0bqs7zqlNMJLRji2CE5ryH7anOd0FrBz+f54+5W6yXOLbx0uU+tZF2ma+CxW13zxeDhb0MdNPpZ9N0o5Sm4uq8Uz+VVth6/wAjqu2i8hw+FXqcG3xqUrstrjaKvxZXCN162lVwQ7RV7Xks0C+ScXyiZeptujv8tkRziXJerVcpB864SGcOaDOpGY/LhWSL102Q7mfNB3qizxLO2rZBmSbjV1O+rtdTWq1foULnD+pr+Nb7LtLpobt0/wCBZo/Dbbo/L2w/jT7NDLy0bambd5DqFz9xehSRD/Qrh3wuZ90DUmGdHc0rWbMmKH4OuYMjr4XMyPQl9Eovg1r166gtIqupg1x594spPQmkAyZHplITLvKCOgjtfdYFN5wKfkMu4RYe/LLdI+5vHd88qOuqjqfTj/2bZeB4Q3bm+4BkUdEnhkjFIIzcXMFe1532O6A5lXnQC/Nk0Mw+aCXHI0MmJU3er+iMD7AZuteQl0qixtZ4JH3GxS6ayjw8H1k18nab3+NvU87r3nzpIkXGlY91t+FxBRi8GINn+krX08M55HfGT0W5WHU+F9rfyghRlV8qW2H8b9Kks4dWIY2ZjdtuveLz3ssQ8mkXSGCxrZEPnR9fF6cKj7DZrrNEGW24M4OWMIzXEmTCewt/BArTP0DgsrlTrxEA5zNpzY1sF/5hnJXpoQ9jqV9aoy5LyPSG3OoKS2YBsWYIT8TjB2C9AuHSTSiC4OcOfD4ZFdnM7ZDrzQc+H0wMX85eP9jqHZG1uMCRecLosmrwVa+HgPHPq1U5jO5+tVdIzNHXZba3iezE3HskNzvl9wpTjCM42ZK56bpGcq8ZvWomklvI1tWSozsTMeHOCup7QPbxNG9eG2Ky2KtCiffmicIxWUaVtsJiF0P+kIKnoegLH7cG7W83iubGCMnr7OcKunpa/c97cHo/wPGo59MpjdvHs7tRWjcF7ayQCkEZUEgrKUc3MHln39P71U/gHSEO0EpS6vBDPzMfoLwD75R0TTifGOd06O1mNgn9tCNC/Bz8fOCubDSrYV7OS03F5g3WGUg2F4VbpMDdbGOsc3Dm+wz1azy4ZqODIa2uvujkBXnOkum0Z5LDKdR4aiugqVKSgiRsmbDOAuVNC7Jdz4V6oMgCM6Mo/GbvBrZ1hODNOCrj0cqxxqW+UWJq5IufheoXBeqtc1rL/aaEY3ipMjs4QIfhZ30uD/ErCOA9pjOjlczYFsu3g12fCrm7MgThfW5wao0esxjjNT2VTgRrkFjS2uY2725222PKk9usF9hunyj0/rVvhy7dNI7KqaJdRcprm8GuQPPB+UA9aJd9y0YbV7pcIxIkqtNpwWUfHP58Hcke8ULd6gLlxL7F4NJxV4PNC+rBZrsPHBma82DJ2eZ94t84RtiRnimW3yTHrhuY9YfBmibu/Th+TqzgO11GuY7W2vcc3w1Q6XOdC4ro58q3U4vhAYu2Iur+FAR/B+LOD4u8UnwEou2bS5pIz643RMfa5PKQj/J/dKvpDtrdsltWaibFeRGa54sTXNfgeNzMsgS/ManzqTRHDFmiwWaICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaIMFgfkuWaP7irs4SOqI0Y5lvpffKG7I3PaO/8A34X/AJZPUzou5uW6nilKonsm8VLO/wAS/QPb58f79e6XhFTTxTukve0z82L7lCcw38gSz0h440rzJfcrQzjjDd5ET1l1TV6UozuIjO4i21KuqsaPO7WO7wnzJ7/7YdfL5Ly6XE30e3EJ+oUhy1aLs7Sb+cysX9NOuHsk946Q/P8ABpfcVVf/ABUmf01I3sXW11LFFFjewklm09vOD4QpDTcBARYUG3AaR3CBNa1zuLKDzxirp7Hrf3ttFPqCUhfqa5Vv/Bmv9wrIc3nifXlF4ZabDUTrgyLmTJk68FYQhH7yVwDn/wBGz89SVvs7o8qZcZDuF3KKKKHG/pLxP3EKGD7OHcKa7EVKvNbX/YJM30twPnqGvJ3uCM7Hcs9+vrsX2ftCD7c4Fp662dULcXK8MohqdVu9/wDIirmV9ax4In0kVfIK6pHMzPhS5A7+vE3rrdD5kQelNq+ZTd1kwrdiMZ7iXF7MdcXbFyJ+ezf+z/MhXNowwUGHcrnXbdG7WE4n2fcA9vnmVC0F0dLLdwyQx0g0oxMoBH7o+Rz0yd/q4PtS7pY/DvCPi4/F6qWz/DfbXylDZUh39nq7/CThPyvg2pslwnMMTALrs/nldZegZZA/hBjxta/fZDX99eW6mzydxzweaXqjLLYYwTknkizZVR5ZXuEEpX/Y4UMPMh8iFeZ6UaISoTaXWkc0fR4snHKtTC6nxRH+XF+9Ct+vq0mo6Rjoo9q3p/Gpo1U6uu/gq8G426EckyPFLLC8JQ3Abu2ZJIvTGOf/ALPuMM/O9aLJKrFYYd1qU1iIYMfAwl2gvb27j64IT8zwY3PeuUrpvaowWDlRWBZDKzA7L71zcnceuBnw/wBICqRF0mLSJGlQhFeSxSBMHKN09rPv4W556RuNyoeE566rrVP+pqfGKaow7sIr12IbTFqeVb5VZMgdGCuEZpCmGPgsg3bociP1J17BO0etUcbSsiwAuZt8yEeYvCdMnxotxt55E7LbwwWZkvy8yBdQ5+46bn16Rba2p9McTRyfNM7pjxt3m+fvB1gj0hD9UnPrnfbDc471pNbo19hyhT4lI8qMWEbDIDljLk54Pcf1q0wdMrVTZpcIzsBivbvuiXnHZbfMZFhT6WWFF4HPEfE+WHVz3TBjgXoE0t8xGrWBaaNfHx4az5ZOY/QVddOqVC++M8q5ebfC0jtPDJTWzrbUcmOIlO2Q87zCmT6J2Y9MdYEI2LpGhDx+njqmXRk7hUasjR+1ma8MoLRgmBJj5g/ykAl9lwrRSuKVo3coROsiBN7+znVk+1JGPWxYD6DCZVtYky5RHeC0cwxR+okZyjZAb4GVH3sK4UdGksq17XW4j+9/OiWmzyI7qtZa9JDEJip2vNeGTg9BIyjLonXS6ikRazYDDUoGXTNtz6kJRna++4CZ37RYelO/ZNprnL1KV2So1nqyMQ8GRZpvwlC1kozgwib/AH2/j9pyPTKdNoldI1c+CVsofjRcmFJ/jhd5z/Yrt040hhShW8EcwDZl6tDHBd3wzDIzy58OR5n+9T8jQyoauLZ5DoL9XMUbwi3P/Qfk/ocK6UrJRhuIzigtHtOa4nVlie9rWYHlCEwyx/z61yN9H9DnCXoUCUArGlCQZQu8Jr8wb15zJnQzvGy+R+ByqPwxpbS6x1L4XAbm3vfzJlwyoFxgkJIpWuVxVrLjgq+hdf8ADdsD/i4fH+BZKa4TjKSfJ6VwB49qM7Z6h3N+gW9hgSGEAUbXeA8JGKI0S0sEerRFo0UqrM5rceYOQLroR/lEdTc+Ax+1tMI3kkbzg1TjOHFTPp6ZKqeNKg1q+PmzLZx4o9XZkyL+ZfSAcncqPiQHx6fCOj+GTbi6zPtzXbt/lbU75PI8jzXmlc7bPfR+RIbhN4Lm82dQd5tBQEJPt1MTq63nhN4hyvLA6mftelW2nUxsU4YvgXhlspcLabLk03dXOb1POw5glMWK8tLRw30ypQ+cC7uj/wAlVSXGq+vw5YsLzkZ2zEdqGy45NNWUf6PcQ8alKPHMCG424uE7W1wOc3Br62JNB/u/6rXbHHdFbCeS4IonR28tMx2zlmY7AUTucCVSyIyhizRERAREQEREBERAREQEREBERAREQEREBERAWCzROogrExrXymN67GojswEw298ildbosmBM/HweYBymh11S8Pjh/uqvmm1uz4U+H4R4kkDf5QcKp0s9qFKUmD1sfT524FC6Lvo6EGnkcHqFloRcs6FAk1rrzYcV9fO5O+WWi/E2SJ3gTCs9fv8A79eXcmmPBLx362tr9RZrRbeQ36uwt6to4qVU0bZ2vKZ4k+V77PWnTYGOPdRU6W1m9zVdlq4pN1j4eVlSm+nDkfcLbXC50fXyShLFcvfP57N+FCXssQXYrM19rs7/AKglLaQd9RfrBKz20dU/sFG/eskR3KgzCgd+jmVy0t4uBH8WT79S9bzxP9c5PPuwtXahVpyvgMA/SBdqVdlObwWI3wvguL//ACWPnqwdjxzQzhgq3DlT7xb/AERz/CEH2BlFXm24WuitbvGGv1pb52R+/wBB/wAD7de2fifuMvguy/8A8k1P7KpnM0fhtp0ty2v7R+3UlpvZrpbQFyTmySigW+NKG+GPLjADqyT8I33Xm3KjdP43CNHrk0XKjT+Gt80cxz+4nAVn7MGl8Q2jlqlVa6ppPBaiG345QOeD/Udb9L18vC6fZ3J5/wAL6vSzn+kMY+t+abtZ7xIGW9w4hWQgP1vIEpSFCWnTmLWudU/ll+luwb2QmS7EcF0c6QULWQMNK45E/hHMB/ONrJXhvY97KhoUCbaWxwGZIzWYSOoPgr8nIzftHg/qV5//AAU2ijpbzPdrbHiZzW+UOY4M39WfReanVR+h0jCOE89jp63Rzsqtvtd+icR1LXcgXN+A1sMWE1pH5gouR2xByAfKJHMLy7SG4X8k6ZFt8eWKLMEJjhNjZmfA45+/P8nyQTV7hZ7Wwl90nI92IEedFyx9FWVwPfm/OQrm7F78buPvVocDsO7zO08j+jbgCw9L/wDeFsoyx4TcLV6rteHZYoOXbY3wTBkxI2GVwDAQnyrhUCYDfZ691iXuQ4bcJ2sxbeEbMwn9oXmeSxtrIAWLLa+exresLk569C7G+E0K3mYOmI8CAZ1XbzJ3P964Wr1V3W6Xajj8x8jRZddDL+uCA7IrMyDKEUpnN5eFzwjH7hTUeMV1AuY2S7EHZdwk22uzTeMJsC7s2XE4N6RfNFZzKQrE5+ptG2wLHOc/KH3mDuqHw+onTPO3/wBbV8L1+Eqzn+I55YS0fFK5xMWPduc8273P2hdJqzeUyUVzfF1BJ7hR0nTq2lNABFO2TIjGxkDGdwgnMH3KlT6VSH8Q9Hp3F4UqRbof9WetVehnhCXSX+dT8FvljNHSgxjUb8IAcfD4WAMnL++XLG0eO07XWW8nplRyvyJXbsYe+5nI56OpN/wu/lWyIBvlrvwkfuFFRbNMJU0lz2xRlysog++R+n+TrL2Yxt3R/wAjfTO2qGXVAXycM84Ib9GHHNApj+EAPNSMOebveO25x97F3G+3yvl2NcxMZUlSToWDbJH79YLU3fZXy7ldCtejjQxQuiuj5kR2Y9/FmSX5vPmnfTvPLMVqlRW0k2MjTwa7x1ucbMG+n+qzfJzbPM81xrr7ZfdBZT1qt4yWuIaDKj7pwZEN7MHWDIq0yHLha3BzZlubygufjmQh+QL8oDs8ytABBPUlzsZsidj38YjcsZy6u9LmD5PJ+LO96rJozpGKRR7cJAyROwFjkr2wAmz+DjBx86tWPlxdCE8VGu+jQ3CpPsdGnil7a4GMuUN/d7csh/kM/wBkXWpPQDTCpGhFLPmVI7JFLyuDZxfoM4GHtG8C6ldV6tZohS3G3sc8JNuVAZTYP8bpkLi7/wDJdNr+dRGluj4TDfd7WNspsgQnyI43cVzCHFvgauZu4cNMs31cv5k5JPR58Zj24HtxNXPbpFaO4Oau8a3Zd1wlU+xxpPUtBxzGzauFnx5X8IxvuZ4eaKH5/wCq53GG17cNdl3La5vOMKqLoYboo9dqtXyK+M8lyhsc8btqVFb042/KwfafeqKvTWxjUvsGmbbzsGSYwWsmYLoruH5zB4s3yf4ldrTMq6jmvphMzYe375V6M3gkpgaV/e6WXYb8UWf1PmDe9/GtFM84qeLO9NpqHdodMZGsxuax+7lQP/8AN8JWa3zGEYwoqtcN7MbXNVI0ZbWFLfaat1QZFSyoLndCWnftsxe2F5LO6lScKlI0qgNWqJKrjFxczJ6YPpu6q5wxWx3RW5Fgs0VCIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaIIK/bL45/FftKaXFeQteN1F8tJsQmOdyuQ7zqoo2zlFD8VXOxTsAlQa/IrjPitb9lzs8HsDgUnD2JkhleSWOKV6UG4P9wooeoN5c2mprLlBx/pVr3XuD+wUppHTASJJpSmoZ8l/mpG4/wDFkKdzTBKxOJxGfy11LQd+p43eNsLeoUdfSpV65bE+GbwThLCd53vgHuTr5c2Va0vc1iKOTT58vZzv+JdGmEdzo7nDbSpQvFJZr60Fc+iypJY+keQzaDIZg1+SPzKnqduNinDKEq1D0Qa0F9u8KurInBFcxt8cncP7fOV2nxnPiPFTjMPk+dAvO+yYEkfgF4Y12Za5PBj+UtZ+m9x7ZemRT0q9rxuo4RmZzXfh1K+X6pPJ9O7VGX7jyLSR7mSmnC3ZlBFcBfn8Dnw+mB7hS+mkdzjZ0aje348aYB3+uLVXPAL0wNytmnFoLqcGO3XIjm+E4jes66H6jPD/ABhXPo7UcmK6AEtKPZlXK3Hr83Pxu51PMl/GpefnLz/ccKucqbv65wVHR6TEGckYuJ1tnBEFv5sfP4D7DPh+dtIVXNBbZDGc2hWkrKOjtmUmW6TU2XtyK8yA9Ou2vbKW08JSrGPqFoY5pRRvf/Bc8/bE62n+zGOEEwRuuWbosC7RmQLhVo54GF4NMaznBA5435v1oedEVVaTxCjS2z0Wp4WfwT977SUJ3VQ1VCw3nsDDpVrIEsLIuLZjzLcG5UD5g0iva6lux9onDtMx4GO167KWZIO5vOZEvlf7TlTbZf8ATO3UbHkiHcodORJI0xCZX57H749NvVmAV6uJDukM4LHO0bJMrAYYwxQ144gGyPwu9KunDwqNfzZT6Yf8/NTqPFtRfHtTaOxbM1wb5fK/LLveZrcX0WPzH367exWxlGYX7LRQ4GJvlQWyOf8A9co/AwVkIAPe8mTPigb1cWQaRvv6Dnm9OFWOzbMKdMo3Vmw5U0bfJTzbj2AAL5KUumo1ErPfZ/Iy/wC0PXDSdpEWV+O2a3bOK63PD5MXA6q7aM3wALbby0YSjCRYrRRR98SpEgO5CBUMbaDtUevx1ppEb9WsH3SssebWNFLeianvg6PwIwBauRKmhB76vARfyVv1MIz8QlH0QcrQ0fqx+/8A0QQ3ZTvjmjLDnGkfCJwZlLVbO9x+WnTPoypfYw7H8x0aFJmMsOEsUTxNME8zLEGmeExw/HI7qtFhswAx7xIxkLPySxTmI/eGlc/O9ufe+YXVYpsowbfDhM1mbGFic9+Zlq+7xCnQ6eUrJY5//bX0nbqI/D6KGXbs+ZZPg03bR59CR3PboztPK/atRoXrzxz50hboJrgxpnht9yA1jNkluuRpsEn/AOV3j7lS1NE7g0gHlkizisLhc5i6jx7rHpjkRWvG3pBdGuJ+m+nWEYSzi6E6NRCUsYUW/v4OTR/SWQXaIQc+KzbOOBncJB+e2uRvuDeZXrNkvMSQIZAvEQL24Wva/MG/yS8S0h0hspajdLecUwfNzYm7nQfT/tl2QDzRym0c+Oy5npjFKZTg9p0qFH6GcD5DePLU/wAldWimEYecJsufW2HHD7JvX51obSmsbdY29H4nmfmVfjOKF+bHwVYR20PmxmL/AOnkKY0M0nHJHStMTHtdkvETvgEoPPxD+XXXe4DMLn0Zia7ltb4flVCdc4bosF2l8t8EJeLa4lW3W01a2e1m02u7FcBUp3lN8t5XovxLSarZgg3S37m6R61DgNraShOntk3/AK4tdCLZFkVC/N5QXc79cX039qsdJG0iSG3kdaUjvqIE5vR5WLc3L0Pulspn6otlF/dWDRe9skhaYdHMdiwEG7nIskXPBP8AhVduQ+AyOEM4rZMNTPbxZcOcWu5mfm5uaJ/JWWkFeCTR3FtcMKY4UaW3oxm5MKZ9XqSehVunRBFGUB24xEYRjmu8MaslH1NsXmGnlhrHNSUJ7RRpEkZHH2ddqvGvJBcfi7Wl4smT/f3V6Dojd6HBQtWYCN3JQu5wEkXPhr+FQOjAc2PLss/fOjV4G/Fq7agnF2mbufGD2oaquaEXEseXweSWryZtLVIc6rd5Kjhz7XceV8sg93yok6bo+acf8N6HeW4HNlM1Vwtwlw+GJZX+2skAJHe7C17NkjecGToTBUr8XGomx7OZFr0T9nzXQrJD5Vv50OSskjGmwCBI5jLrFPgzG8WRdIXMH9Nuq+bkKRt0hs+AwraZBnM429JBng6L8YT/ANyXFmROCfVuZuuMTi5EoPeRvVZ4vUrltDOD3WVGr3tcBcPG3Z2J4NxN9cDIN/JMt89yqE8U9ovc6mCMr6YTN3JG16MoOeUwqzF3M0gdWoMpnCW/nIOf/qyFZlRBZbAWawWaKhERAREQEREBERAREQEREBERAREQFgs0QYPZrphULZtghAV8LbappQt9pVtWmpyqbay37bYyQu45IbsqCe0AbkNus1vkin6m9JG2gzw+oOdWKWwRgua12IJRbLmrt2Xt+Jw6s/njVN7GBKjZKtBHby3GyGcevHANvrWX1O5/R1sxygurTllPUscdX883Yd+dAUuA2JrXKDC6opTmcVBSKZzfn4SLn/YU/wBlSo9l+DwXbbVghzJumtFV7ALDWZbK6qZb84HHTvU/7I+eL9StKrumQHtoCcGms0Z+JzW9NF6cP9xvQLf5ZxxUz9zlvsURGOdIHjCURYcpvkv+taq3YhmnoOVYJb/3wgP3bndPF6AyvuMTsL24XxpAuNecdkO2SAEj3eGxzptvblkZ9Os//uA/tlGmWUe3L0PI4xlj6Jr7eo7iiacTdUoO21vlemCvLrkFwTBkRXNYGVIzozuji3Tp4X5tM3/pc5eo2i7AKMM+O+jo5mbVfib3d8onTGyio0ziizIMjnw+J5ZWQ9snM1ul939ferF8jBkhPcAxamEVmRcbf0j8jpQ0+nhVLu1mHSrDuKxwiubkTXmLGBNyXd2ccO+tN/DTF25zRcO9/BYYTpkWUNtSYpLm4BlJuh32N1J/o94CrFEhxztPMszxCMSleEwJA9cM5O726CnHHkbPPfgVV9EJxxs/cmn4Z4jbp5Ydf6++CoQNKrjErRkumB3c7bN8FSH+n/0bcPPByVlfdL6nbwc0kYGP3e5nBvN1P8wYMK397yPLFUmxwgNoDhUuzfFwaWH4QtVeLoqm4o4MXlKLsITLG59b/Y4oa01OLb7cEcj0JqyStr6lY/0VOP8Ae+g/SdEt+Sp3WA/LZDqLIMWKKGyJjzPgOxSDABNNNN9Pmcz/AM8pTF7vTKDoVzMEY7tijKasFrgZ5w+wAu+zWkcqtBRQnFZqOzyy5FO3LzJ/HI31PPLK7MinK5jqbl7xWkDW+X5/2AFonRCjGPs3vlfF7/ip9PvsVa7RncChxuk/c8LF526m36keyU/Vb9IovK4I3Rk3nBcIB+wOtenRmufcii5PD7Nbx4eqAYH7dT16tjTSCRSc3eLLc7W6n2mFXOB7A5/1LHDrnq/3G3Qz3ef3z/0qD21guDsMnM7ffJxZ3BiSjh4RuPYeiWANLH2+HDLHjBLKkmKHEbdDGKPD/wA9TmjV1ae3ka9vbTraWU4fWSoAfgmb7gC83/8Aw46atncKs9zhhLHaEU1mLeZZQGoD3B1r+ClbfVqpxzpr5paOv4XRarSwlv62dx7boDUcoFkmGHV3DWSnvaeuZgLq6H1CkNMdFHtIx8cEqREyS4owZGVQcrrsrPFrUjlvaIYQ0pSRELQwGc3QwuPc+oqrDE0mhvZm0MNurlNc/LIzzwVzOtWm1ul2bff74JVwjDk8Y0w7HLSRg3ChnNPQAgyhN6TV3f0jjopy3RwzYtYUiuwVlR4286CSDmZgPo8gOqn6leoWB7bgTDuH7H+5edaEM1VNh2W4C/frl+EXdrUxh6Jw/kdPXzld4f35c6J7H3Ry9GbWlwm7MuLM+A7thfu/sV59x6KSvYLHcxGa6ojBLgdgdUb8yi8mlxKFut6h1xfvjosKS9vR8KB2vRTnYUjHdQlwK0LKSIcDAIXNsHqqvrZsOps+bCPvWW8xnNc7xWb5vmunCt+jGBwjQ37bRbnarjxxj8z7BdeknFkv8tg9eoexu1Hi18cJYzv0f/o6yU7LcWHhqHJobFoWHMs0urn1ikLbHuf0kXJz4RvUHB6pSnY7nkfEGw2vhMZ5YB666ccqE6oKl9LxG/lLka+grxh8GZa/a2s/7GctmjuxcruHwSsgXDD5XJPAP/gQLoR4uzNq0mpUNxts5urCbNtJdfxZ+/he3Dq/SFDdk+2OpJjlE7Vw6PW3ud9vhdv2k3rQnD6dTvZUZrt8t7eUBg5rfOwDUkfcLT2WifvbJlM2nReC3IbvwwDAk/8ACo1csVsp44yWHRe5NPGiyqdKERsK+TqNYaOWlOcrwZ33KhexvXUydGpyQXKVg81I1Tg+/U5pBzJH+EPfN9Aseq+kjOOM3Fp5FeWIaguKQLKmC87HNnh9woPTycysSBfBa+1pMS4U/NTbid/YTn9Srx3aeM1ypejdsaW1yrW/wPhO17XVdsAB7DIW2uf6lMuaW01w0ZHl+FGlCf6I/a5/YnqrCJ2uiqWipuF2mK5/Kk24TH+dycg6ltEpjiRYhXcp8cT6+c1UVfraeUE2iwWaMwiIgIiICIiAiIgIiICIiAiIgIiICIiDBaJ4cbHN8JdSwVc4ZQxETYjasQK+DzfmlXNO6cGkw73TVks7Qm0+wHNuJHoT+ykGViuoXNc0ouU3bw9Z5FdMgIjCcN7WvjlDgc13SCOmmsyjuUw2bWi/QqvHsV3zHZwneVWcKTmiGVmy7l4fEL1KrXY5nPZn2eU975UDLGMj+XLthu8Zm1xu7lQk8pGqpam4k4vk8p/q5X+co3V7myG6Kwgfro2tEquXkv8AJv8A9gq7VKmz3KVNiNoAzoBKVpFkVI+M7qy9PD+9F/8AClJAXO3WLVIFtsJ46677AYYVRVdVvhtI2u8CXoTNUVZ5VS7k+Fk+PyvKeWD9nMl0ZfUirw2duTza1za2mU4b2O+AphsFW/wTPP0P5sbol6zHfh2Kua+O/m3fcqPvNoBJGQRGM14Mkg3c2QXUmXnWjF+LbS/BV1cV9rI/BGlk+T/Y5v7ZX/WhlE67umMuf861aVaOsa0gCC4RbSUrrDqdV8Tywf53PdEqRdbbJBXhBCmLHbzd2jM7eii6m6Aj98RvLB9kvYgyKNo2ta0JHdtsI3wFHy7FWlc+CWonV28vV2uT9gjmX6XJUrdppJy28Nijmw3M2ZMLtkZvPAW1mlWjLdvgoBkb9gyye4XPLsMPMcR45Ftmu46miu4MM3Fzx/kkhbPgK6N4xXaI8fjybUbM/s5whXuEY+rFk8tR04Sy/OxvOkUmZTIggJHh9LKOzL1C8gGvdUVo3gxfCNOK3xQlHExdPxb+5fci8kAylJWj7XDIe6yyyxsYV/BGx22+3P8AP9JId3eeL6JVmVdXyiQbdwqEXhwSmc0G74LFBkZ4eI/bG43K5999XScKI/jfifznWiXTpK2cspsBxnPBY3V5Uy/RZTvKCzs/3AFcNKgPpDJMDtHts5tyb9cceteGh9RU/wDUtV4G34R0bisbu2yZxm+ag208f351crZxHkCrTZdylVd0w1ULPzurTHtUUPItIoVY10zYdG1bNrW82/XTUMk9otV0t35M0BcXnFCusMKh8cOC4sCUEs2M6NTKJvzb8J/tATr0CLYxPZL0bk46Ei6p9vLi3lIvQZBfIldk/qXlOkmmz4sk0aRFM2U2TjltAzdjldBeYPnulD0qs8QpjbV2pcHc0sLJy+RzejaL6VNoKPFurXtkCZgbJwbsnnlYKHtTnNK97Xub4WPMVYsV7t8yjWVeNpsG0Nz+Dl/tH32SZbyaEixYu2Wt+qwy4lvgOp6Syrwl+dhv1ui88dVVZGf/AE98EnpTpeKo+Cwm7PjLTohZ3tptN2n7DWrfA0VELe1Zha3lEkvyxjUTI0kPLcS3aNOzXu3J7xg7RtoupB9Ikrf4d4TOq3u2y3q9Vq562rsaeGFP4ncfG3cdZek96HTXFgW4VkBXVz8rp8r0+QFXjsdW2oWDBToogAu87HHkVVMsdviv4LarczVZoD898h3H8K3SP032gAT74puuyV6vaY+Fuvwn7a60/art6ZW9MP7nLpZxib+XT/eoOLxPhv8A9ZF9zIUnpZJ1Ndh8D3q5LfH1GtwPCG0sl36qA+/WSH9oYLv7Qw0kr++lirqp3Lwz0eSBfTUp8ND1U462Quv/ALyjr5NdmXiOPwYtrkn9JNkZH3Cytrsd4nEbyY9uixvSnMc66MHZmnNIma48ptfCjSfcqtwxY7INj+ksVBu/7tU3p1JwQrgXxYcp/sVz4cm24a8WRa/cQ0jyT6cVa7Dklz6yHV8ODZpXr7YCn3CvtzZrEZvkSrz7sMB1UJ9SBYo3/wCmg/5r0SY/UMjvFYVUX+pO7kwtL8Qgu8YIlAaG11Sb0H4qXQZPXQo51OWbiCBvkRKE0T45d71fTov/AJZHU9L9JTLk5+xMylINBdRMukb1FykUXX2Pq6orRdUaUD1Bz0XF2LeONId/re8/+ZyF3aA8YZDvt8//ABp0u+uuh9JZ0WCzXrMIiICIiAiIgIiICIiAiIgIiICIiAiIgIiINBh66YVEW4mB7h15D37P1CfMptR92jNdTF4PhYVls6dqfcQuhluV3sg242oFzhMq+4Qake0ba9/RT9+wfTYdY/KgCpaHKiTIozCdR8YzMbXf9fKF1WqVWuJj9WazleUF8RlUqvbb5evipaLhJ116u3XQv/ppnvvPLZzinRNY7FIc9pI59XCBbD/r9SZSUR7uQ7lN9ouC/Q362yo/fIvB64XUrfCkDKxhxV2vir4vklgs2TWzhluSSg9I7O59RyY9cE0XIJ0b/Im8gpUBsVMXheE1b1thP1RZ+2gLVOoajnsplyRbBQu7rPI/5y+X2zw5giCkCa7EzA5rmL7pDZKuc2VEe0U0bMNHOpuzi6k/kFrtlyaarqVxR5oeWF9d4zk+uj+WVc4zq+ZUbZRxk87trrtZ3uEVpZ9lryXN3kmKvRrHMEUbZNvO14XdH0f/APXU8zFVu21v1l59pRoCWj3TLHI4HM6v5KdX7ZPPL3LnwwTqYDNwfVIuVujEXiqNrheZMUY156DsmnFVsPSC2Fjm5FCN72keYVugXuE9uZEMan5Lav8AYp5yU3Qxhu3JeNo9FbtOY97qdxxjGkf4iq8p0Z7GZYksFI4olAikyisNR/bRBHz+f9evRnXRztmhpD/qsia/9y5bheWRxEO+ORtK9ypnaiGIkusvU5t1FWqxjGKEDVr9IRgpqy7dYiur52ecH/CBWG+no07Xa+U3Bxdb0P8AvVU7EFrKbh16IRw3XGTjo1tdeKLHpkAoLyPGrzOsoqMc1jNrlYukWLxGn5X3wbtb0nLZVxghr9ZzSmDOMjI02OTMjFbtlDJ6k/2Y2zQoV5j2TH6OScLdKXjtF5YykXnSjGfX0wDt74t/uulXr1lmP18fGRvtxdcqL2dOwzCvfAjPmmiFj0KPEMVCYwn6LKcrtJfVb9RfotVKH52q92qSRtGXW0w7oxo9zcIJfg+bQfuvUm9EoQdls7dkR9NoberGKaQf9nAZe1aNWgUeLDgixODGjCitxeGKOHIXa+ACvdEP+YtWfROM7Y8ZPB26NWZ1WvrbdJLuSncrcymjR/TAkZXuVcQ2C5SGNDKcKFbaMpSlvt9HNE8e1qCea3KKSnkw5K9HflMpiwta38haCY3029gfi9IRU95Gyc5epHWy1jpRoBNY2OzYrhZl+hD9nU1LPhp4zq7DW+OubhLG0wCpiq3xebYoWTOdWrsp2N/hE6NnkQrFZfjuUdztNzo+MoxU5In5z3eOVbdHn4nnmV1Ua9+SP5qxgdN+vPUflVpRtvG/ev3pXdTG16ly6XPzahsETYzGdsubxcFtnJ9cbmfXK7SwwhlLnNHSwznk39js2ZS4Xh+qlJkjGKrvAtkLcA+/N+kLb2LW1eCRcH0pR0+YWZT815iD7AAFxaaOoSsewxKYM9uI+XTBwW0hrhLyeTncyPi/uV3jha1rWMa1rWswNa3o1s4xdKao9knUQcWA3j4ZcIoK/mwO3j+wBVbOy2V1LZPa3lnFSFTV488wYNPfrVo+6kmdIm1pR0eLmwAfXL8uN7gP8RlBdl+6Oz4UMPG8VfhCrafGXvK1i9efO/Rl7VyXdPasPYzjtyZB6U4jT5T2+aB2gD2Eein9In6gG+szAsdHbc0II8ZlcTRBEHF46xvXG+OLxjY3eaAsd/FCe6aQAzU1tPqKt6E8dbkfwSXSVteSB2v9wpy7TWCCaQ/iaMJTO9AqaUr4thIWtO2OAFf+lT/8861U9MYKZc3Z2H2/vcAteVIfKmV/T5h5H+9d3Y5b2mGvWPKb15jr4QdIdsYJvyW3CC3zgA5CldHYeVHig6sImKq7dbku9CQWawWa9UiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAsH8dFmsEELMh1o5rmbL28h33K2nBHkhIAwmPA9mSUJPc1opI4WuphqocoXtfiFzzeU3rxLLCztTxUz2zyigdErkUJvgOe6rjUbR8OS53+kYQf/FcQ8Wb/EVS04VQPdKDSrgu2jib/iwppHZY82PgfUrHNfQwjMrqkxJQOakA+0KP0J0hK4j7dcqNFdAsoWtaO1x7jG7nwjD8hi6Lo6rZOGTTCazY2uo04XYsTMez0i6gPa6mJV17XRXue1rqwnv2m/RSdd+bqbezXvROb929YN8CUHUoi8WIZcL6VcKSPjHIHTej/r5jySkI5mu+q5vKat62QmgrkK+EY9se4UaN7tgZ697yv/bm8irGtEuMJ7HCKNrxu5TXM3ar9LbNj95Pz49Kd6yHbxnmJn7bWrtslO6KbuFvAQbgSBDKJ9NoZGZg3+hVCufYkgVdjgklQieDlPzBM4uokcn0auNnv8ctctrnCPSmusc27kM9ApheroXe15eTQm/s2RXwbx+UZchk/s85fLd2Myve0t2m0lN1UxBCEwxn+rINIOU0iN5Hdi2l6isFDNb3ZM2YaUw0bhQiKF0mvbQVitwVIeRJDHENurW9/T+qA05v5KgqU7spTThJHyy8EE8RXukZWb2z8QVM6Oy5jgALMC7MeEb3OHuyDr3VapLn8kbW/lOWmkKteMj3O+q3djXOs0s+7nBinRvRHw1Ruznu/JIFffhUrqcuMxv5e8U6yMLVhwNwrT8FRuqaoY6g7E/cheGMpXE4oXO8bBmE/qWb5Dn7NBnL+VuxqdHDE3ksa1YXKYMbcZXta1T+GuedjDnJEFtzq0xSntaJvRj5pcJ5epzQAE1xvAHTXlgF1035lyXG8uLSpaPHHhs7soz8Ax+Y643Eo+3TJJm1HZWEBFrTW+6yh1qU/loIDd8edNultr0sI7pIwr789vB3XS6OBWkCDRsu8H23Vriyw/bJuHvcHkV8xBt4aDY0k68S34sOrtm4ztmtTF6iMHi8yJq5IkqNGqS3WUPD7i91XnO8jiMYXwjXSY3wvIqxaL6NZLiSZB3SZ59WbIczo+pAH5PGWnH1SdDZDbFloVYHBYY0glDT5L2nkG1asZepBs97h7g1z6a3Umodvh17flcTXYe9I2LUaaXzXxeUdRdGlmkrQ5YI4uETy8xHbXl93fG+jx/LJojZHBoQ0l9DTz1xGPX3IfmjiVWWS2EMdzstsOPFjNE11GRo4q66ur0fKMUv+1Veb9joTpk091MxzWZzTNa7wdz2iD8QQHzvOz1l2UL4WTIZo9b8L3Ofjku6Lr8k/wBn6Qv4qC6ZejaLWsUcI449rV3XO5wxemMrum2Pkv49Mkwou30xlMbiwt3LPvlneTOo3LFXel2G/tl1RIzWMaJnJYzAsfOalWuyAzM4Jbqau25Op/z8Bj9sSP8AhD+kLl08LQsiz2vU3eSaTyt8SNa651Pb5C36I7+RMujtoXeEb81Dz5vTH9wufQGtZB594dTdlJwOL8/AIXTN88fPL6lbuLMktMX46w4VK8Z5ON35sDfm+4/WrIyirFnbmzJMzwBdpCd4/X+39wrQsjRPbHEWaIpqhERAREQEREBERAREQEREBERAREQEREBERAREQYLXKDip8zvBctiKudecMZCHIF9KueLiN4Q+jMovSSyBmDHVr3R5oX1OE46U4TClbPsOLeB7hVZTh19zlLieDE7XSuA7fC6xQonKG2SnCcOKH0T0gcRz4FwE0FzEyjnsrWuXKHr77hdcDX6uvEujC+LXEOj3Qqu4x8t8XyoPsy0aQ2gMtrRFdUE8O0I46U4TFL1wPIrn0d0mNQ3wZdmtFPpxCM3ijXQTePOh+X7mYH4vxVV84Zrq7slofRr6NKN7cXxEb4a2DNx4H01E94oMsQsd1Sxm1fHdtkjNpzfloX7FSsU4DsaVjsbfGb4Ky/lXYu5FxY3trt7Y/Gb0a6mPbWmKm01XV35KXHdrTGNRtDia/D3KupvGeaUW+0zh95zX1bq5mW3hP9o573isywV+aE4RVv4VuDOdtjn/AFo0kJP8Rko/SQvgWy5Od5kI/v1ZETOPtQ7c/cr3DbqSmoUMMZvhOkmzCeoj/tVX9IrHOaWFc2lJOkRSlfWO2gmDfGOFwD8Db8R+T8fhL0FFKFqztoPR3SaDI2Y525zeJ4XbuSPz4Db1TetUrTs+jtXMpdSW5xm14qEe3hrPMZO+VXGHFqpZmaWatXLpI4NB/wD3D9yJPlpYSevLAj20a6tXYWt5Tl5fCsemLntq+9xY4NWvA6ACbJp+DOyAiWqd2Ipkh2O56ST5Q+odGAOL6hRwingn7x2RraOrgx5I5B/FD2zX1MdV05Z5dUo4Bxht2+E3h/Bhh8za45/fGXfK7FVGAKGBcpsd9WbGTwSEPN8q23xhYlx2kVnC7HcLRLFMbTaLJjzbsP0E3fKyfbU/BdzdLc5obYRHMLSk3SKYzkOwBHaYtdWHc/JAfF1vJVrbYbnJ/wBJyqRYv0KA6tMfn7nz3qclZh02h0oxscFyN8WoNrm4P1uAISPu96LrbGtVIrdXPTpIaewjZqj3Yx4tPSmXTksUCHEjBywsBHjM8FrMsY1WZWk0mTurKOjh+FcDN1wR/F2t/CB/xbryq6G6G1JqJdpRZ7qceQ5vB7c38HAQ98emzlbBs1Uw4cLVn3yPKMUDo3o4IFCOxELJLzko1Mcg3J1eg8iq32UNOSAeK1WxufeZHJG3ecFF9MOvulmmcp5nWuwCbIn02CyXV1wbX3efL00jyKkOxzoICEwpHPfIuEl+OTNN3xKL/uD5JTrTx9UjsZaFDhBdjdmzC7ZzO3mYVWqeZrGOe92FrVvOZrGuc92FreU5RMVryuacrXNE3mxu+PyxlXdP2ocm+1xXa6yC66EfyW16EXUqG0ylEe4drivc2RJbXMe35LBrzx/P9EP8LlJaU3wcYVSOpV5XuyRBbzkqT0IQqDC8VviybhcCY5D9+cg+PMNzIIkLXyuU0Qgq6mrGKmbVpoV1BxLFb90WW2gMTKa+A2sHfp/UbkXlD0+ZS15LSPGBEhMa0mEUOOPq+LD7EHH/ABLh0DtRKUPdJ9WUnS949vFqhRQ97270PSfOTWuiwscctbiSu5w5MZvzi6WZ6b3ajdP0raYepM2C3NCEQGcljcGLxvLKRRZojYIiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgwWggde1yXeMupYKE4RnHGQjjha7YK3a8Fyhb9ahlESNOBwmI6lML207ZERvcN5/arvgqyHDrpxrDG5nL2m+MqIXTo58ELKfaoka+yYeFlzfWRbq1wiutK1pQHg5V0+j/nf1lZZsB9HVlwXtxv23Cq7teV+xPyd6uuTam1xPY7A6tOPDzb/AMYVS/g24wKuJax1kQNWN9sxbsf/ANqK7vfzPNeaWzZb+xD4nDkvlruAysxs1a+Q5rucYXqSrPg2raE7D9Xo1WrfLDJZw+2lwym0wEGRuAj69RNB8nVgtNyGVmNlHNc3Yc13ODJ1Kz4emTTy3RdA5LdeGvE7xXLesDha6mqrVy43s7u2P2g1XnOHJBILAmLU7VyvBRj9dMSLUKb8G6Qk5+4QIf1YcR0wnr537FZfuCA/anTLlNdq42nl5QP6PBygq4IiXeki7Po7Bj0ww4cYHmghGpRFB6Q6TxQVawr3OkE5EcLcySf8QEe75Jz40UHozImvo4s0QwNdyA4swrB+XN86n0JwYJqQj9Sg7jphbR1q0k2NR2rk5+MnqUIwnLinEXn2kfZDaJlSsjFo11cNCTH8BG+vkASN9I9EJV+otKJ9NkvwbBd0zg5cn0AOe9dkqca8v2p9KceUl60004tkNtKzZYxkdsDC2mZJM/yAA72qgRxrvcKa5FCWm2V4slrv31k8nnjfIP4t4u/QfsbWyFVxxCcac6m3MkuzppPT9Crm8zWtxVdhb9ZLJwgZY8XDYrPGjDbHiAGALeSMbFvuUxg24n1/Ja3nHrkdcnP2YlMdO5nVr2uz9ss7db2t1kdVxC1pqqSvxLF3s/pGPqk0x4jyOzJPJ8EPieeWWkV6jxhteTE5znYBBG3GU5epAFcV/wBJaDfwaIJ0qe7ioEdeb8Us0vycCjWxgRGkut4ltfJazBWQ/djAP6HDF/0Uv4Vrp0+PJTKeT7bYeXmXi7uEyQ0RH7T+1rXF8IItn1plyaNRSTTsuk0TxxQEx2+ISlaE49qtzmi+k8e6F0Q9fxlXyDaTTijmXILgQBPxxrcSvOE17qZc2+Nrw1GHo1L3aeQ5HQoddlvPyKdAPqQfaFO6eKcYNd0e6WZ0MVdUMT9UgjXc8T6GHV7X8atI2NpTDTkrTaYAhMaATMA28lq6lRWlOfpiLNEU1QiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaJ1HLgc3kcnxV9G9tdlbloILX+UsXbnV9NPDNAaT6LDkYCtIaNMZXYlR3ZZWbPS/SI/kTKo2y/nizHCvNBx80WDho+KFKLr3Jj/wfI88vSsbm8rk+M1azQAPzMYhva9mB+JuZmCV3fjbtI7XczjpiRUX9zs6HXHZSZsTlOtkgm7+f97D/ACf4tzzXH8Sn9F9J4kmhGixCkM52KZmXJB58C04IJtjG0phpyVmsFmojBc855KDI4TMZKM2R4svML59dawQea3SPpWfDSjrdBDXlDaY0mR6/I1LdY9E7mHHwd9rBV3LLwaXIkk88c59Z/wCNeiKq3/SOSwlY8W1zZT6U437mNDZ6eQkaujX8ZPHGMX2tju1eVeBt81bhU/xByrjk6OVY1xZt8n4G91zjQ4Qv7OBfOAX83HImxbaHuZcRnDJP9NkcXsVrbolZmPaaYThkmlNk1wkcMJ6AHMx/QiovPOqvlJT0ttkrziWV76NhRJ16N41Cmkwm+dmyHZNP61L27Ri6v2MyFZ4uriDbhBLL/pkgGSH0QVbB3kFKYQsI9vgtGHdrOs6VXkRas84bB/cnxlcfpvfmy5OGxaHQI73HEHHKdypRn8Jmk9PIU4eYJlMRXtb+U9cNIMh3PSXU+qFuBdES1AbXExjcXjO3hFTK22z9hjFz1uJXd7hdWnWE3Y0paMWqsklSu1asutcEf1KxvV/iR6N4VIGNzqbLKv3pPMBbvTKJLdrmbvKJWILV3xNZvPQwW/fFCp/D5/UQ73tT9zuUYA82QUYQ08Jz8tVw064SdTYjSwIda7UkzO3TD1fJwfJ/PGWMqDbolKT7rLaUze5JmO5qv2IPyf0K0UuF1mcURjrbAr3ZcgP74nH9ig/J/PG9UtcYRj+xUHu8CB2jBjukTy7dIoa5k4/2ycf5ODyxlutmi5nkHPvJWHks2xBb3lbfMa++D+WMuiJEtlva6reIxeOpHO4RcZxfeyKr4O3ypO1MpUMTiww2urmE/PTfyuZVU7fatjSFuBpVXBgveOLyHzGV5fkYX7ZWC020QRtAFmEbV0gG1tGto3C1vJa1bFVh7k5z8hZoimpEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBgtHBm6+LZcupFCcIS5DSPF4Sr2leigZOWVryRpwuamB3ckHF7YHkS/hVkRThtFQ0Ov5nPfbbixorkFlHbDq8HnRvimQv2XR61b1SuyYxjCWWWzvkd3igZ85BT9xND6jEb9HVkLeR9wdHGf4o15dOMdxCCRXFOuQmYWvdtO5LW7whFx0iyCcZn5Q+rHXeemMu+BDEymETGt/41mznPiuwhFw1lyn81GwN8Yz/ALlZ0t8itN5KfT6omiZ/WpF720o6rnYWt5TnKvTNN7c12UI7pBuriCNNJ/Z1OGjy5bkJ3YpGtkDXnMwn5ZTLqBbQN5ABt/JYoNt7ub+9rVUTdXOTZIh+wj5xVhS2Xh/fFzGFviwoer2sjNVsNHCKHemtHxKAn6YW1lct0sZDauZDXhEmvoI/GuZmg8J1dcusmZXVx8LkmKP1HMrnmaTWKJ2sM0QRNXFFiizSf0OCtMYRQzm3fujnE7ztcnD101/Aheo3pvZLKtmuRaVrNuTxNrTXkQGcHrT8HDTb79WUuRukl2N/o+zFE11NWdczcDZT9Dj5pv15SwZopcDa3XO7yKt197W+nwfF7nSl18LN65OL3th5dit78DnCZLJTHhaws26yfeyJC+8LvkjU2LGpa49ac/LaKVOfTyUEDskP4zF9EuiI2zQNbACjhKTutCyhJh6+V6aQttJ9xNTVGBSILVzkrWST3PoTfvCKuVsV8KZOeDo5botfhCYWsiW2lK1mzy4yM8x0Uf0NKLodd5Z9mCHKF9KkM/rCDp+4uiFowGj6HkVJKkdZI3mX5kPMx/4lYNShukntig7Jo8ATqlc5xpNeVINvCf5CsCwWaKpTyYLNERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQYKHuEuTShKsj7LG+cITzAFKHO1tNb6sY3xnPy1WjabQKOqwBCyytpzcMJpPtQ7ledmUjPFD6N2KVIJw+8Cq3C9/BYbvkwuvPUPdkl2a5XRfhV+G1rW4aYWtaqvwy8l5mHGhD8aU/hEn1Efc+2WTNDRErR9xlSZz+rI7Lgsr+Yx9y702ap9mMeRnkymaZQqPfHA4suQ3icGK3hJB+e6IC1Vfejclke3h1cp3bs31PMx/bKyQYYmMaIImsG3ktazLGutSzhHihuVIOhMarqPmONONTuOlmzRs81H5n2asceKxjcsTGsY3wWsyxrqRRzlIwiKOvkc7xEZGkVjmryTZPCas9A5SKwUU1MfoCElP3zmT7i742HkZcXX+ZxsoP8AUu4E+zxKcGj8EA7qIoqY/UR0JoqJ9dcyTLleTcXLj+ojqagWsAqYY4Rjb4o2ZaZSknDtIL4anE2Yluc1vWyncGH6jnll8AzS9+TSYepit4OOnpueVmWajgn3vaibTZIoaao4Rs+dzWbx/plJrNFJCU8hEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFrIPXR1Nbqa/FWxEFXj6DW2lWkLG4QRvSS3mmk/tCsgxNbTCyjaN8Vq+op5SMBFmigCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIP/2Q==\n", "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('DDcCiXLAk2U')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "\n", "## Using the Integrator class" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " [lorenz_ode.py](https://github.com/phaustin/numeric/blob/lab6/lab6/lorenz_ode.py) uses the\n", " odeint package from scipy. That's fine if we are happy with a black box, but we\n", " can also use the Integrator class from lab 5. Here is the sub-class Integrator61 \n", " that is specified for the Lorenz equations:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "******************************\n", "context imported. Front of path:\n", "/Users/phil/repos/numeric\n", "back of path: /Users/phil/.ipython\n", "******************************\n", "\n", "through /Users/phil/repos/numeric/notebooks/lab6/context.py\n" ] } ], "source": [ "import context\n", "from numlabs.lab5.lab5_funs import Integrator\n", "from collections import namedtuple\n", "import numpy as np\n", "\n", "\n", "\n", "class Integ61(Integrator):\n", " \n", " def __init__(self, coeff_file_name,initvars=None,uservars=None,\n", " timevars=None):\n", " super().__init__(coeff_file_name)\n", " self.set_yinit(initvars,uservars,timevars)\n", " \n", " def set_yinit(self,initvars,uservars,timevars):\n", " #\n", " # read in 'sigma beta rho', override if uservars not None\n", " #\n", " if uservars:\n", " self.config['uservars'].update(uservars)\n", " uservars = namedtuple('uservars', self.config['uservars'].keys())\n", " self.uservars = uservars(**self.config['uservars'])\n", " #\n", " # read in 'x y z'\n", " #\n", " if initvars:\n", " self.config['initvars'].update(initvars)\n", " initvars = namedtuple('initvars', self.config['initvars'].keys())\n", " self.initvars = initvars(**self.config['initvars'])\n", " #\n", " # set dt, tstart, tend if overiding base class values\n", " #\n", " if timevars:\n", " self.config['timevars'].update(timevars)\n", " timevars = namedtuple('timevars', self.config['timevars'].keys())\n", " self.timevars = timevars(**self.config['timevars'])\n", " self.yinit = np.array(\n", " [self.initvars.x, self.initvars.y, self.initvars.z])\n", " self.nvars = len(self.yinit)\n", " \n", " def derivs5(self, coords, t):\n", " x,y,z = coords\n", " u=self.uservars\n", " f=np.empty_like(coords)\n", " f[0] = u.sigma * (y - x)\n", " f[1] = x * (u.rho - z) - y\n", " f[2] = x * y - u.beta * z\n", " return f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The main difference with daisyworld is that I've changed the ```__init__``` function to\n", "take optional arguments to take initvars, uservars and timevars, to give us\n", "more flexibility in overriding the default configuration specified in\n", "[lorenz.yaml](./lorenz.yaml)\n", "\n", "I also want to be able to plot the trajectories in 3d, which means that I\n", "need the Axes3D class from matplotlib. I've written a convenience function\n", "called plot_3d that sets start and stop points and the viewing angle:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.simplefilter(action = \"ignore\", category = FutureWarning)\n", "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", "plt.style.use('ggplot')\n", "\n", "def plot_3d(ax,xvals,vals,zvals):\n", " \"\"\"\n", " plot a 3-d trajectory with start and stop markers\n", " \"\"\"\n", " line,=ax.plot(xvals,yvals,zvals,'r-')\n", " ax.set_xlim((-20, 20))\n", " ax.set_ylim((-30, 30))\n", " ax.set_zlim((5, 55))\n", " ax.grid(True)\n", " #\n", " # look down from 30 degree elevation and an azimuth of\n", " #\n", " ax.view_init(30,5)\n", " line,=ax.plot(xvals,yvals,zvals,'r-')\n", " ax.plot([-20,15],[-30,-30],[0,0],'k-')\n", " ax.scatter(xvals[0],yvals[0],zvals[0],marker='o',c='green',s=75)\n", " ax.scatter(xvals[-1],yvals[-1],zvals[-1],marker='^',c='blue',s=75)\n", " out=ax.set(xlabel='x',ylabel='y',zlabel='z')\n", " line.set(alpha=0.2)\n", " return ax\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the code below I set timevars, uservars and initvars\n", "to illustrate a sample orbit in phase\n", "space (with initial value $(5,5,5)$). Notice that the orbit appears to\n", "be lying in a surface composed of two “wings”. In fact, for the\n", "parameter values used here, all orbits, no matter the initial\n", "conditions, are eventually attracted to this surface; such a surface is\n", "called an *attractor*, and this specific one is termed the\n", "*butterfly attractor* … a very fitting name, both for its\n", "appearance, and for the fact that it is a visualization of solutions\n", "that exhibit the “butterfly effect.” The individual variables are\n", "plotted versus time in [Figure xyz-vs-t](#fig_xyz-vs-t)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAG+CAYAAADsjWHpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd5gTVduH75lJ3STbkCK4giBFKUoTpKOIgIUiRYqAvBZsFJGivvBZQUResGFBAVHBggXpIIiAiCAiTQWlCAiCwJYkm575/sgmJLub7ILsbnb33NeVa3dmzsw5M8nMb57nPOc5kqqqKgKBQCAQlBPkkm6AQCAQCATFiRA+gUAgEJQrhPAJBAKBoFwhhE8gEAgE5QohfAKBQCAoVwjhEwgEAkG5QhNr4/Hjx4urHQKBQCAQXDSqVq0adZuw+AQCgUBQrhDCJxAIBIJyhRA+gUAgEJQrhPAJBAKBoFwhhE8gEAgE5QohfAKBQCAoVwjhEwgEAkG5QgifQCAQCMoVQvgEAoFAUK4QwicQCASCcoUQPoFAIBCUK4TwCQQCgaBcIYRPIBAIBOUKIXwCgUAgKFcI4RMIBAJBuUIIn0AgEAjKFUL4BAKBQFCuEMIniDuOHj1KtWrV2Lp1a0k3pdB8/PHHXH755SXdDIFAUAiE8AkKzfHjx6lWrRqbN2++aMds3bo106dPj1hXtWpVduzYQePGjS9aPUXN7bffzvbt289rn61bt1KtWjWOHj16QXVWq1Ytz+eRRx4pcL+ffvqJ22+/nZo1a9K4cWOmTJmCz+eLuU/v3r3z1NW0adMC6zp58iT3338/devWpW7dujzwwAOcPn065j7Tp0/P99wOHToUcz+Px8Nzzz1H48aNqVWrFj169GDXrl0FtlFQ/tCUdAME5RO3241Op8t3m6IoVKpUqZhb9O8wGo0YjcZir/f555+nW7duoWWDwRCz/F9//UX//v3p1q0b06ZN49ChQ4wZMwZVVXniiSdi7tuzZ08mTZoUWlYUJWZ5v9/PkCFDkGWZhQsXhuoYNmwYixcvRpKkqPumpaXx1VdfRayrUKFCzPqeffZZPvvsM2bMmMHll1/OrFmzuPPOO1m/fn2p+z0JihZh8Qki2Lp1K927d6dOnTrUqVOHTp06sX79egCaN28OQJ8+fahWrRotWrQA4MiRI9xzzz00adKEWrVqceONN7Jo0aKI4/bu3ZsxY8bw4osv0rhxY5o2bUrv3r05fPgw//vf/0Jv9UePHs3j6gwuf/XVVwwZMoRatWpx/fXX56njyJEj9O/fn5o1a9K8eXPmzZtH7969eeyxx6Ke7+bNm6lWrRqrV6/mlltuoWbNmnTs2JENGzZElNu+fTu9evWiVq1aXH311Tz00EMRlktuV2dwedu2bdx8883UqlWLbt26hSyQo0eP0rNnTwBatmxJtWrV6N27d6G/pyAWi4VKlSqFPomJiTHLz58/H7PZzPTp06lbty5dunRh7NixzJkzh+zs7Jj7GgyGiLoKEqKNGzeye/duXnnlFZo0aULTpk155ZVX2L59O99//33MfYMvP+GfWEJrs9n44IMPePzxx+ncuTP16tVjxowZ6HQ63n///Zh1CcofQvgEIXw+H3fffTeNGzdm5cqVrFy5kjFjxoQsmVWrVgEwe/ZsduzYwfLlywGw2+20adOGDz74gLVr1zJw4EAeffRRvvvuu4jjL1myhDNnzvDxxx/zySefMHv2bNLS0rj//vvZsWMHO3bsoGrVqlHbN2XKFO644w6+/vprbrvtNh599FEOHjwIgKqq/Oc//8FqtfLZZ58xd+5c1q5dy549ewp17k8//TSjRo1i1apVNGnShLvvvpsTJ04AcOrUKQYMGMCll17K0qVLmTdvHvv27ePee++NeUy/38+UKVN45plnWLVqFUlJSQwfPhyv10vVqlWZO3cuAMuWLWPHjh3Mnj0bOCfGhXEpT548mfr169OpUydefPFFHA5HzPI//vgj7du3R5bP3fodOnTA4XAUeK1WrFhBw4YNadOmDaNGjeKvv/6KWX7btm1cfvnlXHnllaF1devW5dJLLy2w//bEiRM0bdqUpk2bMmjQILZt2xaz/M6dO3G5XHTs2DG0TlEU2rZtW6r6igXFg3B1CkJYrVYyMjLo3LkzNWvWBAj9BUhNTQUgOTk5wnV01VVXcdVVV4WWhw0bxsaNG/nyyy9p3bp1aH2lSpWYMmVKxENXURRMJlOhXFFDhw7l9ttvB2DcuHHMnTuX7777jpo1a7Jx40Z++eUXNm3axBVXXAHAK6+8QrNmzQp17g8//DA33XQTAFOnTmXjxo3Mnz+f8ePHM2/ePMxmc8iCAHj55Zfp3LkzW7ZsoWXLlvkeU1VVnn76aRo2bAjAY489xu23387hw4e58sorSU5OBgIuvPDzNxqN1KpVq0DX6WOPPUbr1q0xm83s2rWLqVOnsmXLFj777LOobsSTJ0/muSbBuk+ePBm1rh49evDwww9TpUoVjhw5wsyZM+natStff/111O/u1KlTVKxYMc/6SpUqcerUqah1NW7cmJkzZ3LllVditVqZP38+vXr14sMPP6Rdu3ZR6wLy1FepUqVCv/wIyg9C+AQhkpOTGTBgAAMHDqR169a0bNmSLl26RLyx54fD4WDGjBmsWbOGU6dO4Xa7cbvdtGrVKqJco0aNIkTvfKlfv37of41GQ8WKFUPuxv3795OamhoSPYCUlBRq1apVqGOHB2poNBquvfZafv/999CxmzRpEtEnWb9+fRITE9m3b19U4ZMkiauvvjq0XKVKFQBOnz4d85o2btw4j6s1P0aPHh36/+qrr+ayyy6jX79+/PjjjyG3dGEIimSsPrdBgwaF/q9Xrx7NmzenVatWfPTRR4wYMaLQdeWuMz9uuOGGiOUWLVrw999/88Ybb0QVvgutS1A+Ea5OQQTTpk1jxYoVtG3bli1btnDjjTcW2EcSDCoYNWoUn3zyCatXr+aGG27A4/FElEtISPhXbcsdDCNJEn6/P2L5YqGqap668iNWnbIsR/RLBcuGt/liErTkjh07FrVM5cqV+eeffyLWBa2l8wkACb5UxKqrUqVKeeoC+Oeff/K1BGPRtGnTmNGvwbbnru9C6hKUfYTwCfJQr1497r//fj744APuvPNOPvzwQ+Cc8OQOff/hhx/o1asX3bt3p379+lSvXj3U91YQWq22wFD6wlCnTh3OnDkTEfKekZFR6Hb89NNPof+9Xi87d+4MWWV16tRh+/btuN3uUJm9e/eSlZVF3bp1L7jNWq0WyHs9L5SgSy9WP2mzZs3YsGFDhPh+8803GI1GGjRoUOi67HY7hw4d4tJLL41apnnz5hw5ciTiO/j99985fvw41113XaHrgsC5xTqvRo0aodfrQ4FYEHjB2LRp03nXJSj7COEThDh06BDPP/88W7du5dixY/z4449s3bqV2rVrA4E+PpPJxIYNGzh16hQZGRlAoB9w1apV7Nixg/379zNu3LiY/UXhpKWlsW3bNv766y/Onj17wdZQ27Ztufrqqxk5ciQ///wze/fuZcSIEWg0mkJZgq+99hpr167l999/5/HHH+f06dMMHjwYgLvvvhubzcbo0aP57bff2Lp1KyNHjuS6664LRbZeCJdddhmyLLNu3TpOnz5NVlYWADt27KBdu3bs2LEj6r6rV69m/vz5/PLLLxw5coTly5fzyCOP0Lhx4wg3Z9++fZkyZUpoefDgwVitVsaOHcu+fftYvXo106ZNY9iwYVEt8sOHD/PSSy+xY8cOjh07xpYtWxg6dCgA/fr1C5WbMmUKffv2DS23bduWhg0bMmLECHbs2MFPP/3EiBEjaNKkCddff33Uc3vqqafYtGkTf/75J3v27OGJJ55gw4YN3HPPPaEyK1asoF27dqEAJIvFwqBBg3jhhRdYs2YN+/bt49FHH8XpdEa4aQUCEMInCCMhIYFDhw7xwAMP0LZtW+677z6aNWvG888/DwRcd88//zxLliyhefPm3HzzzUDgQXXZZZfRp08f+vXrR5UqVbjlllsKVedjjz2G1WqlXbt2NGzYsMBIwWhIksS7775LQkICvXr1YsiQIdxwww3UqlULvV5f4P6TJk1i2rRpdO7cmW3btjFnzpyQhVGxYkUWLFjAiRMnuOWWWxgyZAh169YNRWFeKBUrVuTxxx/n9ddfp3HjxgwbNgwI9JkeOHAgZoSmTqdj4cKF9OzZk44dOzJlyhRuv/12FixYENGP+ueff0a8hFSrVo0FCxbw+++/07VrV8aNG8egQYMYP358qExw+MjHH38MBCzTLVu2MHjwYNq0acOIESOoXLkyS5cujbDCTp48yZ9//hlalmWZ9957j6pVq9KvXz/69+9P9erVmTt3bsTLSIsWLRg1alRo+dSpU4wcOZIOHTowYMAADhw4wEcffUTnzp1DZbKysjhw4ABerze0buLEifTr14+xY8fStWtXDh06xMKFC6lcuXLhvhBBuUFSc3dmhHH8+PHibItAcFGx2Ww0a9aMcePGhUQlN5s3b6ZPnz5s27YtpiutPLFp0yaGDBnCunXrqF69epHW5XA4aNCgAdOnT6dHjx5FWpegfBHrfhZRnYIyw+rVq1EUhdq1a3P69GlmzJiBJEncdtttJd20UsXXX3/Ngw8+WOSiB4FB7o0bNxaiJyhWhPAJygzBYRVHjx4lISGBRo0a8cUXX4iovvPkqaeeKra6OnfuHOHCFAiKA+HqFAgEAkGZI5arUwS3CAQCgaBcIYRPIBAIBOUKIXwCgUAgKFcI4RMIBAJBuUIIn0AgEAjKFUL4BAKBQFCuEMInEAgEgnKFED6BQCAQlCuE8AkEAoGgXCFSlpUDFEWJyIavKEooq3144p7cSXxiJPURCASCUosQvnKALMsRwmexWLBarVGFTZKkAkWvsCIZXC8EViAQxAtC+Mo4Op0uX6GJJW6FEaLck7sWZrLX/I4RXpfZbMZms8VsixBYgUDwbxHCV4aRJAmLxRKa2TveyC1EGk3en2NRCGxh2hK+rNVq8Xg8EeuFwAoEpRchfGWYoGVX2PVllX9rwVosFjIyMgp1DOEiFgjiHyF8AsFForhdxMG+2sK0RQisQHAOIXzlgNwWXnmz+MoaQSGS5eijkUrSRazX63G5XPmWEwIriAeE8AkEgny5UAvWZDKF+kQLg3ARC4obIXzlEGHxCeKJ4nIRm81msrOz8fv9hW6LENiyiRA+QdwgHhSCoqQwYlkSLmJFUQBCSSWC5F4WXDyE8JVDhMUnEBQd52vBarVaJEmKaYkKLi4iV6dAICgXFMYSKwnES2jxI4SvHBAtc0u8Ea/tilfEtSo7xKMgl2WE8AkEgnJBPFt88diusowQvjJOflaUsKzKBuJhKRBcGEL4yhgWi6VUi1ppbrtAcCEIi6/4EcJXxghGiAUpTRafuPkFRUk8/uYhfttVlhHCV8bILz2ZQCCIb8R9WrwI4Svj5HdDxavFJxCUR/JzdQohLFqE8JUx8hO10iJyQpAFAkFxIISvjFFYV6cQGEFRIayV80MEtxQ/QvjKGIWZgkjcZAJB/CBeQosfIXzlgNIifMLVKSivxOs9WVYRwlfGEK5OgaB0IYJbih8hfGWMaFaTEDpBcSD6qwSlATEtURlHVVWSkpLw+XxIkhQSQFmWSU5ODpUJn1gz/JN7XWHLXGhbhUALyhviN1/8COErY+QWD0mS8Pl8ZGVlhdbJsozZbI5YF9wnKI7hIlnQumhlcrcr+DeaYGo0GiRJQpblQgmtQHA+iN+MIIgQvjJGbuHTaDR4PJ48ZfLbL9q2i0kswdRoNKH2y7JcKKHN7zwKa5kWRowFAkHZQwhfKSchIQGv14vb7c53u0ajweFwFHOrohNLUBRFwefzRT2XwlJYy1SW5QLLBNsVdAvnPo+L5SYuK8Sr2070PQrCEcJXypFlOfQAh8BDNPcDvbRMRHuxuNjWWnJyMhkZGXnWF9YlHMt6DV8X6zzyE0xZljEYDHFnvQqB+feIa1i0COEr5cQasK7X6/F4PGVa5EqS4hCUWJaoTqeLcA3nLhNtv9znEH4u/9Z6jVeExScIRwhfKSeW9RZL+OJVDOOxXSX5wIwlKqqq4nK5Lko9F8t6DZaJ5hoO///frBMI/g1C+Eo54a7N4HK4RZCVlYVOp8t3v3gjHttUXrhYgiLLMiaTCavVmmdbYSOFi8J6hUBfrcFgyFOmoP2KmljBZoKiQQhfGSMofBqNBq/XG9UijEfLSlD6ieVSLC5rLT/BVBQFRVFC9Rdl3+v5rAv/Kyg+hPCVcqL18en1epxOJyBETlC+yE9gVVVFq9VedNdw+P8Xar3mFzV85syZi9JOQf4I4SvlRLPoDAYD6enpKIoSdb94o6xHmwpKjosd3FLUruF4vD/LEiJXZxkjKB6SJOH3+4WYCASlECF8RYsQvlJOfq5ORVEKdOkIMRQUBfE6bCBef+/xer3KOkL4Sjn5WXThwleaLL54bmu8tktQeOJRYPITPvFbK3qE8JVy8rP4ZFkOpf2KFWEnKBziWgkEZQshfGWM8JDtIOINUlDeiVeXYrSUgoKiRQhfKUOr1aLX60PLuS0+vV6P3+/Psz2/myveBDEe2xSvxOt1itd2lTaE+BUtQvhKGYqioNVqQ8v5CV/4TSPEpOwSrw/HeGxXvN4D8WqJlnWE8JUyog1Yh+hz1BXmOAJBWSceBUbcgyWDEL5SRizB0ul0Fy0zRUkgxFhQHolHQS7rCOErZcSy+AwGQ1ThKw19fILST7z+puLVpRiv7SrrCOErZcS6SXQ63b+evVyQP/H6QI9HxINcEO8I4SuF5PcQDs7GUFji0eKLxzaBeJCXBeLVsorXdpV1hPCVMqKJg16vL9X9ewJBeSQeX/TKA0L4ShmxhC84DdG/OY5AUBaJ59+6sPiKHyF8ZQRZliMGrgsEJUE8u+7isV0ic0vJIISvlJGfpSZJUoFBLaUhqjMe2yQQCMoeQvhKGfmJgyzLEW5OISACQSTxaonGa7vKOkL4ygC5Lb5YY/1irRMIBMWLuAdLBiF8cY4kSchy9K9JUZQ860prn0G8inG8tiseiVcLJp6/v3i8XmUdIXxxjlarxWw2R91uMBjw+Xz59vvFWhYPc0F5Ix4FRgS3lAxC+OKcggRKr9fnEb7CuDoFAoGgvCKEL86JJVpBN2h+Qpf7GCKqU1CeiWcXbDy2q6wjhK8UEys3Z0GuToGgKBC/M0FpQAhfnBPLCjIYDDidzgJdmyKqU1CcxKMFE6+WlbgHSwYhfHFOQfPvud3uQglfaUE8CAQCQVEjhC/OiWathc/GUBjrTVh8/454u1bx1h6BoDQhhC/OiWatxZqNoTRbfPGIuH6ln3h1deZHaWlnaUYIXykgP2stfLb1C3F1Couv9BOPD8jSJDCC8osQvlKIqqrIsozP5wstn6+rUyAoT4jfvyAcTUk3QHD+SJKEx+OJuj0/iy8hISE05i/4Rq7RaDCZTKF14Z/gftHWCQSCf080b4ygaBHCVwpRFAWHwxFazk/ocuf3VBSFzMxMICCciqJgNBpD4wAlSQp9gvuGrwt+wtfnJpZoFkZMg8vCXSYQCIoSIXylEFmWQxGdUHAfXzACND+rLZbleCHkJ5D5rZNlOer6xMTE0LrcFEZMz0dkBRcX4VIsPOIFr+QQwhdnyLKMoihRBUlRlEJZeOGED30oav6tqCQnJ4cs02hEE9Pc68PFNZYY525/+HkEh45IkoTf7xcu4UJQXs/7YiGuX9EjhC/O0Gg0GAyGqMJnMBjwer0x36xzC6OiKHmGPpTmqM6iFpXcImk0GvF6vaFk4BfLJVxYyzS/daX1uxOcQ1h8JYcQvjijoIeaXq/PY73FcnUqioLf7xcPymjYbCiHDyP/+SfKkSMox44h//UX8vHjSOnp+KtUQapdG7VmTXw1a+KtVw9/jRoQw8IuDIWxWGO5hCVJQqPRkJSUlO9wl+Bf4RKOX4TwlRxC+OKMgoRPluU8QhZrH71ej9vtFsKXg/TPPxjeew/d0qUBkcvlVlVlGX/FivgrV8ZXvTrKiRMoixahdTgwBstotfguuwxf9er4GjbEOXQo/ssvP692/FtRkWUZk8mE1WqNWiaWFVoULuFwt7DP5xMu4QtA3KfFgxC+UkBQ2KLl5oxWHgKu0ezsbHQ6XZ5y5eYmU1U0336Lce5cdGvWIHk8eK66CnenTvirVcN3+eX40tLwX3EF/ssuA602YvcEoxHvoUP49+xB8/vvKAcPIh88iHLwILr16zG+/jruDh1w3nMPnk6dIE6ua3G7hIPRwl6vN/RyFm615i5bHC7heBbW/Cy+eG1rWUMIX5yRn6gF1wXTlCmKEtPiK82uzot540tnz2J47z30CxeiOXQIv9GIq0cPHPfcg69Jk/M4kISaloa3ShW8nTpFbJL378c4ezb6zz5Dv24d3urVcQ0ahHPIENSUlIt2LvFIuNAE8fv9eDyeUHKFf8vFcAkHBTk5OTnfc4g3l7AQv6JHCF+cEUv4dDodWVlZJCQkFLgPRM7eEK2usoiydSsJb76JbvVqJJcLT7162J55BufAgZAzVOJi4a9TB/u0adifegr9Rx9heP99TM8/T8L06bhuuQXH/ffja9z4otZZnrhYopKUlBQ1WrgkXMKqGojElmUZg8EQsT7aHJuCi4cQvjgjmvAFLbfgcvjwhWgWX9BCjCaMpcUKLDQeD6Znn8Xw5pug1+Pq1g3Hf/6Dr0WL6PtkZaH8+iuaffvQ7N+P/McfKIcPI6Wno15yCb4qVZCrVUOuUgW5cmX8l12G/7LL8NWoASbTueOYTLj+8x9c//kPyg8/BKzAJUvQf/YZziFDsD/3HBgMRX4JBOdPSbiEJUlCq9WG3J1Bq7WsvozGG0L44oxoIqXX63E6nTHL5D6GXq/HZrOhKEqRtfdiE2z7+T4A5MOHsdxzD9qdO3F164ZtxgzU1NQ85aR//sH4zjtoNm5EOXwY5Z9/ztUtSfirVsV3xRX4GzRA/ucflL/+Qvn5Z7RZWYTLlqrV4m7XDuedd+Lp1g3C+lB9LVpga9EC+z//YJo0CeN776HdtAnrG2+UeesvHiMVS/oFLz+XMJy7VtFmWREUHUL4SgGqqqLT6cjIyAgtF9THF/xbHsZ96RYtwjxuHJLHg3XqVFzDhuUpo+zdi/H119EvWYLkdOKtXRvvNdfgNRhQTSZUkwm0WuTff0fKyEBz4gRSRgb+ihXxtWmDr1o1fHp9oKzRiOa339CtWIF+7Vr8KSm4brkF54AB+Jo3D9WpVqyI7Y03cN18M5Zx40ju1o3sRx/FMWbMvx4OITg/4k2MIT5fEsoLQvhKAUFXZ7SAgfyELTyfZzThK/U3XXY25nHjMHz8Md46dch65x38V111bruqol2xAuNbb6HbvDlgpXXpgrdRIzQ//4x+2bICq1DOnIHffstzo6gaDZ4mTVArVgSrFcNHH2H84AO8tWrh6tUL59ChqJUqAeDp0YP0Fi0wP/wwphdfRLt2Lba33sJfvfpFvBgCgaCwCOErBciyHJHJpTAWnyzLpdaFUpg3YWX3biz33ovmwAGcAwdie+GFc31o2dkY3nsPw9y5gWjOlBScvXuDLGP45BP0S5bkOZ6q1eK+6Sa811wDXi9Sdnbg43CgeDxw9izyb7+hnDgRaKPXi27r1tD+zr59US0WNN9/j2naNIxvv4190iRcd90ViAq99FKsixbhefNNTJMnk9yhA7Znn8U9aNDFu3CCfIlXyype21UeEMJXCtBoNKH+PSj8/HtBsQzvN4t3l2dhHgT6d9/F/NRTqHo9mbNn4+nRI7RN/u03EocORXPgAN4rrsDVoQOS1Yph0aKIY3iuuQZP69Z4rrsOb6tWMYceGI1GfD5fINpOVVG2bkW/YgW61avR/P47AIZPPgkct359sh99FO2KFVjGjEH/+efYZs4MZHuRJJwPPIC7QwcsDzxA4ujROHbtwj51atyM/fu3xPvvK56QJCkUsCYoXoTwlQKCg4KDFGTxaTSaCAEpDYJXWPTvvotlwgTcTZtimz0bf1paaJvuk08wjx0LikL2ww+jW7IE/fr1oe1+sxnrq68GglHC+tiks2fRfPMNks2GZLcHPkGLLzs7kI2kYUM8TZuipqXha9GC7BYtyH7qKaSjR9EvW4Zh3jw0Bw6g3bsX7d69+CpUwN2qFdrt20lu147sxx7D+fDDIMv4r7qKzDVrMD/yCMa5c0Grxf7888V5GYuUeLNihGUlyI0QvhImGHEZrf/uQgag6/X6Qt3oFxpBWVJoly/H/OSTuJs3J+uLL0CvD2xwuzE9/jjG+fPx1KuHr1EjEl57LbSft1Yt7BMm4OnePWRZyQcPol+8GO3q1Wh37EAqYMC1DkgAfBUr4m3QAF/jxniaN8dz3XU4hw/HOXw48m+/YR4/Ht3mzShnzqBs3oz7+uuRrFbMzz6LfvFibK+8gq9+fdBqsc2aBT4fxrffRtXpyP6//yv0tShN35sgf0TmlpJDCF8Jo9PpkGUZu92e73a9Xo/H4yl0bs7gPqXVhRLt3JSffsIyfDi+GjWwfvhhSPTkI0ewDB2KdvduXO3aod+wAe1vvwHgT00N9KP17g2ShLJtG4alS9GuWYPmjz8A8F5+Oc7Bg3G3bo1ktaIcO4Zy7Bi43fhr1MBbowbaSy9FPX4cDh9G+eUXNHv2oP/mm0B7tVpc3buTPXo0/nr1yFq8GO3XX2MaPx7NkSPovv8eAGfv3uhWriT5ppuwT5qEc/hwkGVsb72F5PUGhFqjIfvJJ4vjMgsE5RohfCVMQSJmMBjOe0qhaHPzRXORxvtbpvznnyQOHIhqMpH18ceh/jjtqlVYHn4YyekMiV6QrP/9D3f//qDRoNm8GdP48Wh/+w0V8DZsiOvWWwMFfT60332HYeFCpLB+1Gj4zWa8derg6t0b3+WXo920Cf2XX6L/7DPcN99M9ujReDp1ImPbNvRz5mB5/HEADIsW4brlFqS//8Y8cSKSzYbjscdAlrHOng13303CzJmoWi2OceMu+jUsLuLRpR6vv/F4bVd5QAhfCRMrRVl4xuatRicAACAASURBVJZYmVrCCaYpyy8pdWlESk8nsV8/JLudzC+/DA0BME6dSsJLL+GvUAH/ZZeFRM936aVkrF+PmpqKdOoUpokT0X/+ecD6mzQJ1WBA/8UX6JcuDZSvVAlfjRp4mzXDW6cO3nr18NWvj1qhAtLffyOfOIHhzBk4cQL1r7+Q//4bzfffk/DKK4EhDS1bkj1qFMrhw+iWLiVl5UrcrVuTPWoUrnvuwdW3L+YJEzB8+in6Zcvwp6TgrVED09SpSNnZZE+cCBoN1jlzYNAgTNOmgVaLY/ToErvm/xbxMC8cQvhKDiF8JUws4dNqtTFTjuVH0EIsjPDFY9BLRJtcLiwDB6IcPkzWnDmhxNL62bMxvfQS7iZN0Ozfj5LjtnTddhvWN98EjQbDG2+Q8NJLSDYbrh498F9+OcY5c1COHcNXoQLZI0bguPde1CpVorclLQ1fWhq+nFyKIctbVQNu008/RbdsGbpNm1ANBjyNG6OmpqLduJHkPn1wtW+P7a23sM2ahbtNGxJHjkROT0dOT8dbowYJr76KZLdjf+EF0Gqxvv8+9O+PafJkVIMB5wMPFOm1Li8IgRHkRghfCRNN+CDSzVnYPj6dThdzjrZSg6piGT4c3bZtWKdMCURiAto1azBPnIinfn00Bw8i22wA2MeOxTF2LMq2bZjHjUO7dy/eWrXw16uHbvVq5OxsPPXrYx8zBnffvhEpxs4bScJ33XXYr7sO+9SpaNavD4mg5PXiHDQI1WjE+PbbJLdvj/Wtt3APGEBGWhrJvXoBoDl8GM9VV2GcMwcpOxvbyy+DTod1wQKk3r0xPfMMniZNYucZFZRqRHBLySHyJpUw0X7owdkYzsfiCya5LezNE48WXxDTpEnoly4l+6GHcN1zDxBIO2a57z78lSuj+e035JwUblmzZuEYNw7j9Okk33oryvHjOO66C8npRLttG562bcn48ksy168PDBi/mG5gWcZ7ww3Y3niD9O++w92xI8a5c9F/9RWOBx8EIOmOOzC+9BLeNm04+913qDmBOdpff8XdpAmGjz7Ccs894PWCXo/13XfxJyVheeAByBF2wYUTr79xQckhhC8OKGg2hsISnI0heIzSeMOrqopm3TqMb76J69ZbQyH+0qlTJA4YAIBy/Hho+EH60qW4e/cm4emnMU2dirt9e5xDhmD46CNwOslcuBDrBx/gbd266Nuelob1ww/JfO89UFUSXnkl0H9Yrx6mqVOx9O6NWqECZ3fuxHfppQDofvoJd5s26JcswTxyZOA4lSphmzEDzdGjmEtZoEu8/ubi0ZISLtiSQ7g6S5hors4LEbHgbAzh++QeyF5Q3SWO14txwgR8lSphffXVwLg7p5PEAQOQT50KJJPO4eyPP+K//HJMEyZgnDMHV4cOIMskzJyJu0ULrO+8E7MPL4h86BDK7t3Ip06hnDqFdPo08unTSGfOoBqNSHXr4qtTB1/t2oHAl6SkmMfzdOtGeocOJEydGhqj52rTBt3mzSS3b0/W3Lmkb9tGUteuaHfvRrdpU8Dy++QT3Ndfj3vQIDxdu+IYPBjj/Pm4b7oJd8+e//bKCuKMuLv3yhFC+EqYaMIXazaGaMfRarURGV5KI5rXXkP5/XeyZswAsznU16fduRPfJZegnD4NQPqyZfjT0jCPHIlh4cJAn9/+/cgnTpA9ciTZTzwRcwYE6cQJDB9/jG7xYrR79kRsUw0G/Ckp+FNTkU+eRNm0CZ3PhzFnu69iRTxt2wZmcg+bjSGChASyn34a5513kjh0KLotW3AOHIhu+XKS+vcn88svyVy5kpRmzVBOnED300/4DQYsjz9OxrXX4mvQAPvzz6P97jvMY8eS3rw56mWXXYxLXKTEowUTz5ZVvLarrCOpMa788ePHi7Mt5RJJkkhNTeXMmTOhdYmJiRgMBk6dOgUEsrckJiaSnp4eKnPJJZdwOkcEACpUqIDf7w+VSUlJISsrK5QRpkKFCmRmZkYMi4jIQRkHSGfOkNqiBb6aNclYtQokiYRnniHh1VfxG43IObNNWCdPxnX33ZgfeADDl1/iq1oV+dQp/MnJWF9/He8NN+RfQVYW+k8/Rf/552h//BHJ78dbqxbuW2/F3b49/sqV8V96KVgsEbvpJQl53z58O3ei2bcP5Zdf0G3YEJjdvX59nHfdhevOOyMnps11Xol9+6LZtQvXgAHoVqxAVRQyly5FtVhIbdQo5LpVdTp81aqRsW4dmM0ou3aR3LUrniZNyPrqq1DmGUVRMBqNIQs/Xog103lJodfrkSQpIt9tPJCcnBx6uQ3i9/tL/ctrvFC1atWo20QfXwmTnzWX32wMBSHLcoSARZujL54xPfUUZGXhfOklkCS0X38dEL3U1JDoObt3xzV0KJZhwzB8+SXuZs2QT5/GW6cOGd98E1X0dF98QUqLFlgmTEA5cgTnsGGkr1lDxpYtZP/3v3jbtsVfp04e0QvsrENt1Ah3nz5k//e/WBcs4OzOndgnTECyWrFMmEBqgwaYxo5Fyuehr1aoQOZXX+Fu1w7DggV4GjZEcjpJ6tULXC4yvv76XFlFQTl0CMsjj4Cq4mvUCPv48ei2bME4c+ZFuc7ljXi2+AQlgxC+OCR3UmoouD8gt/DlJtZ4wXhA+fln9J98grdfP/zNmoHXi+m//w2I3tmzAHhr1sT2yiuYR45Ev2IFrttuQ7N/P/6KFQMZXfLpz5P++gtL//4k3ncfamIimQsXkr5rF/YpU/Bde+0Ft1etUAHHmDFk/PgjmQsX4mnZEsO8eSS3bo129eq8O5hMWD/6CGf37ug3bMBfuTLy6dMk9e6Nv3JlMufNA0B2OPBfein6pUsxvP02AM5HHsHdujUJ06YhHzx4wW0WxD9CoIsHIXxxSEGzMeQmuK2gGRniReTyoKqYJkxATUjAnTNLgeHtt9EcOICq1YaKZS1ciHb1agyffoqrWzc027eDJJH50Ud5RU9V0c+eTUqbNujWryf7kUfI2LABT6dOF3cKIEnC06kT1oULyVy0CLRakgYOxPzgg5CVFVlWq8U2ezaOnHkEfZUroxw5QmKfPnjatsU+fjwAyokT+KpUwfTMMyg552ibMSNwnZ577uK1vZwQt797QYkhhC/OCI7FK2jAevg6nU6Hz+crcHLaeI3q1H36Kbrt28kePRq1UiWk9HQSZszAn5KCcvIkAJnz5qEajVjGjcNXrRrK/v3IZ86QNW8e/nr1Io4nnTxJ4i23YHniCXy1apGxZg3Zkyadm80hF1J6OglPP01K48ZUqFiRS3J9LImJGDt0wPDaa8j790OUYSbe9u1J37gRx6BB6D/9lJQ2bdCEuTEDlUnYJ0/GMXQomqNHcbdsiebXX7H85z84xozB3aoVAMrff6Pq9YEhDn4//iuuwNWvH7qlS1F27/6XV7z8ISwpQThC+IoZi8WCNsyKyY3BYIjo34tGuGjp9fo8wherfFxht2N65hm8tWqFUnTpn34aOSMDOSdQx9m3L55u3TA/+CBSVlYgZdgff2CdMQNvmzYRh5P+/puk7t3R7tyJ7f/+j8zVq/E1aJCnWunYMcwjR3JJxYpUqFOHhNdeQzl2jGhXSNm+HfPTT5PaujWXVK5MSr16KD//nLeg2Yx9xgwyP/4YJImk/v0xvPVW3tOeMgX3ddeh27IFd4cO6NevR//uu2S9//65QqqKdt8+9HPnBvaZMAFVryfh2WcLcWEFpREh0MWDGM5QAkSbPQECIuZ2u89LpIKJqcOJ5urM7Q6N1ZbiIGHaNJSTJ8mcORO0WqRff0X7/vuosoyUY1nZZszA8MYb6DdtAgID2O1PPom7T5+IY0knTpDUowfKsWNkvfMOnq5d89Sn7NpFyo035lnv6tgR9623IlmtyBkZSGfOgF6Pv3JlFJ0O+a+/kLZtQ7NzJ5Lfj3LmDCk33RRo36RJAdHWnLudvDfcQPqmTSTeeSfm//4XnE6cOQPUgUBi6nnzSL7xRrQ//4w3LS2QpqxjR7LefJPE4cND6dgSpk3D1bcvapUquO6+G+Mbb+D6/nuIFr1agsTjy5UIbhHkRgxnKGbMZjMejydiqqHwoQkVK1bEarWi0WgiQtVzD18IDldQVZXk5GQ8Hg9utzt0XLPZjNfrDYVwJyYmhtKfBdHpdCiKgiMnYrLYsdtJbdAAT7NmWD/9FICkPn3Qhs2abp0+HU+zZqTcfDN4vYFcmP37Y3vllYhDSceOkdSzJ8qJE2TNmYOnc+fIumw2km69Fe3evaFVrptvxl+jBppvv0Xz++8Rk9Gqej14PCHxDeJNS8PTpQu4XBjnz4/YljVrVh4xxunEMnAg+g0bAvlEc2ViUX76ieTu3fFbLMiZmXivuorMlStJ7NED3Q8/hMo5hg/H/uyzSBkZpDRtiq9ePXzffht3wxnyC9EvaRISEvB4PIXypBQn+Q398Hq9pXYuzXgj1nAGYfGVAAVNKVTYAeuSJIUyvEiSVChXZ0EBMMWJ7vPPkW02nPfeCwTm1wsXPRVw9etH0k03ocoyGI34ExKwTZ4ccRzp6NGApXfqFJnz5uHt1OncRlXF+PLLmHKCZiAwKSweD/pVq5BWrQq4WYcMwVezJt7atfHVrh0YLK6qSCdOoP/nHzQnTuD79ddAcM3s2UgEoky911yDbv165PR0Eh98EN9zz5G+efO5MX0GA9aFC2HwYEzTpiE5HBEzrfuaNMH6wgskjhqFajCg3bkT40svYXvtNVLDBscb5s7Fcc89+KtXxzF8OKYXX0RdvhzatbtYX0eZJR6t0GgIy7R4EBZfMWMymfD7/RFWVtCaC7fKDAYDWWFRgbktvqSkJLKzszGbzVitVgwGQ4SFl7sei8WC1+sNDWgH0Gq1aLVasrOzi/q08yWxWzeUo0dJ37kTfD6S27ZFc+BAaHvmO++g/eknEmbNwtOgAdo9e8h6443AjOo5SKdOkdSlC8o//5D53nuR4/jcbi6pVi206E1LQ01JQbtrF6rBgKtLF5x33433+utDkZ7SyZMoe/agHD2KmpSE/5JL0FSpglSlCg6zGSQJ6ehRDIsWoVuyBO3u3fgqV8bduTPGsP65zDlz8Nx227m2eDxY7r0X/bJlZI8YEZiHLwzTmDEY58/HbzYjOZ1kLF2K7uuvMb30EhB4CXB364b1vfcgO5vUZs2gUiXOfvPNxY1S/ZfEo8VnMplwuVxxNTBckiQsFkvEPQ7g8XiE+F0kxAD2OCJWhGZ+fXUFodFo8Hq9BUaC5nczlaTFJx88iHbbNly9eoEso58/P0L0vLVq4W3ZEuOcOXgaNUI5cAB3q1a477jj3EFUFfMjj6CcOEHm/PmRomezRYieY9gw5NOnUfbvxz5hAmd378Y2ezb+ihUxTZhAUufOpNauTYUGDUi+804sY8eSeN99JPfqhblVK0w1a5LSsCHmRx5B8+uvOB56iMx168hYuBDVbMb4/vt4rr0Wf84A+KRhwzDnzCoBBObbmzMHV5cuGF95Be2SJRHXw/7MM4HE1RpNIHr1oYdwjBoV2i4B+uXL0WzeDAkJOEeNQt67F+2yZRfnCxEUK6LfsWQRwlfMRBO+4GwMwWEHhc3NGey3KMwQiHjCkNM/5hwyJLD8wQf4DYbQdtvkyYGJWp1OJLsdyevF9uKLEdaNfu5c9OvW4XjkEbwdO4bWS2fOcMkVV4SW3a1aYZwzB1/dumSsW4dj9Gg0GzaQ2KMHKa1aYZg3Dzwe3B06YB8/nsy5c0lfv56MJUvInDMHx4wZuJ54Am/duug//5ykgQNJrVsX83334a9dm4yNG7E/+STKH38gZWfjymmLYfFiLOF9frKM9Y038NWqhWXUKORDh85tM5mwPfMMckYGvqpV0Rw4gH7hQjI+/zxURNVqSXjmmcA5DRuGmpyM4b33/v2XUcYpLSITz/drWUO4OosZg8GQJ3AlJSUl5OKw2+1oNBrMZnOEyyi3q9NisaAoCk6nE6fTidFoRJKkkNvSaDQiyzJ2ux0IuHskSYoQV1mWMRgMxR8g4feTcs01+C67jKwVK1D27iWlQ4dzm2vUIH3NGlIaNwZAttlw3H8/9rDB2/LBgyR37Iivdm0yV64MRVTKR46Q2rTpuWMlJgb61UaPxjFmDNpVqzA/8QTKsWP4U1Jw9e2L49578VevHtlGVQ2JbEQQkNWKbsUK9MuXo1u9GmQZ5+DBZI8fDw4H5oceQr9hA+42bdDlRKF6GjcmMyybi/zLLyR36YKvZk0yV62KGF9oueMOdFu3ohoMqEYj6du2kVqvXijCEyB99Wqk5s0xjRmD5r33OLt9O2qYdVuSxKOr02w243A4Itz8JU1+uVYlSQr18Qv+PcLVGUfEmo0h1jRE+Vl0Wq02wjVakKvTZDKh1+sxGo2YTCZMJhM6nY6kpCSSk5MjPklJSSQlJZGYmIjFYsFsNmMymUhISCAhIQGj0YjBYECv16PT6UL9hRqNBkVRkGU56husdu1alL//xtW/PwCG8LFrgOvddzHOmoVssyHbbPiqVME+YcK5An4/luHDQVWxvvVWSPSkkydDoufXG8iSEvEbjGSsXInjoYcwjRlD0uDBqJJE1owZnN29G/tzz6HqdJhGjyb1yivPDVyvVCn0f2JSEiazmaSOHdHs3o27Tx+s8+aRvnEj7g4dMM6eTUrz5ui//BLrxx/jGDQI3aZNeOrWDZzvjh0kt2gREFPAf/XV2KZORbt3L+bHHos4d/sLLwQGyLtcKCdOYHj7bayvvRZRxpgzLtB3771IPl+e6FJBJKXFkjqfSaQF/w4R1VnMRHNBhqcpiyV84TdG0ILLb5/cy8GyQQsQAuMJTSYTVqs137YG9w9GjIZ/wtcHRS5a+fBjAcgffYRqNmMYNgy9ThfR36UaDGiaNEETFsDieu45tCkpoXPXTZ6MdscObC+8gL9WreAJUyFnoLo3LQ3XKSsOVcdrnZfzgO8MyTfcgObAAZx9+2KbOhVMJrSLF5OUE1FaGLR79pDcvTsAfoOBjNWrsX7wAY7NmzFNnIh54kS0P/wQcGfWqIHp+ecDaclOnkRz8CCJt91G1tKlALj798exdSvGDz7A3bo17jvvDBy3dm0c991HQo7YGV97jfTt2yNmp9AvW4brzBnUa67B06gR+k8+IXvChLgKcok34k1QSov7tawiLL44QJKkPLk5C0JRlDwzOMR6sw0GwZwPwTdQv9+Pz+fD6/WGxgsGxww6nU4cDgfZ2dnY7Xbsdjs2mw2r1UpWVhaZmZlkZmaSkZFBRkYGmYcOIa1ciatLF7J8PpyffoqUM/0SgPPtt+HVV5Fysrb46tdH7dcPrVaLXq/HsHs3xhkz8HXqhG7UqJC1mppjPQLI2Q5cHpkxvETm1ztJ7tYNJT0d1/vv4587F8vnn3NJpUrnJXq5kZ1OUtu1I7VmzYDLcs0aHA88gH7pUpK6dsV1xx1kvf02cno63po1AdD98AP6OXNCx7BPnYq3dm1MTz8dkdcze+xYfDluGuXsWYyvvRYxhENyOtG9807geg0YgHLsGJq1ay/4XC4m4mFeOITwlSxC+IqZ/AQqt4hBXvdM7v0KErLc5bVabZ4+jpIIgNEvXIjkduO8667ATPMffhix3X3DDSivvx5azr7rLhxOZ0hY5Zxk1hkzZpBltZKZmYl93jzknAe/32zGafWy0N+XDxjM1L+H8VdKfTI3bcLRqRPGypXRjxkTUacalnFFNZtRK1Ui+EhSU1JQU1IitocjW61UaNiQlL59Ydo0XG+9heaPP0i5+Wa0V1yBc+ZMNAcP4suZRNYyfjzagwcDVrJej23yZJTTpzFNmXLuoAkJOB58MFCfLGN8+208N98cUa9u/nzwenH164ffZBLuzhgIkRHkRghfMVMY4StMH18wCjTa9tzLweTXJY3+k0/wXnEF3uuvRzpzBl3YgHXXjTei/fBD5JMn8Sck4DebAxO85qD88AO6zZtxDh0amo1BOnUqZLmpej24PbxiGc9DvAnAr9Slh3k17h93k3zppUj5BPKoOl3gr8EQGJNXrx6uAQNw3HMP7tat8dapg79GjUB9UQKBlG+/xWg24+zcGfuSJSBJGHr1wn/ttbjHjEE5dgw15/tIatECk0aDxWLB1L07/ttvD0xpdOJEqI9VP2IE6iWXgMWCbLWSOHcu7pyITgikbdMsXoy+QgW8t92G7uuv0WZmoihKgX2sgpJHiHHJIvr4iploglTYTC2QV/TyO274TaXVavF6vSU+H598+DDavXuxjxkDkoR+wQKkMMF33HsvliefRL3kEqT0dFz9+kXMap4wfTp+kwnHww+H1lWoXz/0v+RysanhvUzY/TgAJ6lIe77lwUOvUWlw/omdVUnCe+21OPv2xd2zJyQkBDbY7YFoS40mFLjj3LMH/aJF6JYtQ/vLL/keL+mKK8hYvJiMzz4j+bbbMPTsScaKFZj++APD4sWhctoaNTi7f3/gujz1FCmrV+N7+GGsn3127nwHDybhf//DbzIhf/gh1h9+QDdpUmi78sYbSD164Lv3XnQffYRxwQL8Y8fm29ea57xz3NjhARW51xV2fbwjREaQGyF8RYyiKBEuxtxicz6zMQTR6/V4PJ4Cx+2Fz96Qu3xJoMkJ73fnjHPT5+TnDKJWqYJy4EBA+Hw+HGEDwJVdu9B/8w2O++4LuR71Of1cELDWPDWv5No9C0PrmrKdIbzHU+Qves6ePbFPnIharRraVasw/d//oezbh3LgAEpOv6PfaASLBbVGDdT27XF36YJj7Fg033+P6ckn0e7Zk+e4yd27kzVzJlnz55PUpw9JffqQ+dVXKEeOoNm7F8ntRk5PR7t0KZ5bb8WfloZj+HASZs7EuWwZnltuAcBx//0YZs1CttvBbkf69ltcHTui/+YbAOTNm3Hv34+/USO0aWmwdCm2nBkuCkO0YKXc68ODl6LtE0SWZZKTk8uVsF4IQoxLFjGOr4jJPf5OkiRSU1M5c+YMEBjD5/V68Xq9+aYxC5KYmIjT6cTtdpOSkoLT6USj0YQiMnOP/VMUhcTERNLT06lQoQJWqxWj0ZgnIXVxjrsyjxiB/osvOHPwIMqvv0bMkuAYNAh/5cqYpk9HlWW811wTMfbNMmQIunXrOPvjj6iVK4OqckmlSgD4KlRAys7mL3Nd0v4JTBVUl19pz7e8zfA87fBVq4btpZfwNmmCYe5c9B9+iOboUVStFl/16vjq1MFXsyaSz4eUlYWclYXml1+QczLL+KpVI/uhh3ANGYLu448xTZmC8s8/eerJ/OAD8HhIvOcePE2aYJs5k5Qbb0QlEBwDcPrkSZBlcDpJadEC1Wgk4/vvQxGapkcfDaVCc3XqhGP4cJLDIl5tEyfiHDEC0+jRGD7+mDP79kFO9pjiJncarsIIa2EjhyHy5e58RDQhIQG73R61fElgMBhQVTUiWT1w3pmbBNERSapLCEVR8qzLL0glmGQ6FuH7aTQafD5fxLx+0VydwQdHNLdmcd74yo4deOrXB602MPg7DFefPpiefBIAye/HMXhwaJu8bx+6lStxDhwYED3A+OKL54575gzOzjeTtnoVABNN02mj/MzbWXlFz9G9J/aXZ6D7/HNSmjZFttnw1K+Pddq0QH9iWPaYICFX5y+/oFu+HP3ChVieeALjG2+QPWYMGd98Q+Jdd6HdsSNiv6RBg0hfvhz7U09hnjgR/eefkz1mTETCbPPDD2ObNQsMBhwPPoj5v/9Fu3p1KJjFMWIEhgULkHw+dOvXY/vf/yLq0K1ciXPECNw33YTxgw/Qrl2Lp0ePAr+L4qCoLbbCCGjQWtVqtYUW1mgimt+6wqwXxB8iuKUISUxMjCloFzIbQ7R8ntFcneF15EexuT+tVjT79+PLycai+fHHiM2+6tXR5LgN1ZSUiETUCdOng6LgGD06sMLrDSVvBnA3a4Z+XSCqM/uapty1shvvZp0b3hAkvd9gsic/h+Xee0l89FF81auTvnQpmevX4xo6NF/RCyJJEv4aNXA++CCZGzaQNWsWaDQkjhqFeeRIsj78EGfPnnn2S+nWDXe3brg6dCDh5Zdxt2+Pp1GjUNSo4dNPA3P/Ac677sKfkoIxLKrVX6MG7pwcpJLXi+H993HkpHkD0P70E9KZM3huuAHVYECf64WiLJN7qE34cJvwoTaqqoaigsOH2gSH24SG2uT8HxyCY7VasdvtOBwOXC4Xbrcbj8eDz+cL3W+KoqDJ6QcOTw5hsVhITEzMkxwimBjCaDRiNBojkkPocoKsBEWPsPiKkHCrKz/hCU4pFCxT0LEk6dw0RLGCWcLLBzPClMTQhXA0P/yA5Pfjzslgogmbvdx1663ov/oqNPu57447QiIkZWSgX7IEV/fu+NPSADA98UTEsdXUVKScoR3OOW9Tp+lVeep3DB8OffqQ3L49cnp6YIaECRMgzGrGbkfZswfN3r1o9u8Hvx81KQlSUpCuuw6uvTaQJUaScPfpg7tnTxKmTcM4YwZJN9+Mde5c/JdfTsLLL0fUndq0KWd27SKlXTssDz+MddYskrt2hZy+3ZSmTTl7+HAg+fTAgYHZ4HftwteoUeD69OmDfs0aAPQffYT1nXcw5uTolHw+dIsX4xo2DPd116HduDEi3VpxUtb6rYrSYjUajfj9/lDfe3gyCkHRIyy+YiCa4EQTsVjE2ie/YJfgjO4ljW7LFgC8rVohHz6MkmPlAGQ/8ECE69OfE9wBoF2yJDD5bHBYg9uNce5cAFRFwXvllSErx/rCC6Hk1+E47r0XZ9++JPXuDX4/GYsXB6YFyhE9Zds2zMOHk1qvHim33opl/HgM8+ZheP99EmbOJOH//g9D166k1q2L5a670OQEl6DRkP3442QtWIBss5F86624W7bEMWhQnjZYHnwQ2/PPo9m/H8Nnn+EcOjS0TbbbkY8eDbT1/vtRdTqMr74a2u7uI+clRgAAIABJREFU2hV/zvhBzdGjSLn6aXUrVgDg6dgR5e+/UfIJuBHEF0GhC7dY4ymXaFlHCF8REnxjzE/UgsMYor1V5mfBxdonVh9erHYUF8r27YH58CpVQvPddxHb/LVro82ZbVzValHbtw9t0y9dij81FW/OhKsJYS5OyedDyknKrer1uDt3zmNtuZs2xXnnnQHRA7I++wxfixYAyL//TuItt5DSrRv6JUvwdOpE1quvkv7NN5w5coQzx49z+vBhMn/6Cfdrr+Fp2xbt5s0k9+1L4m23ockRc0+nTmSsXYuvcmUS774bV69euG66KaIduk2b8FeogKtLFwzvvIOzd2/8waETQGJOKjS1ShVct92GftkypL/+Cmw0GHCHBQLply/HGRbxqvv+e7DZcHfrFljOEUJB/FLSEdblHSF8RUi4qzM3er0+NGlstDK5LbhgIEysfXLvHyvxdbGhqmh37cJ37bUA6LZujdisXbUqNJ7P26gRUnDsnt2ObvPmwENfDvxUE2bMCBxSlvFVqYKSE3lsnTaNCk2aRBzXn5yMffJkEvv2BVUlc9EifA0agN+P4dVXSbnhBjS7d2MfO5azu3ZhnTsX9513BsrodAF3ocmEesUV+IYNwzpvHmd37sQ+ZgyaX34h+bbbME2YAB4P/rQ0sr74AjU1lcTBg3E8/DCenNyhQZLvvBP7xImBWeFnzcIVFsCjOXo0lLbM8cgjSB5PyJ0J4Aqbh1C7bh3usBRtksuFbuVK/DVr4q1RA23QIhXENWXJLVzaEMJXhMQSPoPBcEGzMZyPkMmynMfNWRI3m/zrr8hZWXiaNwcC0Z1BXF26oF+5MrTsadUq9L9u+XIkpxNXzkzmUph7VPL78eeM51M1Gnw5+TDDsf7vfyQ8+yxyVhaZH34Y6DPzeLAMGYL5mWfwNGxIxrff4hg3LjAz+9KlmB57jMSbbya1dm1Sr7ySlHr1MF93Hdr77kO3YAGoKo4JE0jfvh1nz54Y332XpFtuQTp6FH9aGplffIGakIDl7rsDMz/kCpgxTZqEq29f9F99hatLF/xhA/Qtw4YBgfyknvr10YUl7/Z06hQ6X80ff0SkUQPQbdwIgLdly8DYwkKMDb3YlLU+vqJEXKuSRQhfERJL+MJzbRZG+CAytVlhhE+SpJDwleRwBu3mzQB4WrcORXcGcXfqhObHH0P5Mj3hbs5ly/CbzXhy3HzmsWND27xpaWh//RUA23PPkXLrrRF1Ort3RzlyBP2mTWQ/+ii+5s3B7cZy113oV64k+5FHyFq2DH/Vqhhef53k5s1JuvtuDB9+iORw4O7QAXfnznjatkVNSUFZtIjEkSNJveYaTBMngtOJ7e23sU6diubXX0nu2hX54EH8NWuSNX8+stVKwosvYh83LqJd+rVryX7wQVS9HuMrr0T09em//TYkWO5bb0Xzxx/IwQwxWi3uzp3PXdNly/A3bBhaDr5MeBo3RnI6UfbuPY9vSBAPCCEsPoTwFSGxfsjhllhhhC931FdBwpffGMKSQrt1K36zGV+DBqHoziC+2rVRTp5E8noD2Vdatgycl8uF9ttv8XToEHA7AvowCwijMfSvN2ziWQjk3nT17YtpyhTc112H49FHwevFMnAg+rVrsY8bR/akSSi//ELSjTdifuopMBiwvvQSZw4dInPDBmyzZ2ObNQvb7NnYV63C+fffZC5ciKdxY4xvvknK9deje/99XMOGkbFoEZLNRlLPnshHjuBr2hT7+PHoNm9Gcjpxt2wZ0b6k3r1xDR2Kft06PK1aRSTJDg5lcOXM3G4Iy27jyunDA9CuXo03LI+pZv9+sNnw5ljVmu3bz+crEhQzwuIrWYTwFSHRLD5ZliP66qIJXzj5za4QC71eX6jw6OLo+1N+/RXvVVeBLIeiO0OE9XN6rrkmNBu5ds0aZJsN1+23AyD/9lvEbkGr0T5mDCm5AkmcAwZgfPllVK0W25tvgiyTMHky/8/eeYdHUa5t/Ddt+2aTiAIqoHJAEBCBYwMFVFQUFTyKBRR7xa6ox4Yodo9dROxipaj42Y5gx4q0QxGsINIhbTfZNuX7Y2Yns5vdZIMkRNn7urjITnn3nW33PM/7PPft/vRTqq+9luiYMbiff57iwYOR1qyh6tFHqZg9G7VPH/x33knRccdRsueelO6xB6WdOxPYf3+USy9FKC8n/NprlM+ahdahA0VXXUXwtNPQ9tqLqpdfRigvp2jYMITNm4lddhnxAQPwPfAAsbPPtgWqAaR164gdfzyG24172jS7Tw+wm9v1Dh1I9uyJy/LvA0j272+TpPzdd+j9+tn7BE1D/vZbtK5d0T2eOs30BbQsFIpbti0KxNeEqI/48vHSc25TFKVRfT5utzuvatHmgLhhA7olH+SMRPRAANkh9qw6fshdH32E4XKRsBRMgqNH2/ucEZKz2hFA9/tJHnAAru++I3rhhejt2iF/8gnexx8nfuSRRK+5BvdTTxEcM4bkXntR8dln6O3bUzR0KCWHHIJn4kTEDRtQ+/YlcfTRJA49FCMUQpo6laKLL6akVy9cs2ZR+c471FxyCa4PPyQ0bBhat25UPf880po1BC64AIDI449jeDx4nn6a+Eknpc0zdNJJ5vrm++8Ttyo6bVgydPFjj0VesQIp1fMYCKBaotxCPA7r1qWd5vr6a5BltC5dCi0NDrTUyKqlzmt7QIH4mhDZiC9fe6BMMmysrZAsy1v0PFsdqopYXo5h6WpKv/1m70ocfnga8SWs9T1BEJCXLEHt1Ml2S1D+9786Q2s77ojPIV0GEDvjDDyTJqGXlhIdPRph82aCl1yC3qYNkccew/3CCwRuuIHEfvtRNXUqnqefJnT88cjLllFz8cWUzZ9P1bPPEjv+eNRu3UgcfDDR668n/vPPVE2ciN6mDf6776Z40CDixx1H+MEHkZcsoejYY9F69qTm6qtxf/YZ3gcewGjdmugll+D67jvUbt3SCl3EykpiI0aY63GrVqG1bWvv848bB0D8xBMxAPdbb9W+nAceWDvGt9+iWnZJUHtToXbvjvzTT81e4FJI3+WPwmu1bVEgviZGpnq92+1G07SszeZOOLe5XK5GuSvIspyX40NzQFi3DsEw0CxhadFRmZno3x9p+XIADEC12h0wDKQff0TraimwZJr0plRazjgDt8PPD0zpM9e8eUQvuAACAXx33IG4cSPhJ55AXL6cwL//TbJPH8LPPUfRySfjmzCBxODBVFi9b6Fjj6V0wABC55xD4JZbKLriCopOOAH3Hnvgfuklai67zHRWLyuj+OijEZJJqiZORP75Z4KjRhG94gri/fvju/9+pPnziV56KWr79niffJLYyJFpc/U++yzJrl1xv/pqWrtCqo3B2GUXtE6d7OIggLij+EeaO5eYo1leXrgQDAO1Vy+ERAJp0aJ836a/LQoEU0A2FIivCZEt4vN4PFm98bKdmzompdayNdRd6nuepoBo9dnpbdsiVFQgONb01D59kCzHA33HHWu98JYvR6yuRrWqFpWPP7bP0XbYwf47mVE0kth/f9zTpqG1akX0wgsRf/0Vz6uvkjjmGNQePQhedBF6cTGRSZMIjhqFMncukfHjSR5wAMVHHol3wgT0nXYicsstVEybRtk331A+cybh555DO/lk5GXLCJ1zDp6JE6maMIFkz54Ex4xBWrmS6ltuwfXdd/hvvJHIE09geL0ErrsOFIXqm29GWr0avaQEw1F05P7vf4mdfjryypVojsgNQLDcHpIHHoi8aJHpDwioBx1kG+eKixalFfaI4TDismUk//lP83XL6JcsoOWgsMa3bVEgviZENuKTZRld1/MipBRSsmON1fNsCRDXrgVM4hP/+CN9p9ttes0B+i672JsF6wc7FQE6RZtxVkA+8kjacMn+/VHmzCExfDj4fPhvvx0EgepbbiEwZgzSqlVEHn4Y/5VXosybR+SOO1C++YbALbegdehAxXvvUfXBB8QuvRR1wAD0jh3R9tkHdehQ1EmTKF+wgOobb0T+5RdCZ51FYuhQ4v37Exg/HgSB2PDheJ97DuXLL6m56iqU+fNxvfwyyaFDUTt2NAtZjjqqzmtkyDLy//6XlrZMXXPi4IMRVBUlpXbj8ZC0bgiE8nKMDAsieelS9C5dMFwupJ9+qve92R7wV4r4/irz/DugQHxNiBQRpQhLUZR6nRIykbJVSanQ50t8oiii63qLiPikFPHtvLMd/dn7HKk4fddd7b+F+fNNT76U0svXX9ees349ANGzz8b9+ee15/v9CNXVCEB0xAjEpUtxvfOOuY5WXo57+nRip52GvHgx7s8/J3rllbjffBP3O+9QM3o0lbNmmb1+9cHtJnrFFZR/8glqly4EbrkFvVs3Evvth3/cOOLHH4+6xx74b7yR+MiRqJ06mVWa0SjRCy9EXrGiTmQXvOEGkv/8J65Zs0haBr0APov41IEDMUQR12ef2ftS4tWZryFgkp0oorVti/j77/Vfz1bGX4lkCti+USC+JkRmxOdUa2mK6M0wDHs90DlGtjk1F0SLqPS2be3oLwWne3kaISxciLb77rWpzyxIZvTuJQYNwvX++yS7d0fv0sUUshZFaq64At9tt2H4/cSHDMF3333EDzoIaflyXHPmEBk/nppbb22Um4HRrh2V771HfMgQvE88gdajB3rr1gRHj6b63/9G3LgR/9ixVI8di7RpE57nnyc+YgTajjsif/216UnonLvVVqE5yN9+ruJi1K5dkR3rfKpDCk2ZOzetMEb6+WfAvJGQLOHrAgooIB0F4mtCZBLPlqy9NdbBIWVDlGvMbGjSNb71601nAZ/Pjv7sfY6IxEl8wtKlaF26mMfkSNfJVlFMCkZpKfJvvxH/178gkcA9YwaJgw9G+u033LNnEzvnHHz33YcRCKB36YL73XepGT2amNV6UB+yvvaKQvjpp4kfcQTeZ54hfvzxCOEwnunTTRuh115D33VXkl274n3ySRAE4iNG4Jo7F9Vag7OvNxrFwIxm9aKi2tfHqnhV998f+YcfwBLkVh0Rn7xkSZqii71m2q6dGWFv5xHYXykK/avM8++AAvE1IZwRX6azQr7EpyhKzgrNbHqeTuJryLrIOcemgrBxI3qrVgCIjr4ztWNHBEuUGWqJT1i7FmHzZjuq8UyZknVcp44lgBCJYADxk07C9dZbiOXlxE47De9jj6EXFaF26oRr3jwSRx+N58UXiQ8YQM3YsX/u4mSZ8DPPkOzSBc9zz5E48kjcH3xAslcvcLvx3XMP0UsuQVqzBtfrr9tVnZm2Qv577kHde2/kzz5LK9jx33UXAMl99kHQNDutqe21l93LKK5cSXK//exzpBUrwDDQOnRAjEYRNmz4c9dYQAF/QxSIrwnhXONzpizzJb7MRvdc42c+TpFZrv2ZaNKIz0F8gpX2BDNdl0Z8HTuax1vpOa19ewBkx/peiqKTPXogO/oB1fbtEX/7Da1jR4zWrXFPmYJWWor6z3/i+vxzEscei+/hh811r+XLMSSJ6gcf3DpmrR4P4eefB0FAXLkStV07vBMnEhs+HNf776PtuSfazjvjffFF9N13J9mrl5nuTLVupK7hwANNh/o997S3pcS7U2udSqqR3eVC3313AKSyMrQOHexzxEgEYf16M1VMbQTYHGiJlYotNeJriXPanlAgviZEJvGlbIjyFaXOtCHKNr4TmW4M2Tz7Ghpja0PctMluXhcd0Ye+yy4IkYg5B7cbw6rqFK0yfn3HHQFQFi60z0m9Os7UHoDaqxfKokWmTmUigfLddyQPPRTP668jqCrqP/6B/PPPqN2745o7l+jll9tu7lsDeseO1IwZg7J4MVrHjsi//47eujW43aZizL/+hTJ/PuJPPxE//njkVavSinkAtNatEXK8F/qee2J4PMjONVErFQwgZDhwSEuX1t5I/Prr1rrMvFD4Qd9yFF675kOB+JoYKeJTFKVRbgzZ/PdyjZ+CJEn2c2Tbn+1xU0MsK7NJzNm8ru+wA4IlzaW1bm1HX+KmTQA2WTr7/lIwQqH0DYEAQjxOol8/5K++QoxGSQwYgHv6dJJduqDMnYvu9SKuXWsrumxtxC68kORee6EsXIjaoQOel18mMWhQmiSZ5+WXiZ9wQppuZwrK7NkYkoQQDmNYeqUARCIgiqj/+AeSQ6/Ubu6HOtWb0h9/2MTnjIy3RxSi0AKyoUB8TYxUyrK+SCzbthQR1qfPmUmWmcSXjUwbGmOrQ9dBUQCz78ze3KoVokV8hqN60474LOLLBjlDvkyorARMSyPXJ59ggOkE8dNPqH374po5E22PPVAWLyZ2xhmQ4ZG3VSCKVI8da8qzlZQgrV1rNu3HYiizZ5Po0wf3jBkYO+2EutdeZmq2TRv7dPfHH6N26YI8b54p6G1BmTULMCM86aef7GIV3ZHelK1KTnsq69dDMGiSvXUjsT2jQDIFZKJAfE0MwzCQJKlO5LY1RKmdpJUqnqlvTW+b/ACIIqRcJRzPb+y0k53qTBEjmFGhIYoYDoWWOkNmpu/CYbS2bTHatkWZPdss/583z9yn66ags65jyLIpZdZEUA89lGSvXkgrV6KHQkj/+19a47r0xx+IS5eiHnww8tKlqI71PAC1d2/kH36wFWsAPJMnm/v22guxuhpx5UoADAfxSb/9hmZF1VCbUjZCIYSKiia73gK2DNkivpYYmf6dUSC+JkaKfPKxIcokvoZsiDJlzTLTnNmQz9riVoUk1RKfWPtxM3w+W3MzJcEFlst6cbF5bJY0J5AmbK21aYO0dq1ZDKPrZoFIr164Pv0UPRhE3LQJ3e9HWr+eRN++9RJqfcj3Naq59FLE8nL04mJTnHrvvVGWLEHt2RMA93vvET/sMHM9L+PHT2/dGiGZTLsRSDXppxzmxVS7gqP9Q1yzxnZtgFri00OhtCi7qdESU3gtcU7Z8FeY498JBeJrYjgrLJ3bGiIgl8vVqC+D2+2uI2TdEqo6DVFEyEJ8drQHaT/0QlkZlJaah+dYnxIdhKi1b4/4xx/oHTog/vILQixmpgy//55knz7IX3+N4fUilpWRyLT/yfcaGvE+JIcMQWvTprbgxIra5YULUXfbDeXjj1H79TOdGjJed1tiLMsNjF2lmYr4dt4ZI5VC3rwZzSJWqNX5NEIhOw1cQMtBLjIukF/zoUB8TYzvv/+e+RmmoA0RX0pyLJ8CGKccWkOuD9vkyyaKtT/kjrk4+8ucEZ9YVmZHZZkSZwB6SUnaY6OoCLGmBm2PPZCWLAFMMpTWroVAAGnzZhAEDCBxzDFb66pyQxSJn3iiucZXVIT000+o7drh+vBDkgcdZLYk6Dpq586ImzejO9Y35YULzRuFLC0sqQjPVmMRRQxrjVAsK0vT+UwVERklJYjbeaqzJaYQ/ypR6N8ZBeJrYnzzzTcUOdQ4oGHiy+XGkIv4ZFlGVdW8vkzN/kMgSXbU4yS+tB9kh/C0EIlAUZFZDWsJWDuhWim/2g0mqaodO6L88EPWfUIiYfb4WZFkUyN2yinmH7KMYrUWKP/7H8k+fRCSSeTvv0ft2dNMy/7jH/Z58ooVaO3aIaxejWb1PpoDxsDnQysttfscAQxLqkyMRDACAXu7XRlbXJzWK7m9okAyBWSiQHxNCF3XWbVqFR0chQjQsIZmqucv3/U4Z3P8lkR8Tb7Gl4r4HKlOHPY8OMv3RdEmymzEp1uN7SmkUqb6brsh/vILeklJrSZoiviqq1F79/6TF5I/9D33RO3YEVLruoZhtmVY16x8/TXJ3r3NdKjzdcBcy5N++y1Nwi2l2JLpcGE4yNHZyydEImAYGKWliJFIsxnSFiKZ/FB4nbY9CsTXhPj999/Zbbfd8iYwZ9oyW6FKrpaHXHqeLaGq03AQWdqalpMEHRGfMzUqWNqUaeNlpDqd24XycvTSUuQff8SQZVMDU5YRVNWUEWtGJA89FLG62uzNs65H/vlntNatkefORbPmY4jpX0G9XTuk9evtNCaAy/Ij1Nu2td0pBEHAKC6uPdFJfLoO0Si6ZVmUtp66naFAMgVkQ4H4mhDt2rXjlFTaqwHko80J2SM6SZLQNC2v6E1RFDweD263G5fLhSRJSJKELMtIkoQoils3ApQku7jF2bhtOMjO2bBtyLJdBZqpaQlgeL3pG6wxjaIiu5pS3LTJ/N+hDap16vTnr6URSAwcaP4hy0i//IK2yy5me4PVj6d16mSa0mb+KLtcCIlE2rqnbEmVGSUl6cUqDuLLVG8RIpHaMXJUxxawbVAg420PueFDCthSSJKE3+8H0j/s9a3x1WdDlC2CS3n85Xu81+ulpqbGFs5OkZ3b7bZVZpz/so3p/Jdtm3MfkoSg60iSlD6eo5Iz40UDq0gnG/HlchswgkGEigr0zp1Ng9biYsTNm+1oq7mJL9m3rxltxuNI69aR6NMH+ccfSQwZgmv2bFNIeued6xSy2Gt4jlaWVLWnUVpqqt2oqqnX6SA+I+P1FCIRsIhPiMfZXn9mGxKB2BYoEN+2R4H4mgkNfdhTCi9ut5vyHL1XuYiv2loLayjVKYoimqalEaskSXi9XnuMfK/FSYzZCDMVOQqShAh4vV4Ex3qW1+Ec7orFKC4uNpv9FQVB0/D7/YhZ0r1Sxo+YIAgYHg+iy4VYVYVaWoq4dKlZUWkpmhgeD8bOO+d9fbmuuVEIBFA7d0axeg4FXTc993be2XRaWLYMrUMHpNWr005LEZ/gID7ZamHQS0oQsFo+fD677QNMckubr1P6rJkivsIPegF/FRSIr4nRWBui+u5Qs43jVIVpaE1PluUGm+LzQVpE1wBcoogWixGJRFAEgRT11USjBDGFp9WNG6myqjxDgoCUTBKNRnHX1JAZFwoZ8xeTSfB68fv9CPE4SiiEWFWF0aaNLWpNKETIio7qi05z7Uvtb+wPu9ali018mS0d0g8/YHTogPT996i7725ratoSY1k+L7rV5iFs2gS77pq23plZCCRUV9vEl0mKTYmWRnyFdoYCsqFAfFkwbtw4PB6PvX529dVXU11dzQsvvEBZWRmlpaWceeaZ+OpxCE/B+aPZ0HH5iFJnoqEUqvOxLMt10qJNXdVpBAL2upRRVASp4oxk0tTMjMXSSu4NSYJEAsMw0LLodWoZqUE9kUDQNMLhMDsAiXgcl6qiJ5P2Arbm91NZWVlvhOrcZ0erjn+SJBEMBuukgDOFCZz/xN694Y03gNrFdClVwLRmja3lSRat0mzQU439qT49ZwtDRiGQM9W5va/x/RVI5q8wx78TCsSXA6NHjybg+GH56KOP6Ny5M4MGDWLWrFnMmjWL4447rsFxGvOBlmWZmiyVjM6xMkWp64vgsqU6m/sLprdpY7ul661bg7VeJa5bh+F2I8RiiM6CDUf7g5bZswdZ1/hShR2Gc79TrNtaZ82mopMvQqEQVQ30xGWSpdypE3aJihXFS1VVGB4Pyrp16FZlp+iI8AXDwAgEUDKqPYuKisCq9PQmEuB2IzoIU8ogN4naQiAxmeTPx/kFbC20xHXH7Q2Fqs48sWjRIvbdd18A9t13XxZZvVUNoTERnyRJOQtVUsdkypo5ia8hZRdVVZtdq1PfeWczijEMk/gsyEuX1qbinBFfMAgWEWYjPrGsLH2DINT2qYliraed84Ygo1euqWAYBrquo2kaqqqSsGTGANi0Cb2kBP3XX9F23BFt5UqiVh+envGe60VFJGtq0gpSwuEwqVKfZFUVqqqiO6XeMgqBFFnGbblQ+LxeQqEQxcXFdf6FQiGKiooIBoMEAgECgQB+vx+fz4fX602rAHa5XCiKkrMCuJBWzA8tcU7bGwoRXxYIgsDEiRMB6Nu3L3379iUcDhOyfOBCoRCRPHuj8iW+bF+GFCnlSmVmpi7rI7FsWp7NAX3nnRHicYSNG9EtpREwzVJTdkRCJGJGaLKM3qYNwhdfIJDdmsgpdWZv0zTz/BxOEGyFdc0tgd6und1HKG7ejNahA8LmzRitWplyZQ5HhbTziosRKisx/H577c4wDHTrRkGvqQFNQ3S0PGSSZywahWQSF1Adj6PWo9nZmGKlXPvBzEAYhmEvATRm/bShfQUUsDVRIL4suPzyywmFQoTDYZ544glaOyKVxiJf4stmQ1Qf8WWzIcr23Kn9brebSCSCJ8OLrqkjPi3lrL5yZXrEt2IFiQMOgBUrzErF8nKMHXc0iS8WMx9naVaXHJJd1gWY/0ejJlGEw2n+fmnHNDdkGb24GGnTJrOtQhSRVq/GkGWU5ctRvv7aPMxyXEhBcbhPpCD+8otd8CLEYhika5zWuUbDqO2fbCDibUyxUn3w+Xwkk8m0PtSGCDWf/fnMPRdhSpKEoij29ygb2TY3ChHftkeB+LIgFdkFg0F69OjBypUrCQaDVFZWEgqFqKysTFv/qw+5iC+T1FwuV1biy4STyOLxOLKzEbyeVGdqXaHZIz5LYkz64w+bBO19u+5q/y1s3oyx445oVtuBsGoVOKx2UpAyhauttTxx40az3L+sDN2q7LTHztYP2NTQdaTFi5EcRrByyn3BQuCWW/IervSAA+y/g9dfT3zlSgTnTUwW4rMjXXnbfc2bklwaU6yUIr9s+xuae2OrfzMf54MCETYvCsSXgZT0l8fjIR6Ps3z5co488ki6d+/OnDlzGDRoEHPmzKGHwyy0PuRLfJnu6SnkIjK3201NTU29xJeCy+UimUzm/HI16RqfRXziqlUkDz446z4wKxV1sNOh4po1WYkvF8RVq0xR5vJy9DZtYPNmDMx2ia1hxprPaySUl+N++WVcH3yAvGSJqZOZBbrfj1hdTcXUqRQPH462ww6mi4QFdbfdkFesSDsnctttyAsX4pk+HQDXxIm165mA59VX0+cSjdYW+DTTGmdzI59UqKIoxGKxLWrjySc6zawAzjwvG1JKSbqu2wQZi8Xy8tMR8nxxAAAgAElEQVQsYOugQHwZCIfDPPvss4ApMt27d2+6du1K+/btef755/nmm28oKSnhzDPPzHvMbF+CzMKTZDKJmFHJtyXFKtnOz6Xl2RzQ27bFkCSkNWuIOyI8MIs4UhBXrIB+/dBTqVGHGHM+EFevxigtRVqxAq1rV8SFC239TrGy0oyAmuLaDQP5k0/wvvgirlmzEOJx1PbtSRxxBMl998X36KN2lKp27Ii4Zg3xESPwPPMM6sCBGG632ebhID6tSxeEZBLD47HToLFzz0XYvBnP9OlU33gj2iWX4HrrLTwXXZR1WkWjR9e+NmvWoO2zz9a/9gy0xBTen5lTU0WrwWCQmpoa+/soCMJW6a8tIH8UiC8DrVq14tprr62z3e/3M9rxY5IvGor4ADu6zOwLzEV8ThuifIjM5XIRiUTqEGuzQJbRW7VCXLsWo1UrDEuLEkiLROSffiJBbfrTqbOZiVTBiBPSmjXoO+2EuHkzRps2iOXlJtGUlyOoKoLD52+rXdpXX+G/7jqUZcvQvV7ixxxDbNQo1AMPtEnW9f77aelZIRYzXwNdB1U1Raoz3xdZhmTSrHC1L7rWsd0QBPD50Pfe294dO/lkPK+/bj9W//EPZEu5JnTGGagdO5I85BDigwej9uu3TdOfBdRWAKdQaG9oXhTaGZoY9RFfCi6Xq1E2RC6Xq1ERnHNhf1uUnOs77WRaBQkCusNKxylUbbuPBwJm07tlLaQ6/OpS0BzVoUJNDYbLhbh2Ldoee5iRUqrow/FjIlm9hFsDQlkZgYsvJjR0KNKGDURuu42yJUuITJyI2rdvemTpTEUripmeTLUhxOO2NmndJxHSCdEw6rpcOHsVnYUuQOQ//yFirSFGTz8do6gIz7PPUnziiZTuuSfBM87A9dJLpvzZ3xh/tyi0gK2DAvE1MZzpjPq2Z/si5Ir46hOyzoQgCHbLwzYjvrZtES3FFmeLgrhpE7pVoCH9+mv68Vb1ZvKww+qO59DdlFetQmvTBnHFCtTOna0DLIJwEIOUUViypRB/+43iww7DPW0a8VNPpfybb4hddBE4ozMnnJFVKsJNEZqmmfsziS/1WXBud0R8NvE5PzMZxGd4PLatU83YsVR++CFlS5dS9eCDphP87NkUXXklpT16EDjvPCTLAaKAArYHFIiviVHfnV2KxOprWs8cK5XqzHdNQBTFOiTZ7OotO++MuGEDqGqa47jy6af2mp60apVNWMaee9oRWvyoo+qMV8dJ3eMx3cz33NM6wLo+p7XPViA+cflyQscei1BeTuXrrxN55JGc/oA2nK4JKcJLEXKK9DKdFSoqEKqqEJ36m87mfGscpxWRkdGmgtttE5+tXLPDDiROO43wCy9Qtnw5FdOmET/mGNzvvUfJ4YdTdNRRuN58My1SbgwKkUx+KLxO2x4F4mtiNBTxNdaGSBTFvIkSWkbEp3bpgqCqSEuXojrWpVxz59otDkI8jmgJNWs9eiBu3Iiwfj1qlqIMeeHCOtukdesgEED3+RDXr0fLaA6XFi/+cxeRSFA0ahRCNErl66+jHnJIfuc5Wyl03TSmtd5v34MPIobDyI5oF8D15ZeI0SiSo8Cn1S67UGq5yAduvRX3JZeg/Oc/tSdlkKfh9dpp4KzrebKMOmAAkSefpGz+fGquuAJp5UqKzj+fkl698D7wwFapht3WaIkkk+072NLm+HdHgfiaGA0Vt7hcrrz99CDdjaEh1JdGbU6oltSbPGcOSevHOwXdIeslLVlibuvZ0zx+wQKwohUn6vTypVpCFi0yjV4XLULt1s10KLCiPnnJkj/VyC6MH4/8669E7r8fbf/98z/P0U+oLFmCoGl4n3wSAN9DD23xfNyTJyP/97/24zpjxePm9WdGgllg7LQTNTfeSPmCBVQ99BB6aSn+u+6iZO+9CVx+OeJWXB8toICWgALxNTHqi/hy9e5lnut83JiIz+Vy5UV6TU2M2l57oXs8KPPno/XsmaYkkqbm8uOP5vEWOcr/+19+T2DNX164EG2ffZB/+gm9SxekdevsQhixogLRqnJsNFQVccIEEv36kTj++PzPMwxc33+/Zc/5J1Havz+eqVMRq6pQ3n8f6hE/t+FykRg5kspPPqFixgySAwfinjKFkoMOInj88SgffrjtVHC2ENsiw1FAy0eB+JoY9RGfoij1Rm+5lFvyLX12u91Zj232CFCW0bp0MdONHg/abrvV7nO8LpJFfLRti96qlRmlAVpG/x+A6ogUxY0b0UMhlLlzSe67L4Km1VaMpsxYAddHH23Z9GfPRqisJDZ8eN7niL/+StHQoVv0fFsboVGjaNWhAyXdu+O9+247pVwf1L59Cb/4ImXffUfsggtQFi8mNHIkoQEDkL/6qhlmvX1hW2dltjcUiK+ZsCXEl3meoigNfkGcUWJjIr6mvjNWe/QwC0wSCbS99rK3S7/9ZvvMpYjOMAwzYlu2DIDoeefVGc8uZAHEykq0tm3NVKpD2stQlLRCDeXzz7do7vIPP5jX0LdvXse7n3+e0v33x2VpcTYWWuvWxAcMSHNn2LR6NWFrTS9y661EH3oozY8vH0jr1+P/z38o3W8/ivfbD9eUKdBA9sBo147q8eMpW7iQyO23I65fT/HQoQTOPRcho9eyJa6nFVBANhSIr5mQjfhEUczbVghyR3CZ46aklLZl714mkr16ISQSSAsXphe4vP02ye7dAbPlIFVQoXftirRiBcRixEeOrDNenQIXw0Bav95UTmnXziTBffapLfAAlG++qbUwagRSWp91xK+zwP3UUwTHjMlr3ApLZkzt2DHjCQUQBNLeNZfLnnvi8MNRzz6bpEM9qPrqq9OGqDNmBuTffqNo9Gha7bIL/iuvRLRuMnLC5yN24YVUfPcd0TPOwP3OO5QceCCehx/eote0gAK2JQrE1wzIRj75tCRknpdPBOcsmsm3yb1ZIj6rwEX5/nuSlgErgBiLoVnFLIJhIM+eDYDWpw+CpiHPmYNhiYY7IVkN7imkSv2VTz8lOWAAyrx5qPvth7RmjZ0WFcNhlI8/bvTcNWsdsiEZNeXddwnecEO9xyQOPBB1jz2IDxxoqrdgRabOa8khqm1bFKUKfpztDo73L9G7NxXffGPPPXr66Wmp4Ux4X3qJ0oMPprRzZ9wvvljveqARClF9//1UzJyJ2rUrgfHjKT74YORPPsl90QU0iEKk3LwoEF8zINuHOhvx1Rfx5XJPz0Vaqf7AlvKF0vfcE93vR164ELVXr7Q0ntOXzvXll2aqc9Ag83E9RKU7euiEzZvRg0FcX3xB4vDDba1LIK2c3/3GG42eu2ZFqMq33+Y+qKaGwHXX5ZxfSpdU7d3brPQMBmtVUzJEpIWamqy9dKm+PsMaS3CKYDtUXoxg0E5hxk84geoHHqDiu+8o/+ADoqNGoWX2QaaGKC8nePXVtOrQAf8NN9TbzqD16EHVu+9S9eijCOEwxSedhDx8uOmqUUC9aCnfye0ZBeJrBmT7oCuK0ijiS0Vw2cbOdo6iKHb1Z0uI+BAE1K5dzQKXoiI0hzMDmmYToTxnjvlHmzaonTrZhRSxE0+sM2TSseYmbd6M1r49yhdfkDz4YAyPB+n331F3393Ux7TIzzVzZn4Vjg5o3btj7Lwzrvffz3mM54UXkCx1GoDYyJGI5eWAqa2pWalHvU0b04lil13s/UIsljaWkEzWcZr3jRuH95FHAPBOmIBy773I06bVnuNcqysqQti40Xw+B8lpffpQ/Z//UL5kCZXPP0/86KNztjt4n3qKHTp1wnvvvblfL0EgccoplH/zDdHzz0d8/31CBx6I9777Glw7LKCAbYkC8TUDMokll4lsNhJLIVeje7ZzJEmy1wJzPc+2gLb33qbbQCxmR1EA7hkz0Dp0AKwCF+uHNtm3L8r//gfhMDWXXVZnPMVKi9oQRbN8/9tvSRx4IK5Zs0gOHoz8yy+oVjGMGA7jdhBGXhAEjOHDUb75JudamOvdd+2/48ccg2vGjNrTDcMmGEOSEAwDtX17RIucsml1KhkN977HHrOFuf33349n/Pg0WyJnH5/rnXdwzZoFgJ5NmFuWSQ4ZQviFF9i8ZAnh++4jkdFfmYL/vvto1aEDniefzL2WFwxSfccdJOfMQe3dG/+991Lcty+Ko8+wABPZCoBawhr89oYC8TUDMj/oqTRkPqLUzogvmeWHJ1c06VRraeg5mqsAJtmrF4KqIs+dS9yhwaksWGArtAiqivT116bizMCBCKqK8tln6F271hlPrKxMe5xyPnC//TbxE09ELC9Hs374Da/XPs7z4ouNnrt+2WUgy/gmTMi63+VMg0YidhoypUWaIr7Uup6+2272mmGm996fhWAYBK+5BoDgVVfhGzfOjJyz3fAUFRE/80yq/vtfKt54g8SBB2YdM3DTTbTaeWdcU6fm7uXbay/CM2ZQ+dRTCMkkodNOI3D++Y2OsP/OKJBcy0CB+JoB2YgvHo/nFfEJgtBgo3vmOZlp0ZbyZUsZ0bo++ojkEUekrfNpXbrYf0uffWYeP2AAhizjsh7rWdamkg5ClH/6CbVTJ5SPPiJxzDHofj/K/Pkke/ZEWr3aLlJRFi5Etoo/8oblsed68806jgaZa2HysmWoPXtiQG3LgSSZ6VbrfdR22w3Pm282bg4W9DzUWOy5GQa+xx6jeOhQSvbZB/8NNyBlkXwDUA8+mKq336ZixgziBx2U9Ziiiy9mh112QbEiymxIDhtG+ddfEz3rLDxvvknoqKNMv8UCgOw3o4V1v+ZFgfiaAZkf6pTxbD7nbYmepyzL9vgNtUjk2tYUMHbZhWSXLiiffIKx006ojn4+IR63FV2kFCkFg6g9eqB8+SUAkTvuqDtoJglIEtKGDchff01i0CBcH31E/IQTkNautdOpAN4HHmj0/GsuuQQxFsP7xBPpO5xi0Zi6oXpxsdmO4HKhe70IFRVou+9uy635b7897+c1FIWk48ZAzFgTzBfSmjV4n3qKkkGDKD7gAHzjxyNaRrdOqH37En7zTcrfeYf4wIF19gvJJKFTTyU0cGBaMUvaZ8jno/ree6l6/HGk336j+PDD6yXLpkJLI5RCr2PLQIH4mgHOD3rKRBbqN6d1PnY6OORDZM5ev/rWDbcF1EMOQV682BSgtiJAMItDkla6U547F6yoKtmvn9nft3YtiX/9q854yvz5GU+govt8eCdPJnbWWQixGEJ1NXpJCUIyiW5FYK5PPkHKPLcBaPvuS2K//cxUqSN952y3SL3SYkWFGdEmk6h7721Go3vtZUc+7hyFMok+fepsE5JJlIb67HLNeYcdbCFwJ+RffsH38MOUHnAAweHDs6qxaPvvT3jqVMr/+1/ihx5aZ7+yZAk79O6Ny+pHhLqfr8RJJ1H53nvoRUUUjRxpFr4UfvgL2MYoEF8zwClU7Xa7icVijSpucZJlQ8TljPZyzWVbRXwA8cGDEQDXBx8Qt1oWwCylV/v3B8x1Pvmtt8zjjz0WAXBPn17XqdxCwpGWU5YuRe3WDdesWWh77UWya1fcr7xC7NRTzbSnRSwC4B87ttHzj152GWJZGZ4XXqjd6JBFS0FetAitXTukjRvR27dHrKxE7dED94cf1ju+a+7chudw1lkkTjghr/lKmzcjrV5tP9azqL24P/2U4qFDKTrySJR33qlDTFrv3oRff53KV17JSqJFl11G0fHHw+bNWeegde9O5ccfk+jfH/+99xI87TQIh/Oa/59BS0nxO1GI+FoGCsTXjHCmLfMlIFEU6xBZfRGfJEn1qsFsa6gHHIBeXIxr1izUfv3QHe4LuiNykt5+GwCtVy/U9u1x/d//AWa6MRNOBwRzg4AQj5uEd+aZyKtWoXbqhO7zIcRi9vO4vv4axRo3XySPOAK1Y0fcjigHQHOY44JZxGIUFwO1Dedap06Neq4UNi9bxmZLzi2x337obdvW65wevueenPtER++fkXEj4Zo3j9BZZ1Hcty+uyZPrVHEmDz+c8i+/JHr22XXPnT0bpW1bU8g6C4xQiPCUKdRccQWumTMpHjSoYbWYrYCWRjIt6bu4PaNAfM0Ap3SYKIo5ZcdyVXU61/caSnU6WxlyHZ/P8zYZRJFkv37mup0gkNxvP3uX8t13tiC1+MUXpjKJIJAcMgRl3jyEVauoyWgSB8yWBwfk5ctR99gDz4svEj/lFLTSUrwvvkh85Eiz1cHhpRe48UZwNoI3BEEgMXQoyg8/IDrMbePDhtU51AgGTVUWVcWQJJQsLueaw5E+7VxHFOm/7TZ26NYNANd33+G/806UepRSgo7XKHrBBYTvvpuaK66oeyk5Pofyzz9TdNVVFO+/vxkBOuH3U33PPVS88w5Jh15qCqGRIwmcd166qoz9hAI1N95I1XPPIW7cSPHgwShWZL89oaWR8faIAvE1A1If9Pq895zHOZHpoF4f8W2JDNq2QPzww00D1tmzSTpIyP3eeySsYgohFrMbxmPDhyMAnmnT6hazpMYcMsT+W6ysROvQAfnXX1FmzTLdBebPJ7nPPhjBINKKFbaWpbR2LYEGZMYykWqmdzuixUSWIhDp559J7L8/8ty5qN264XamR1PI8l7EjznGNqsF8LzyStp+1elu0QC8Tz5J8Prr8T30EMnu3am+4QZqLr4467GZzezyqlWEzjqL4PDhiBlmudq++1L5ySdUX3ttGkkDeN56i1a77YaUQ+kmOWQIFTNnou+8M0XnnYdv7Ngtdn2vDy0xrdgS57Q9okB8zQAn8TXGjSGFfCM4l8uFqqoNFr9syzU+gORRR2GIIu7//pfEUUel7XO6LritaEPr0QO1Y0c73Vk1aVKdMd2OBnIAccMGtJ12wvv440QvuMCM+p5+muill6IsWEDykEPsdgrPq682KvLQO3VCLylBWrrU3qZm6X+TNmxAPegg5B9+IHnQQUgZ6UmtVas0tZcU5AzC0Nq0sfsRYcv7/pTFi/HfeSe+CRNI9OlD9XXXkezRw96fqSCTgvvTTyndf39848al9+QpCtExYyj/+GMSjsg9hZJjjsF3++1Zi1n0jh2pmDmTxJAh+CZMoOiEE+pN3xZQwNZEgfiaAY2J+BorSg21RJatMb6lVXUCGKWlqHvvjfLJJ+i77UbS0dYgL1iAbq2NKZ99ZrcKJIYMQVm0CHHFChJZ0oqQUeSyZAlqjx645s1DXrCA2IUXmka47dqhduiA6//+j7ijQCR45ZWIDiJrCOruuyM5WwE8HnRHkzyAIcsYfj8CpKVXU9DbtUufvyXBJqUUXSxo7dsj5Sgc2VK45s7Ff889KIsWEb3gAuLHHtvgOb7HHqNk//3r3CTonTtT9c47aFnaTXyPPELwjDOyq774/YSfe47ITTehfP01Rccdh2DJuG0NtMToqiXOaXtEgfiaAakPekONqvnYEOWT6myI+LZ1xAeQPPRQ5F9+QVy5Mo3IPNOnk7DSlmIkYstexU46ydz/yivmup+15pU+aEYRUFUVelERvjvuIHrxxajt2uG/4w6q774bcf160HV7nUqMRAiNGIHQgAODDVmuE8kkHOlWALVzZ+S5c9E9HvQs7giZrRhOsW4nXN99Z/9d/u67bFq/nuQxx9jbouecY/8dP/RQNlvjRs89l8htt9UpvMmE98kncf/f/xEbMYJ4RgSeCWndOkLnnUfwtNPSG/cFAX3MGCpffdUW5E7B/f77hAYNyl7JKQjELr+cqokTzbXFE05olorPloQCETY/CsTXDEh57zXUtJ6N+BqSHEs9bqiNoaUhFWG4p04lduqpaVWCThUXz8svA6a7Q7JXL9yvvQaqSviZZ+qM6fr2WzSn08OcOSQOOwzXnDkoH39M9bhxSH/8gTJnDvERI/C8+SbxU06xf6il1asJHX88Yh4OA0IkkiaDBg6BbQt6x46mXuihhyJ/8UWDY7pzaFvqwSCJPn3MlOd++4EoImzaZO/3Ol4L98cfE7zwQsC0UUocdhjl8+ezaeNGymbPztqPl4LnlVdwv/8+sZEjszauZ861eOBApIxrTg4aRMUHH9TxA1SWLqV0773rmNfa5w0bRviBB5AXL6bopJP+tjJnhYivZaBAfM2AFDnVJzvmPA5yf0HqsyHK1iaRS9nF7XbjcrlQFAVRFO1/zRX5ad27mz1206ZhtG5N0rFGpsycid65MwCuTz9FsPrQomecgbR2Lcq776LnMFpNDhiQ9lhcvx6tdWt8d9xBcsgQ4v37m+t+o0ah7rEHvoceIjJunO3eIK9YQWjw4JyFGQDChg3IP/6IZhnoAihvvYW8cmXacfK8eYiRCLETT8SVKaidbdwca2xly5cDoLdqBckknieeqFdyLaUb6v7gA0r79aN0t90oOu443O+/T/Xtt7NpwwYqpk2zU8qZ8Lz8Mu5PP83aOuKEtHo1JUcfjefxx9OiX71TJyo+/LAOeYqRCDv06IFoXU8mEiNGELnrLlzff0/RiBHQwHp4Q2iJJNMS57Q9okB8zQBN03jggQfySlum4PTTq4+MMtVd8iE+n8+HKIpIkoSiKPY/v99PMBgkFAoRCoUoLi5O+xcKhSgqKiIYDBIIBAgEAvj9fnw+H16vF4/Hk0aoiqIgyzKSJGUl1fiJJyL/8gvSnDlptkOuzz9Ht1RaBE3Da4lKJ4YPRy8txfvsswBUPvVUndfDM21aWmrP9dVXJPv3R1m+HPezz1L94IMYikJgzBjCTz8N8TjeSZMI33+/uSYHZqn9sGFmtWFmq4NhELj+elBVYqedBoD4668Er766TpQjrV6NXlxM8sgj6zpJ5Iny994DRUHcuBEhGqV4wAACt9ySPiVHNWbk5psJ33cfYPbzRW67jcQxxyD9/jv+O+6gtF8/ig84AGXOHMpnz2bzokU5ozvfY4+hB4NEzz+/3jkGbr2V4MiR4FyfKyoi/PrrWStISw86KKtSDED8nHOIjB2L68svCY4aVXB3L6BJUCC+ZsDq1atxu915S5RBegSXzzmpxvWGiFIURTRNIxqNEo1GqampIRaLkUwmCYfDVFVVUVlZSWVlJRUVFWn/KisrCYfDVFdXE41GicVixONxkslk2nOnCNXlcuHxePB6vWmkmiJSz4UXYsgyoSlT8J55JobPVzvPVq1s7U7PlCl4XC7cwSDJU05B+eorXL/+ip5DvSRx5JFpj6UffyTZvTv+u+/G8HiovukmlEWLcM+YQeTBB5F/+AH3tGlUPfGESSKKglFUhG/CBEr33pvAxRcjPPIInkcfpWjwYHM97Lzz0Hr2RPz9d0InnACaRjhLtWnikEOQ581DWr8++7pkA0i508u//26uiW7YQNWDD9qp4WSvXmmRor7jjrbdUWLoUGIXXURkwgTKFyyg7IsvqP73vzG8Xvz33EPpPvsQuOIKoldcwaZffiF+9NF1nl8Mh/FOmkTshBNQM4pxnHDPnIncuzeSYz0SUaRm3DiqHn20TstD8dChKA7rJidil1xC9bXXmmnb887b4laHlhhdtcQ5bY8oEF8zYMmSJXTv3r3RNkTZjGRz+e/lqhbNPN4pf+Y8Jl8YhoGu62iahqqqqKpKMpkkkUgQj8eJxWI2oVZXVxOJRIhEImmkapOpy0ViwAB4800qq6tJOCTMhDvvRLWqNMU//kD84AMEQUAbPRpEEe9TT+H1elGvvbbOHL3PPYdhNcKD6cYgHHYYQjhM6NZbkS+9FHXwYLyPPILSqhXxsWNxz56Nd9o0qt96C32nnRDKylA7dkTbYw/c//d/SFdfTeC225B+/53I2LFU33EHyvvvEzriCIRNm6h6/nncWdwWkvvui/uNNzAkiejo0Xm/zjZcLttUFqByxgySgwbV2hs5XN6hlvgMWcbIcLPQu3QhetVVVH76KeUzZxI/+WSUb7+leNgwikaMIHruuWxeuhT1H/+oMw3P9OnIq1ZRnfF6O5V3hNWrKRkyBNf06WnHJE45hYq330Zr1Spte+jcc/FMnJj1sqNjxlBzySW4332XwOjRBX3PArYqCsTXDPjhhx/o4eiXSiFXNOeUHcunKtNJfA0dn63JfVs2tcdOPRWxqgrX228TO/lke7tQVpam5Sk9/TSxWIyanXYiMWAA0uuvE1m3joqrr84+bkb7gDh5splanToV7Y03qJ40Cb1DB9znn482bBiJ66/H9d//4rvzThIffYQ2ahTSihXIS5Zg9OuHcemlaI8+Ck8/jdflonTIEEKjRiH6fKizZuGTJLwTJqA65gzg2rAB94cfou63H3o9FZNOubZM+O66CzArNrVu3RAdBSJGhtGs0bo14saNJiHW855q++xD5KGHKF+wgJorr0Retozif/2L4JlnEp40yUyxZoH/3nvT1v7ELAotRRdeiPv559Ofr3dvqqZNq0PUgZtvxv3001mfq+aWW0xro2nT8F99daPJb1sLNWRDtoivEAE2PwrE1ww4//zzKSkpaZQbQ6rRPZ81O0mSch6fCTGH0PO2QvLoo9FLS3G/9hrJQYPSqjLlH36wJb1cn3yCsHYtANGLLjJTcBMngigSO/74OuN6J08m5miTEMvKwDBQd9sN3+WXo1ZVUfXcc5BM4j7uOMKnn07k5psRZ89GGTyY8KhRlH/2GfGTToJ58xAefRTp0kuRhg1DuvFGjNWrqb7mGsq+/JJoRQXy6aejt29PdcaPuOvppxFXr0YfNgy35QeYDUIwmHV7MBjEO3kyAMa555prqY5GbyGzQKVNG4SyMowMgskFIxSi5oYbKJs/n+prrkFeupTiI47AM20am379legFF9Q5x/fYYyQOOCCrZJk97zFj8Dz8cNo2rVs3Kl9/HT3jWoP//jdKNrcKQaD6nnuInXIK3smT8d98c17XlHZ9LYxUCqnOloGW9Sv4N4XbWt/IRkjZSM2p8JJvcUs++p+5JM22qYyZohA/7jhcX36JsH498VNPtXd5XnmF+MiRgIDzcxIAACAASURBVOnY4Hv8ccC0Nkr06YPnqaegpoZIDld0ISMa8UydSuyccxCqqghcfDFat25UPfMM0rp1FA0fTvy006h6/nnEsjKKBw/G+/LLVN92G2XLl5OcP5/KV16h8pVXKPvqK8oXLCB67bW4pk6l6MQTMYJBKqdMQctohRAiEXSfj/CJJ1Kdo5QfwMgU2ga0tm2pcQg5J9u0Md8/6wYA0m9kDEHAt9tuyOXliK1b1ylOylaglCpO8rVuDbfeSnTePNQhQ/A++yylBx6Itv/+VGYpRHF98w3K8uVErQKfbAiMH19HuUXr1YuqV15Bd6znAoRGjULKomWKIBB5+GFiQ4fiffJJfHfemfP5CiggXxSIrxmQIpZ8G8cVRclpQ5QtddmQpFl9yi4tAbHTTkPQNDwvv0z0ggvSCiF0v9/+kXS//LLdNB295hqksjKT/GQ5a2TinjmT6jFj0rZ5Jk0ietFFuD//HN/tt6MeeijhRx5B/vFHQsccg9qrF+VffEHikEPwPvEEJb16EbjySoQVK1B79jTbJdxu3JMnEzr8cLOa8x//oOK999B33ZXgRRfVmUfy0EOhqAjlo49yvgaZJA2g/vOfiA639ETr1iQSCXQH8alOJ47iYsLV1RibNpEMheoUJ2UrUEoVJ6mqiqZp6G3aEH/pJaIzZkAgQODss/E/8QTxjRvRs7iye196Ce3uu9O2GS6X/bfvkUcouv56PG63XfEr9u9Pzcsv19EGLTn88Ow9lKJIZOJE4oMH43vwQVwZ2qW50BKjq5Y4p+0RBeJrBjj9+DK3ZytuaYwNkcvlapSWZzKZbDDybG5oPXuaPX2vvYbRqhVxhypJYPx44sOHA2YfWKoYInnYYSR79sT75JMQi1Gdw9Hc9+ij6TqXq1YhrllD/Kij8D36KK7p00mceCJVkyYhrVxJ8eGHI65dS/iVV6iYMYPkP/+J+/XXkY8/nh26daPVLrtQ2qcPwauvRly3jshNN1E5cybGrrsSuOIKlMWL60iXpeTK3B98kPM1ELJE4vFBgxAtx3YAw0oDixs2ZB1DLykBw0AsL8+pAgN1C5RSxUnOAqXqvn0p+/RTYiNHIk+ejHTggVSOH0/VQw/VGU+6/noit91Wey2JRFpzv+vZZ3GddRaClZaXJAnxiCNITJ5sulc4UNK3L8WiWDdKLS2FKVPQu3cneNNN+Nevz9lGk2qhSd1strQbvQK2PQrEVw90Xee+++5jklWmXl1dzYQJExg/fjwTJkygJk91icZEfI21IcpHzzOfVOe2Ruzss5FXrkR5+22iGY3Tao8edmuD99lnTVUPQaDmqquQNm7E88wzZkosyxqQEIsRvfzytG2e6dNJDBhAsksXgldcgfzFFySPPZbKqVMhmaR46FC8Dz2EesABhKdMoWzpUtRXX6X6uuuoueQSIjffTMWMGZQvWEDs8stBkvBfdx2eKVOInnEGicGD0ydhGBCP4/rwQ+JZoqZcSPbvb7s0GLJsF6uIGVqeKeglJQjl5QiqWi/x5Q2Ph8hDD1H51FOIGzZQPHgwKArlM2fWOTRwyy1ot95qPxai0TQ1Htf06UhXXZXWRhMeOJCqCRPs9xbM98vo14+KjRvrRqnJpNkykkyinHEGyXg8axuN2+3G6/XitqLMzDYaJ6HmSv06CTUbqW6p2EMh4msZKBBfPfjss89o7ShI+Oijj+jcuTM33XQTnTt3ZtasWXmN0xjiE0UxrTWhvggunzvaTEmzXOnVbX1XHB8xAm3HHfFNmIDWvTv6wQfb+3z33mv35onl5SbRYbo8JLt1wzthAlRXE7v00qxjB265hUiG23rghhuouf569B12oGjUKKR581D79qVi5kyS++yD/447CB16KMqsWRjFxej/+hexMWOoGTuW2GWXofbtC7KMuGoVwRNPxPvcc8ROPJHqe+9FyGgXETdvxvXee4jhMLEzzsj7NTF22cVOBxoO53TBKVjtjPZLSxGtNOhWIT4LyWHDqPjkE9SOHQmOHo3r44/ZnOGBCCDdeis1jvcg0+/P+8wzuDNEB5LDhhHOiCKVZcvM/j3HZz0VpSY7daL6ppuQ585FvuOOetto4vE40Wi0bhuNg1Crqqqypn6dhOoUe0iRamPFHvx+P36/H0mS8Hg8aVFqAc2PAvHlQEVFBUuXLuWAAw6wty1atIh9990XgH333ZdFixY1asx81/gaclDP1uvXEFLre9nQIu5AXS5iZ56JMn8+8ldfYTiiNGnDBuJHHGE/9lp3/QgC1TfdhLRhA7777wdBoDxHOtHz/PMkHRJjgq4T+Pe/CU+ciOH1Eho+3Hzedu2oevttwnfdhbh+PaFTT6X4wAMRb7wR+cMPEZctQ1q8GNf06QQuuICSvn1xffUV1dddZxbZiGIdk1ihqgr3tGnoRUXobdvm/ZIIGzagp268HJ8B0SI+QxDSSNAoLbV7/vSMNoc/C719eyrfeYfEwIH477oL3733sinDow/M1HJNjhsQgOANN6Bk3DAmTjmFmssuS9vmfvfdnIUssfPPJz5wIL6HH05vmM9APjdzKeH4bKlfJ6FmkmpjxR7i8bgtSJEZpW7rm87tEQXiy4E333yT4447Lu1DGQ6HCVn9VqFQiEhjnLvJTnxOZEtb1lfcko+/n3PsbFqeLQmx889H9/nwPvooxnHHoe6xh73PO2mSnSaU1q2z+8TUQYOIH3II3qefRly1Cq1Pn6xGrfLKlWZrggPS2rX4x4yhavJkjECA0Mknm2oigkD83HMp//57IrfeiuF2I99/P6ERIyg9+GBKDjnE7FV77z0SgwZR/umnRK+5BgQBoaICMeNzIa1Ygeuzz0gceSTujz/Oef1aRsO5/N13NlEajvcsZd1jFBenFYPoO+6IYKXfnRHiVkMgQPjVV4mNGIH3pZcIXnABmzL0ScEkv6oHHsg5TNFZZ9WxgKq58UYS1k2lPc5DD+HKIgqAIBB5/HH0UIjgxRfXlZVzYFve1GUTewDqkGquiuwCmg4F4suCJUuWEAgEaFePRFNjkesL2JANUeYx2ao080Fqfa+lpjrB/CGPn3wyro8+guXLiZ19tr1PWbqU+IgR9mPfAw/YP3jV48eDquK3NCwrPv006/iBW26h4rXX0rYpy5bhv+kmKqdNQ9t1V4rOPdfU6FRV8PuJjR5N5Wefkfj9d6pefJHw3XdT9cADVEyZwuZlywg/9xx6qp8tHqcowyvQkGXc776LEI8TvfBClHoKXMQMLzrP9Ol2QYuQep+t4hUAo6QEyVH8opeU1BJfRrvAVoMsE3n4YWquugr3zJkER49mUxZj3KKrrqLqwQezDiHEYoROPRXBWaQjioQnTarT4F50/vlpyjUpGDvtZMrNrVxJIIt6z18JLSLjsp2hQHxZ8Ouvv7J48WLGjRvHiy++yE8//cTkyZMJBoNUVlYCUFlZSaARd9X5+ODliviyEV9qW75GtX8Vy6LoJZeAJCHedx+xM89ME5z2/ec/tp6ktGmTSX6YRqix00/H/c47pmuB35+10AWg+JRTqMxsMv/+ewKXXkrlG2/YjuChQYOQHK0EtG5N8uijiZ9zDonTT0c95BBwyHVRVUXRySejLFmSNnZqvS/Rrx+GoqDUY3YrZLyX7nfftR0KUlGkUFFhj2mUliI6PPEMnw9Sup1NRXwWav79b2pGj8b9zjsExoxh02+/1Tmm6Mor09ZWnW0O0po1FI0cmebAYOy6K+GHHiLzEx248sqsc0gedRTR00/HM3VqHXNcKBSSFJAbBeLLgmOPPZZx48YxduxYRo0aRadOnTj99NPp3r07cyz/sTlz5mSVIcuFhiyGUmSWj0QZNC7NKQhCTkmzlga9fXsSgwcjTJmCUFlJjWOtT/7lF+LHHWdbCHmeesq2LKq54Qb0khL8KeeEjDUjZ+Wg79FHqb7xxrT9rrlzKTr1VCJ33EH4vvuQVq2i+IgjCJx7LuIPP9Q7Z2XmTIoHDkT58su07c7UXfSSS/C8/nojXgkTonV9KQjWjReYcmVOgWrD47ElxAwnKTcRasaOJXrmmXimTsV/220ks7RZBMaNs5vchUQizQpJWbAAf8b7kDz6aGIOY10wvf+U//u/rHOovvNOs+jm2mvtz0IBBTSEAvE1AoMGDWL58uWMHz+e5cuXc9hhh+V9bkMRX2P89Jw2RPlAFMU6SjAt+U645vLLEWIxvBMmEB81Km3Nzj9uHHHLlUGMxfCPHw+YadLqG29EWbIEr1UluOmXX+zzBE2z++uUhQsRN25M0wYFUJYsofiII1C7dqX8yy+Jn3wy7vfeo7R/f+T998d38824pkxB/ugjlBkz8N15J6GBA03n9kSC6owo09mInzzsMFxvv93o18L19de1D8LhdOLLlCtzueyIr8lSnU4IAtX33kvMqmoVXnuNsiw+gdIPP9iFRWJFRVoU733hBeSMG4bq229PK0QCCJ19dtq12/B4CD/5JEJ1tbnel1H1/FdAS/4u/l1RIL4G0KlTJ863/Mj8fj+jR4/mpptuYvTo0fgbcVfdUMSXq/gk15eiMRWdQNb+vZYKbZ990A87DM9zzyFs3kyNQ31FWruWxIABdpm/+403kKzq2vioUST69cP38MOIP/4IRUVUPfqofa4YjdrN7N5Jk0j+859pep5gVpAWDxuG54UXiDzwAGXffkvNlVdCLIbniScoGj2a4lNOIXTuufgefBAhFqP6+uup+PJL3Bk2O27Lg6/6+utR3n8fOQ9n90x4LO9BAOXzzxGc0mYZ5GZ4PAjRqPl3cxAfmIUmjzxCslcvpGuuQSgroyrDnsk1d25aG4dzXRIgcPnl6Y7rikL42WfRM5YS/DkEybWePam55hpcX32Fx/F+Q4FUCsiOAvE1E/IhvlzGs9nuXFNl2Lmey9m0/lf88ut33YUQjeK7+24Sw4enCSIXXXwxsbPOAsy2BP/115t3+oJA5KGHMASBwGWXgWGQOOWUNB88afNmtDZtAFNIOf6vf6WZ4IK5Lue//35ChxyC9NNP1NxwA8kFC6j4+WfK332XypdeouLNN9m8ZAkV33xD9LLLCFx+OUqW3jaA+PDheJ94Yoteh9QaniGKuDKIL9PjDq+3dp2wOaMdRSH8/PNQXEzROeeQPOggYkOHph0SHDOGSodjg/P9lFeuxO9QfgHQd9+diGWo+//snXm8TAX/x9/nzDmzz11RkihLkoqE9kX9ioSoSFq0IUqpHksrpY2QFpUWytJGZUtIeko991KWRElKtFiuu82+nt8fM+c4c+7MvRfXdZ+n+bxe98Wcbc6Z7XO+2+ejwjp/PlKa2Vn/PfcQOvNMHM88g5ii0zSDDPTIEF8tIR3xQTwVqXZzVtXcAsk1u1TbGAn1v5H4aNeOYI8eWN99F/G33/CNGpW0OtK8uZYyM69ejeWttwCINW2Kb+RIzN99p8mblRlGCMSiIs0FIvvGGwleeWWFmh/EOz5z+vYl+9JLEWfMQAGiHTsSvuwyIueei1K/PtLKlWT/3//FG1FSIOZwIBQXYy4oqNC0UV1E69cn0ro1UmFhcsRn0LpUzGZNAkyo5WYmpVEjIrNmIe7di3PgQDwpTHmdI0fiT0R+8pYtSca3tjfewFRYmLR96OqrCZ5/ftKynH79Uo8vJG56iEbjM53UzeYW4/n8t6Rj/9eQIb5aQmXjDHobInWZfr9U6i6VNbYYa4exWKzKGcK6CN9DD4Eg4Hj8ccLduhFu21Zb57rvviSycowbh7B7NwCBO+4g1L49jiefjKdBRZF9um5LIRJBdLs1Y9Ts668n0rJlhVEHFfK6dciDB5N74onknHkmWd27k9W1K7mtWpHTpw+m7dvT+umFunbF/sQT8eYa3XvgMUQ4lUEIhYiccw7S5s2Y/vhDW64YNEGJRvdrX1az8akmoVxwAb7hw7GsWoV5zhz2rVuXtN60e3eSOa7F4PnnuvvuCuftGzs2SfoMwDl6dMrnjzVrRrB7dyzz5qUWuz7CyJBc3UGG+GoJqYSqD8Z/Tz1GZRGfHkb3hqrOr65AURRiTZsS6N8f86JFmNavxzNuXNIgt/mLLwgmBKDFsjKcI0fGV4gintdeQ7FY4tJXXi9KgwaUvfOOtq8QCCCEw1rUmH3TTZi2b09qiEk6H0GI19DcbsS//44LQR99NOHWrVHsdkRD40UgYa+kWK1YvviC6DHHJI0rBHv3TnvtMUMkJ5aVEbz8cgRFwazXyTSkOoVwON7ggm7ur5agRlf+4cMJt2qF87HHwGJJMq0FsE+eTJmubhnVKdlI27ZVUGuJtmlD0FCHtb77LqZEd7URvn/9Kx71TZz4XxHxVVayyODwIUN8RxAqYRltiCprbkllJJuOLCVJ0o7733q36RsxAsXpxPHYY0Q7ddKcGiDhr3fbbfsbXRYvRk5EEbHGjXFPmoS0bRvORHNM+JJLkubKxLIyhECA8EknAeAaNQrHuHEU/f13hYhMUBRErxfTnj1Iv/+OtG0b8ubNyJs3YzIMWJfOn49p0yZieXnIX35J9KijknQrg+efX8E5XY/AbbdVWBY580yieXnI+ijK4GxAMLg/4qtl4tMgy3ieew4hcSPiSzFPaX3/fQKJ99H099+EdWNBtjff1CJ3Fd6HHqpgYWQ31P9UxFq2JNStG5YPPoA6FvXVRSL+pyJDfLUE9c7OSFCiKGrkpC6rrLkllbpLOuKrTKYsXS2xrhGkUr8+gdtvx7xqFdKKFXgfeyxpFsw1dGiSNqRz5EjNsy/cowf+m27C+sEHmGfPBiBw551JYwxicTGmXbsIXnghALbp08np2JFg9+4U/f239gNdHUSOP559W7Ygbt8eb3Tx+5F27CBy4omYdDNmnpdfRty6Ne1xosceW3FhKEQ4cY7aa2MQwxZCof0Rn26+r7YRbd+ewE03YVm4EGn1akqWLk1ab/n0U/wDBmiP9WMKQiCA3SBarTRuXEHc27JyJeKWLSmf3ztiBEQimJ566hCvJIP/VWSIr5aQjlgOhw2RCnXWrzIxbPVPEIT9ZqQJfcFYLJb0pxf0NS6rrjVSdaE/Z9/ddxOtXx/nQw+hZGXhVVOaxLseY/XqaZ2bpl274u3xCXifeIJwmza4Ro7Umic8L75IqGPH/edWUoL87bdaelLauZP8du2wzJiB56WXKNqzh/CcOUnzZ3qE27Sh+LvvKF29GmHvXpwPPRQ/N7+fYLduSD/8kHxtDRpgWbQo7bVLv/9OqFOnpGXy8uVJzSAAGEdUgkFNnDqVzFdtwvfAA8RcLuzPPEP09NOJ6lxOAJyjRmlpUGnHDgKJ2UxIGA7rHSiIpzBjhrlFI0GqiLVqRahrV0yzZ4NhdOJIIhPx1R1kiK+WkCrig4qNKlV1darGs9UZctenOvUQBCHJFsVisaAoSgWleD2p6Qkv1TKVLCv7OxBCTXp+ux3vI48g/fILtilTCN5yS9KAs2vkSLzjxu1PeX7yidblicVC+axZxLKzyRowACGR/ipfvFgjPwEgGsXy/vv4b7xRc3x3jR5N3oknIi9fTrRXL8p/+IGivXsr/JWtXEnsuOMwbdhA9lVXIbrdAITat0exWjEVF2vnWpJoxzc6FOghf/YZoe7dk5bZJ04k/H//l/w+Gg2LfT5iCXIWdS7ttQHjj7qSk0NgwIB4pF5QQJlhxlHeuJGw7ubD9PPP2v9Fvx/b888nba9kZ1eoF1rnzkVIc53eESMgFMI2ceJBX1NNo65lU/7JyBBfLSFVc4sK43B5ui+IyWRKKTSd6rGe9Izr3W53knGnLdEdqPcYy83NJS8vr8Jfbm5uWr8xm82mGYCmcsPWn19VhCoIQhJJ+q++muBZZ2GbMgVl+3bKn346qdHFeffdeHRixY6HH4affkJRFKING1I2fTqi203W9dejeDwoihK32UnYTol+P4rZjO3ttwmfdRb+RJ1NLCkhu39/LHl5WCZPRkzR/CJu345j9GhyL7kEU6I+FWrfnuC118aFpnVyadHTTkMoLkZevz7lewwgbd2qubarkDdtqqi/afjcmPbu1YjPtGtX2uPXFvzDhhFzOrE/8wyxZs0qpHDtTz+N/447gDgRBq+4QltnfestLWWtInDHHUQbNUo+xosvpnzuWOvWKFdcgfXddxHqwGuhIhPx1Q1kiK+WkIr4qiNKrUdl6i7Gx7Isp+0UDYfDSf5isVgsyV+stLSUkpISiouLK/yVlpZSXl6Ox+PB5/MRCAQIhUJEIhHtWioz7awOoWZnZyMIQrIjtt1OcMoUhFiM7NGj4cwzk+o+0o4dKFYrQR2RZQ0eTCwQQFEUwu3bUz5pEtLmzWTdeCOxQIBYLEbJxx/jS7g+iH4/0Xr1MK9ciXnhQtxPPEEgkV4U/H7sjz9O3plnUq9+fXJPOYXsc84h/9hjyevQAZtO+Np/ww34778f58MPE2nSBCFBUKqcl2XuXIRYTNMcTfl5adCgwjLxt9+SHdyDwaSuSHHPHpQGDVAkCdHQIHIkoOTkELjpJsyrViFu2UL5228nrZc3b8afSC9DXNpMhej1YjOSmtmMP6GipMI2bRroZxt1iD78MAQC2NO4RNQ2MqnOuoMM8dUS0hFfVY0qehjn/SqDJEkHZFmUKiWaCmqEVplpZzrDzsoItaSkRCPUSCRCMBjUCFV9jYRWrQjddRfmzz/H8ckn8OyzxJo1084t64EHMD3xBEpips68aRP1Ro/WCNV8882EH38cy1dfkXfHHditVmw2G+GpU/E98wwQd30QYjGQJFwPPojg9VI8cybRe+9NIirTrl3IP/+MoHs/ghddxL5PPiF05pm4br6ZaL16SAkVkeCFFxJu2pRYLIZ57lwixx6b1M1ohLB+fYWBd+vrrxPWGfIK5eVJUZSwdy8IArH8/DpBfACBAQNQAOucOURTXK913jz8CRUeadu2pNqrdcaM/W4TCQSvvXZ/52oCthTD8gC0bUvo0kuxzJmTbIGUwT8eGeKrJaQiPrW2ZtwuHfGpYw/VifhMJlPKVGeqGmNdMcJUCVWte6Yi1NJhw4gcdxzyv/5FeWkpJZMnJ6USxZ49KZ04USMN0+zZhMaP19ywPUOG4B8+HHnxYsyDBsX97USR2JAh+L78UjuO6c8/iV5wAebVq8m94QbEjRuJvv024U2biLz9NpGxY4n861+Ex40j+M47+HbuJDphAlkvv0z20KEoJ5yAoiNl7zvvIEkS0vbtmNetI9izZ9zzLw3kDRuSamAA9mnTiOr0K4UdO4jqBLyFvXvjr+ExxyD+/vsRa0zSI9a0KeH27bF8/DEoCp6EqLh2TVOmELjxRu1xRHfNYllZBf9CJS+PkKG71fHMMynHNwRBwDdiRMpO0SOBTMRXd5AhvlqCkfjSjQ6kI750RJbqsSAISWRWGfHJslznvPoqPSeLhfKnn8a0ezeusWOJdOyIT5f+Ej0ezIWF+IYM0ZY5H3sM05dfEo1GCYfDlI8Yge+mm7C89x7ygAH4ysvxer24W7Zk96+/ak7opn//G0WS4s7thYVI112HqVMnoq+9RnDHDgKyTNDnI7Z0KfLll2M74wykJUsIDB5MtGVL5H//GwDf+vVYs7Kw2+1kvfUWCiAPGoRUCfHZfv4Z4fTTKyw3695X84oVxFq31h6r9cVo8+aYfvsNJQXhHa7GJCAtoQavvhrTX38hrVpFQGcmrL1nus5Ly9y5SeushqYYoIKrBoBFJ06gR/S00wifey7m+fOTnBuOBDLNLXUHGeKrRRjTnAfixnAg6i56kqzsHNTzOBCXh9pAVXfF4c6d8ffqhW3mTOQVK/CMHp0keux47TWCZ59N8OyzgbhEWfbAgYiqU7gg4H76aby33Ybt44/Jufnm/RGD3U7R5s2UJHQ+Rbcb6/vvE6tfH8+IEQQvvhjTb79hnz4d55NP4nzySayzZkEohG/wYIo/+gjLK69gThij7luwAPfRR+N2u3H/+Sfi228TuuACSho0QDG07MN+s1Zx+XJCKYbcTStWJD/WXbf411/kmEyYTz8d0ecjr6ioWk1Jdrsdm82W1Ol7oI1JoihqjVdGQvVfeSWKICAvXUrUbtdcF1SZN8vs2XgTIyimXbu0/wPIX3xBzO9PItRQ167EcnOThtrNOr8+42c81KULpj17MH37bYXXs7aRKsOTQe0jQ3y1BGPEV9mMXao7Q73/XlVfFlmWkzpFq0qf1qWIT69iUxnc48cTbdSI7OHDEbxeyl58McmtIO/663GPGUMk0fxhKi4mt2/f/fNtgoBn3Dg899yDZflycq+5BqGkRNs/dOWV7N65E1+i+cK0bRvO8eOxzZ9PtEULSqdOZd9HH1G0bBn7Pv0Uf//+2GbMIL97d9RXeu9XXyWl7uzTpiF6PHgTJrmmFHWn0DnnAPFuUkX3voQTaVPzkiVJ2wd1oxIC4P7qK0oTox6+ZcuSaqhlZWVaytfv9xMMBgmHw0mdwsbGJKfTSVZWFjk5OSmbklRSdTgcWCwWsrKyKhCqpWFDos2bY167FlmW8SbUc1SZN+snn+Dr00e7Dv3nW/R4kJctSyZUkynedKR7fSz//jdRny8pQlX38V9+OQpgXrw4ZdrXSObpcKgCD5lUZ91BhvhqCUbi00d8xu1SfbmMDSiVRXyiKCbPVFUyPF/XvojVJWLF5aLshRcQi4rIuvdeoqecgnvs2KRt8nr0oOy117S5POn33yuo+3tHjcI9dizyt9+Sd9llmPRqILKMe/Jkwm43Hl0UYlm5ktzBg8nv1Yt6l15KvUsuIeuRRxATjRi+669n986dxFq00PYR9u7F/uqrhNq1I3zOOWnTbkGdubHpt9/2n0oaDdEk7U7iYwGRtm1RLBbMBreDg2lMqqopSe30jUQieL1efD5fSkKNdeiAtHEjFlHEpBtWV5Gj62J1JFR2VLg+/bRClBq75RatW1aF9euvkyJUjeCOOYZw69aYiYO4jQAAIABJREFUV6xISXjG9G1VaV89uVZWR60OobpcrpTLMzi8yBBfLUFPPkZiqkqUGqhU1kz/WJIkTYlFv974PBAnmbqW5jyQCDRy9tn4Bg7EumQJ1tmz8Q8YgF8n/iwGAjief57SV1/VOjLNP/xAzk03JUULvkGDKHnrLcSSEvK6dcM6b562ThAEFLMZ7+jR7N61iz3ff4/7gQcI6WpriiQRPPtsSmbMYPdff+F+9tkKOpquhx9G8HhwJ0SYhaKiCtcTzcsjdNZZ2mN9e78RSiJdaDPUwKQffwRZJtSuHXIKN/TDASXRIKR24aYiVH/79giBAIGvv8adwiTX//HHeG+9FQBh3z4CXbtq68SlS/GVliaNzkTbtyequ7EAsK9YoY3O5OTkYDKZtKjUdPnlyD/9RJ7Hc0Bp33QpX/W6K5tHNRIjoKkjqX8Wo6diBrWCDPHVEvTkU9NuDPrHZrM5JXGkivjSbXskoQ7pVxeeBx8k1Lo1rkcfRfz9d8qffZZwy5baeuuyZZg3bsT9+OPaMsvXX8fJT/eahi+5hOJPPiF6zDFkDx1K1pAh4PFUiLSVBg3wDRtGyeefs3vXrjgZ/vEHpR9+SKhLF0ghIi4vX47t44/xX3cdkXbt4uewbBkAUV2kE2nfnmjz5tpj6Zdfko6jb/VXa4EVnishYh0+7zykHTtSDtwfDlSVAowkrksd71DrfJHGjQEw//vfRHS2UyHdvKLodiN89VUFQg1cdlnSc5jefVcbnfF4PAQCgf1RaSKSDsyenTQ6Y5xFVQlKFEUkSTroWdRUhKrWTi0WCzt27GDnzp1s376dffv24Xa7tdJHBocfGeKrJegjvgMlPlEUkwiqqiH3cDhcrSiyrtX3Dmq0QpYpnzoVIhGyb78dJInS6dO1H1YA5/jxRPPy8A4dqi2zfP45OTfckOT/Fm3RguLly/Fdfz22Dz+k3jnnYF24sNozjqlg2ryZnKFDiTRpkuQMYX/pJQB8iRk2gMgJJyRZDampUy39qc8SpBnaln76CWHPHgIJyTPbRx8d9LlXF9VJmRul1IKXXALs9xS0LFtGSNfFGjUM8MsGvVOIq+PoIXq9iIn0sMlkSvosRdq2JdqgAeaEVNzhmkXV11GNhKrPymzdupXvvvuORYsWsWDBAmbPns0rr7zCJp1vZAaHDxniqyXoIz494VSnq1OV76rs2Oox1OaQ6kSR6Z7vSOFgiTjaqhWexx/H/P33uEaOJNasGWXPPZckaZY7aBCBLl3wJdReFOINETnXXw8+3/6DWSy4n32W4tmzUSwW7AMGYL38cqQ0/m+VQVq7ltw+fUAQKJ0+HUVXz5F//RWAsH5kIY2SS7BzZwDMa9Zo0awQiaBYLFrzjgoBsCxfTrRlS8ItWqR1hq9JVCdKjx19NIogaIP14UTHrZho8BFCIWInnKBtb1m5Mml/6aefKhwzfMYZFZZZE80/apepBkEgdOGFmFevBq+3Gld1cNDXUY2EqigKXq8Xr9fLxRdfTJ8+fRg4cCA333wzgwcPZtiwYbTRadBmcPiQIb5agko+B2pDJMtytUWp1TGGdOSpR12L9uDQzsl/ww34+vXD/s472GbNInTFFXh0Du0A+d2747vtNnzXXYcAKBYLlq++IrdXrwpuBuGLL2bfV18RGTUKacMG8rt3J6dXr/iYQlXn6PPhGD+evF69ACh57z2iupqgpGs6kb//fv9+iQgllpWVdLjQ+efvPy+dhmf0qKNQsrOJGPQrLYn5wWDPnsg//ohUiS5oTaBa6WlZRrFYEBKkE02Maoh6Pc5QSJuhtH74IaFTT93/HClsnJT69YkcfbTWvARgSRCfMeIDCHTpghAMalFfbaMui0f805AhvlqCnpwqsyEywmKxVBnBqY/1KdRU2p36+axUxz3SOFQydj/zDKHTTsP14INI69fju/NOfP37J21T77zz8N51F/5rrkEIBok5ncgbN5J3+eUVPfIsFpTHHqNozRq8d9yBtGULuYMHU791a7IHDMA+ZQrmZcuQVq9G/vprrHPmkHX33dRr3x7npEmEzjiD4k8/TapdQXzOECB4wQXYdRqfKvGFzjsvaXvFYiHcqhWQLD4tlpYi/fJLBdcCedUqiETw3XADiiQlP8dhQLWIT1EQQiGUBEkpCYsh/adP/OMPQhdcEP9/IEBUp3wjbduWshM2etJJSWMs5jVrIBRKeU6hzp2JWa1YDf6ARwoZ4jtyyBBfLSMV8VUGs9mcskszFWGpw+jG9WrKRZZlrFYrdrsdi8WC1WolJyeH33//nbPPPputW7fWyMCzKIoHRaiHPF5hNlP25pvEHA6yb7kFobgY9zPPENRFTAD1zzoLz4gR+G65BdHjQXG5MO3ZQ/4VVyDrxgPUxhYlNxfPo49StH49ZS++SOjcczH/5z+4nnqK3BtvJL9HD/Kuuorse+/F+uGHRE45heKZMymdO5eYwZFA/OsvrAkvvlDnzpraCuxvWFFTm9rr4vMRTGh0WubPJ6KmCcvLESIRIobuRlNxMebPPkM56iiCXbpgXbjwsDoUVCaYoCEYjAtzJ2p66vB60nH++ANFF+3GdJGs6HYj6sx8VYRPPRWTbv4SQPz999SkYrUSPusszF9+ecRVXCBFOjaDWkOG+GoZqep1lZGE+gWubBuV6NJpeQJasV4t1MdiMa1Qv2zZMn799VfsdvsBDzxLkoTZbNYItaqB53SEqs4zVUWoVSHWqBFlr7yCac+eePNKNErpG28QShjVqqjfoQOeu+7C869/IZaVEXM4AMi98UYcTz0FilJRvNtsJnD11ZRNn87en35i7+rVFM+eTdlLL1EybRr7Fixgz9atlL7/ftw7L8V75tRpVQYM/noklEjChghR8PkIdumiPQ7qWv0BzF9/TblBA9P27rsAeO65B4JBnIdRq7I6EZ9ay9OILRVRRqMoifcBIJro+FQhbdxYYZdwoktWT6SmhOdiKgQvughTUVGloyKHA6mI2CgtmEHtIb0vSgY1jlSDrNXp0KxqH3WOqroyZcaUYkFBAcceeyyNDLWi6ggYHwzU7lb9n5p6BbSIsbI/I5Jmqq64gtD48VjuvZe8O+8kMGsWgYULMV12WVKtqEG7dhQXFlJevz6uBx9EsduJNm6Mc8oUzAUFRF5/naDhNdFdBLHjjiN23HFUNzlr2rABa0LKLNSmDaJBskyNhvQjDRAnvvA55xDNy8NUXIxp7dqk9ebPP6fk00/JSji/A1g++wzh77+JtmlDsEsXbHPm4B08mJhO1LqmYJxLTQVJHbNING+oKVv1mgAUuz2J+CIG4lOVXvQIJzo7BZ2Lg7RzZ9rzUaNj0++/J9VdDzdSEV8m1XnkkIn4ahGffPIJPxjasqsivnQ1u1TEp5c0M4pW62HsKi0sLOTMhI9dbSCVgogoivh8vhprJffceCO+u+5CXrgQedQoyM/Hv3gx0eOPTzqXvE6dsF5wAZHFixFkGdOePcTOOAN5wwZsZ52Fa8YMcrKyDijlmzLd6/GQM2hQ3PIICHbvjn369OTXJUF8GIaahdJSEASC3brFVy9YQFA36C5v2ICwZ0/S8L4QieBI6I26H3kEFIWsBx44tDfuEGBONPGoc4yqXFusXj1tG8Vu1wbzYX8dUEOKqFKpX59oTk6SPZT0119pCSV63HHx568kKjwcyBBf3UKG+GoR3333Hcck5plUVEZ86fQ80836pZsNNEIvTL1t2zaKioro1KnTQV1TTeFAPAHTwUio7gceINCjB9aXX4YpU/BmZVH8wQdEDO+BuVMn3OXlFC1ZQrhZM8Rvv42LXjdqhHTvvYgdOuBfvjzlbBbsH3ZWU74Vhp1zcqg/fDim7dtRZBklKwvLvfdi+/DD5PPIy9MIVQ/rDz/E/RUTUl9CNEpENwYhANbFiytIttlmz0YoKSF2wgn4Bg3C8vnnSao0NYHqCg7I33xDpEkTjcykxA1gRNe+rzidSaICgt+fdAwh3efDYiGm3jQQr6OmO6dY48YoxG2nahMZ4qtbyBBfLSEUCuH3+8kx3MWmIyk1padKIFU266euT0UcqY6t/8IVJlrrjyTxHTbNUEGIN6N07IhrzBis8+YRO/ZYSj7+mEjizl9F3tVXY/nsM0qWLMF7223IGzaAx0Oga1fEv/4it0cPXFddhbJq1YENO//xB9GePREXLiTcvj1COIzvuuso19WY1JpeOD9fI1S9HJd55cp4ZHnppZozu00/BgE4lywh98QTiekaY0SPh9wXXsDpdKKMGUO0RQtcDzyAbffuGmtIqlZ977ff4h6EiYgV0Ag4dvTR2jKlfn1MiQF3IHm+EtL6FyoWS1KkaKok4sNsJpafnyG+fzgyxFdL+PXXX2mpk9JSkYr4FEVJisqqmvUz6YxYjTDuZ4ysCgoKyMvLo4WhM7A2URPRXlqYzZTOnEm4VSuy7r4b84IFxI47juKFC5OkzQCyRo/GNXIknjFj8Lz/ftw5fMkSIqecgr93b+S1a8nv2ZPczp2xv/JKyi5DDZEI1rlzyb/gAixLl+K76SZMO3cSadwYz/3343z2WW3TaGIIPZibu1+OS0dgpg0bcLvdBEMhLeoTv/oqqftT/OorStesoXj06KTTkF5/nfCWLURMJnxvvokQDOK44QbkcLhG5LhsNhuiKMZdGNI0JNlnzgTAn3C6IBZDVIfIE1mKmM2G4nIlefMJhkHzdBGfYrFoYxIApo0bKyXj6NFHawoytYVMc0vdQqa5pZbQvHlz2hq69SA98R2IrJnFYkn7BarKf0+t7x3Jeb7DPUyvZGdTOncuuVdeSc7QoZSazYS6dKFkwQJy+vbFvGEDismEEI1if+cdLJ9/TmDFCsoLC5EffRT7jBkoskzwyiuJZWdj+fRTXGPG4BozhnCzZkRbtSLaqBGK04ng9WL67TfkNWswlZQQadSI8qlTsb3xBmJRESUffACAdcEC7fzU7sWYToUldNZZOF59Nek6JEkicOONWF5+GQDB0OzhmDYtPsvYqZPmzCCEQtiGDaN07lxo0YLYU0+RPXw48vXXU/rWWym1RVMhXZORzWbTSEYVck7627ULy1tvEbvwQrLVrMLq1dpxrYlxDqVzZ7KysjD//LO2zmIgOjHRaWsUh1YsliTtUjHRtZwOytFHY9I9T23ASHIHkuWYP38+mzZtwmQyUa9ePfr166elw5cvX05hYSGCINC7d29OOumkw3L+/2vIRHy1BEmSKtRuIPUcnzHiS7VeT1Rms7naXyI9yfz999/s2LHjiNf3akNFRsnLo2TuXCKNG5MzaBDyZ5+h5ORQ8tFHcUWPaFTT9zTt3o2jTRuETz7B88QT7Fu+nPDZZ2N7911sb79N6OyzKZs4Ee+dd6Lk5yP/5z/Yp03DOWkSjldfRV6/nsjpp1P23HOUvfEG9ueeQ167FveTTxI+55yk0YJwixYIfj+KJKHk5mrLI4mB9f0LIphMJkLNmhFKNIhIP/2kjWEA2N96CwIByp96KmlXy9dfY3vrLQAC/frhuftuLMuXkz14sDY0X+Xrl8bSCIi7L6RJ+Sr33Qd+P8UPPaQ1IsUeeSS+39VXIyRUVAInn4zP50NMSLlFmzRB0HkNApgaN04ZoUoOB5JBtNuZmFFVI1R9QxKNG2PavRuL2VxjKd+qYIz4DiTNeeKJJzJy5EhGjhxJ/fr1+Szxmu3atYt169YxatQoBg8ezNy5czMRZDWRIb5aRDpyShXxGf+tLOKTZblaMmWQXJOpC/U9OHBHhoOF0qABJfPmET36aHJvuQXz/Plgt1M2fTreIUMQPR6iuhps9sCB5PTpQyw/n9I5c9i3cCGhCy/E9v77ZN93H+YlS4i0aUP500+z79//Zs+6dez+5ReK588n0KsX1sWLybv8cky7dlH68sv4BwxA/OMPHC++qD1H6OKL4631jRolzf3FDDVI0w8/aDJcgYQajej1JqX4AByTJxNt3Rq/ztgVIGvUKEybNwPgHT0a76BBWBcsiGuV6vwJDxSppMFU2GbOxPbRR/ivu45ooolFcLuxfP45ENfaVIW4A+ecQ0w3ahK47DJIjECo8Bx3XMou37DJRNSQFi31eJIcGPQzqLFjj0UIhZD27Usy3dUTamWmuyqhHoiog8lkSvqOHsjweqtWrbRyRtOmTSlLRPobN26kXbt2SJJEfn4+9erV4/eE+0UGlSOT6qxlpCK5Q3FjUFUzUtX5jPsYCaagoACHw3FEhXFru8CvNGxI8fz55PbpQ86QIbjdbvzXX4/nkUeItGiBa/RoYlYrQv36CDt3YvnySxqcdhrusWPx3XorZdOnI/75J9b338fyySfY3noL+5tvpnyumNOJv18/PPffj9KwIYTD5Fx3XdI2gSuvJHvx4iR5LqBCCtK6ZAkkanr+Pn1wPPMMpr17EdxuFPZLfzmnTMF75524H3sM2/vvJx0jr2dPilavjivRjB2L4nTimDiRvMsvp+y114ieeOJBv65GyCtW4HrwQUKnnaZ5EALYn38eAEWWMf/nP0BcczTSsSP2adO07XyDB5PTt6/2WBEEoilq5ABIUtKMn5LIgKS90WzYEBsQ/PFHIgdoBFvVfKmqx2t8bDKZyMnJwe/388QTT8TPU1GIRqOIoojFYqFHjx40NswuGlFYWEi7RMRfVlZGU91cZk5OjkaKGVSODPFVgnA4zAsvvKB12p122ml07doVr9fLW2+9RXFxMXl5eQwYMCBlGtMI9cuoz++nIjWTyURAN5BbnZEHm66dW0V16ntnnHEGUhpXgNrAkRDLVo4+Ol7fu/ZaXPffj1BcjG/YMAL9+hE+9VRyBg5E2raNcKtWyAlXANejj+IYPx73hAkErrwS3/Dh+IYPR3C7kdasQd66FaG4OJ4yzcsj3KYN4Y4dNTUWFIWs4cORdbWl0MknE2ndGtNff2mSZHqETzoJOdH9aZs9m5CawjSb8d9wA85Jk7SISY/cq6+mZOlSSl57jdzbb9eWi243uVdcQfHnn4PFgvdf/yLarBmuESPIu+wyvPfdh++OO9K6RBiR7qbFOns2WSNHEj3mGEpnzIBEGlL84w+cL7wAQOkbb5B7440A+Pv3B0FIcpOP5eQg6yLAaMOGFeYbtfPYvVszGgZANxuYCpGEjJy0cycRncdhdXCwog55eXmUJKTV7rvvPmw2GyaTibKyMqLRKFOnTmXWrFkVvrPdunXjlFNOAWDZsmWIokh7gx2THnVJe7cuI0N8lUCSJIYOHYrFYiEajTJlyhROOukkvv/+e1q2bMkll1zCZ599xmeffUaPHj2qPJ7emqgy4kvl4JAOZrMZj8eTkviMkGUZX6JFvLS0lJ9++onuCd+2I4Uj5QKv5ORQMm8eOQMG4HrySUy//477mWeInnwy/lWrMN9zD5b33otHI8cfj6WgANHrJXvIEFwjR+K9/378116Lkp1NuHNnwgZ9TT2E4mKyE3U1gHDz5si//IL/1luRNm9GiEZTRjOBhLsCgKmoiIiuvd93++3YX34Z0TDrBmDesAHTDz8Q6t4d/1VXYdPN7snbtpHXuTPFK1fGJdh69yZ0+ulkDx2K64knsL77Lr7hwwn07l1l44sxgyD8/TdZo0ZhXbqU0CmnUDpnDkr9+tr63ERHarhFCywrVmjL/f37g9eLZdUqIB4B6h0lFEnSBs9TnseffxLVzWbqa6WpoI4+GLtGDyeM32H9TYPJZOKuu+6qdP/Vq1ezadMmhg4dqv1eZGdna2QK8e90lsHZI4PUyNT4KoEqpQXEawOJD+rGjRvp0KEDAB06dGBjCg3BVNATn36ZUWWlOgPrKlR9zupAPzawevVqFEU54vW9I2qP5HBQOmcO/muvxT57Njl9+iCUlSFlZ+N56SVKZswARcFcUECoY0eC55wDxCMn16OP0uDEE8np1w/bG29g+uGH5EaRWAzT+vU4x4yhQevWGukFunVDLCoifNJJBK69FvM33wDxLk4jwonPmIaE3RDEf9z9AwYkrdb7D9a75BJQFMonTdIiHBXytm3Ub9kSwe2On2rTppQsWkTZ5MkIPh/Zd95JfseOOB97DNPGjWkFnU0mE9FwGKmggKwhQ6h/5plYVqzAO2gQJQsXJpGec8wYzX3d8/DD8UYcwNe/P7FGjZJUbMrHjsWqi/5QlLTyYsLevXGhcb3iSxXpS9UKKVoFQdYUUkm6HUiK/8cff2TFihXcfvvtmHVNPG3atGHdunVEIhH27dtHUVERTZo0qdFz/19FJuKrArFYjGeffZaioiLOPfdcmjZtitvtJjshipudnY2nms0B+lRnOqjRZWVzeyr0qvjGFGo4HCYv4W2m3z4nJwdFUVi/fj2yLHPeeedhtVortoin+atpHLbh9epClil/7jkiLVrgfOIJcrt0gQ8+iJNFly7sO/NMnE88gW3OHBSLhUCPHhCLaQ4LlpUrk0xTFUlCMZsRjcPXgHfoUOSCAkS3m9KZM0EUkQsLiebmJg2sqwjr/OgApGXLIEG+AN5778X6zjuYEj/kgqIQat0ac6KJJb9jR/atWUPJ/PnUN7qVBwI0aNGCoi+/jEebgkCgXz8CV1+N9f33sc2ciWPqVBxTpxLLziaijmzk5MQNZUtLkXfvRvz+e1zl5fFxj65d8QwbpjWyqLBNm6bJp5W8+SYOXVer58EHIRzG+fTT2rJQjx5kJbwUFUlCiETwp8moqNqreuKLVUF8QkIjNZbwBDzcONTh9Xnz5hGJRJg6dSoQb3Dp06cPDRs2pG3btjz11FOIoshVV11VLSH3DP4hxLd27VreTajVQzx6a9q0aZXpBYh/QEeMGIHP5+PNN9/k70MYfE0V8RmhF2vW75dqH7W+p99GfQ4jGVutVkRRJBAIIAgCX331FW3btkWSJI1ojYX5VGLRqa7pYP8qE9aubfiGDiXSogXZd96JcN55WMeNI9C/P0pODu4JE/DddFNc/WXBAmJOJ75+/YgddRTy2rVYvvxSO44QiVQYtA507Yp30CCckyZh/u47yp98kkiHDhAKYf7667jRbKrPhOEHXF6wAHSyZIrLhe+OO3DpxhfMmzcT6NoV65IlSDt34njiCbwPPkjRF19Q78ILKzxFvfPPxztwIJ6xY+PnIMsE+vcn0L8/4vbtWJcuRS4owLRtG5bNmxF8PojF4mLSjRoRPu88guefT6BLF5Sjjko+uKLgfPRRHImmFc+//oV12TLMCZFt99ixKHl52GbN0l4z7513Yl62DFOCnIRIJJ5uTpOZkLdtiz+VPuLT/T8V1BsFxXBjeLhwqMPrD+nEx4249NJLuTRFfTiDyvGPIL7TTz+d0xPahoFAgEmTJmmPqwu73U7z5s358ccfcblclJWVkZ2dTVlZGc4qvmgqqkN8sizj9/urlepU63vVgdlsxufzEYvF8Pv9rF+/noEDB9ZIfa2q7rZ0bgvqwLMxMlWvuTp/qqRbTUSnoUsvpWzlSrJuvTU+rrBqFe7x41FcLqJt2lA6dy5SYSHOiROxvfMOiCLhM87A/cgjcemtYBBx9+644Wp2NuHmzYm2aoVl8WJyBg5E3LsX96hR+G+5Jf6eLF+O6PEkSXkZ4e/dW9P0lP7+G9P69UR1Qgi+wYOxvvsu8m+/acukTZsIdeiAec0anC+8QPi00whdcQVFy5dTT2eFFGnaFGn7dhzTpuGYNo3iuXMJn3uutj7WtCm+QYNg0KCU55abm0upwQtPhfD33+T16IGUEIN2P/AAKIpmlxS47DJ8AwcilJTgGjVK288zYgQ5iddHRfDSS1PfGACmX3+Nd7Xqap3G1G6Fc0vMB8aOIPFlvPiOLP4RxKciFovx9ttv07x5c87RpYzSwePxxCWX7HZCoRA///wzF198MW3atGHNmjVccsklrFmzRuu6qgpVEZ9aC6hujU9f39Nvk2pbfX1v7dq1hMPhGqvvHSzRZGVl4fP5KrVTqow41TbxylrL051rOvKUWrUiuHIl4n33YX3zTcyFhbgnTSLcuTOKohDp1InS999H3LYN+5tvYlmyBNdjjwEQzckhetxxKNnZ8XTorFlIv/2GEIkQbtmSshdfJKwzxbXPmEEsK4uAwV9Pj8CllyaJWdvmzsWjVwCyWCifOJG83r21kQZpxw78Z5wBa9YAkHvbbRS/8w7hiy6i6Msv427zHg/S9u0Ezz9fi1jzrr4agJJXXiF05ZVVvn8pNWbLynA+80zSiEfJtGmYv/1Wi/zCJ55I2dSpIAhk3X///mjv9tsxbd+OJTGgHWnUCOnPP/H36pX2HKRNm4gddVRSujmUMOpNB7EORHwZnc4ji38U8S1evJhgMMhVie6yqlBeXs7s2bO1H8a2bdty8skn07RpU2bMmEFBQQG5ubkMMDQZpENVxKfKlKlpwKqOpf/iVEZ8xi+ZKnHU8QBbuWsaVWl06ompplDVDJYkSUSAyJQpKD16YBk6lOxrryV23XVEn3kGQU3n5eVBhw4oikL4u+/g888R1q3D9NtvCLt2oQgCSv36hC68kEi3bkQuuAARMKtp3g0bMH/1Ff7bb4dKRmHC552X9Nj68cd4Hn0UZFlbFjn7bPzXX4991ixtme3DD3EnZNUA8vr1o+T11+OR3+rV5Nx0E+Y1a7B8+SWKJOHv2xf77NkA5A4eDIMHE2ncGPeDDxLq0mX/WIbuddQ+zyUlyF99hXP8eORfftl/7iedRNmrr+J6/HGtuSfSuDGls2eDw4F17lysixdr23see4wcnbWS6PEQPuEEIikafyA+DG8uKCDctm2Sk32wis+1WFoaV7yppTGeVCn9DPEdWQhKJbfqf+kEY//bsXbtWhYuXMh9991X7dRkTcNqteJyuXC73UlzevXq1aOoqIjs7Gx8Ph8mkwlJkpLSmOo2KurXr4/f79e2yc7Oxuv1phxmt1gsSJKEN9G+3bdvX/bs2cNK3V1ybUMQBHKQeFoeAAAgAElEQVRycpLasesCcnNzKS0t3f+j7nbjfOQRbO++i+Jy4b33Xny33ppEPFA5oao3MVrkClguuADx558Jff89wjHHVBqdmrOyEHQpaf+0aUSuvTY5cnW7cZ13ntY5CfHGkNLXXydXd2PmfvhhfEOHQiyG47nncI4fr60LtW5N6IorsL/4YsrmHBWxxPkIKWYIASLHHEPZq68ib9qE6+GHERJdu6H27SmdNQslNxf5yy/J06nL7P3uO8yFhWQPGRJ/juxsxLIySl59lVDPnimfxzpnDtn33kvw4ou18YhYu3bsXbIk7bkDZN98M9K6dezTjUwcThgzG4IgUK9ePXYlzHgzODwwWsDp8Y9oAfrjjz+YN28et9566xEjPT3SRXx6x/WqBlH1xrPVOa66bSQSYc2aNbVqPJsKR3SMoRIYu0wVlwv35MkUL15MpGlTXGPGkH/WWdhmzQKDuk4qLctgMKhpWao6lsrw4Zi++w7P8OGU2mxVmutG7rkn6Ryl11+v6AWYl0f4vfeSJMyESIScu+8morvBcT3+OPVvuIEcqxVp7FgCq1cTPeMMIN4Y4xw/HiU3F9/DD+MdN46IUVGGuAi0kfRiWVm4H3qIoi+/xD9gANl33EHWqFEa6fn696fko49QcnOR/vOfJNJzjxmDkpWFM9HEoZjNCF4voVNPJVTJfKx18eK4xJzue6BU43MtlJWh1OK826HodGZwePCPSHVu3LgRv9/P8wm5JIATTjiBwYMH1+p5pEt1KoqidVdWF4IgJG2vkmW6WqA7MbO1ceNGfD7fP3t+Lw0q0wyNnH46JUuXYv3oI+wTJpB1//04JkzAf8MN+Pr3j0uSVYVQCNejj2KfPp1Az55xlZQqoCgKXHMN6CIzefVqIitXVkwBNm1K6NlntagJ4j/ywlVXse/TT8nr2RMhGERcvhxLXh6lCxcSPesshE8/RV64EPu4cZi2bcP055/YH38cgOiJJxK++WaU00+HJk0QTCYEWUawWFBMpnhjyY4dCBs24Fi2DNe4cUmnFG3ZksDzzxM96yysioLp449x6iJQ/+23Exg4kOxrrsGUaDoJt2iBedOm+KhDuhtArxf5668JXXYZ1vnz9z+frjknHYTS0ngdtpaQypmhusS3fv16Pv30U3bv3s3w4cM5LjHIv2/fPp5++mnqJ2Yl1RGHDKqHfwTxde3ala6VNBDUFiqr8ZnN5mo7qKvCwKkaYFLN/+kjGFWYui5EfP4UqiNHElX6AgoCgd69CVx5JdaPPsI2bRrOZ5/FMXkyoQ4dCHXuTOi88+Ku4rpUqFBSgnXxYmyvvoq8dSv+nj0pf+GF9D/qRpx2GjGHY7+HHeCcMIFSg4M7QKB3b6SNG3EkrIsATMXF5PbpQ/F772GfOVNTcslJKLu4x4wh3LUrvi5dkD//HPvMmVg//TS+75YtmLZsAd2AeXUQbt+ewO23E+ndO06UwSDW0aOxvPGGtk3khhsQnn+e3EGDkL7+GgClZUvkzZuJdeuGq1ev9KMwCxciBgIIhnRW7MILNUHolE1XPl9cNaeadf6aQFU198pw9NFHc/PNN/O+QXcVID8/nxEjRtTIOf7T8I8gvrqCdOSkKHH/PTUqq4r4zGZzhcgkXanWGFkVFhbSpEkTjtY5Xx8J1MV0jyRJ1YtCRZHAVVcRuOoqTOvXY58zB/OKFbgSYsyKyUQsPx/FakXw+RCLihCASMOGlE2eTEA1ZK0G1Lb3wLBhSfN6lm++QfrmGyIpOhg9jzyCuHcvtrlz9x+nvJy8Xr0onzgRX//+5CeaSGzz5mGbNw/v0KF477yT8MUXU3bxxZSXlWFZvhzz8uXI69Yh7dhR5bmGOnYklJjp04bYYzHM8+fHlVu2b9e29Q4ZgueRR3A89BDWt9+Ob5qVBX/+SezYYymeNAklEQFWqJkKAs5XXyWWm4spMRMIED3zTMR69XDo5lKN3zehoAAhFEK+/HJNzOFARmRqQszhQIkvg5pHhvhqEVWlOlONJqSCajybKrqrTJhaURQKCwu55JJLDvlaDgV1kfTg4KLQaNu2uBPjBaaff8ZcUID044+Iu3YhBIModjvRJk0InnMO4QsvrLbxqwo1Be7v1y+J+CBuNVT8+ecVuxMFgfLnn4doFNtHH+1frChk33sv/r592f3LL+Redx3mhCms46WXcLz0Ev6rr8Y3YACRM84gcPXVBBIjDvh8mLZtQ9y7F9PevTiysnAn5hWjLVoQO+aY5Ag2EsH82Wc4nn9eG1hXse+TT4iceiqu4cOxv/NO/HVs0ADFZEIsKaH0jTeSUpFGojF/8gnyt98mzTgCBAcPJuz3JzWOGeFcuBCTKFLasSOUl1fZlFRVw5IRqchTHYkqLi5m06ZNOJ1OZFkmGo1iNpuxWCzk5eWldFipDMXFxUyYMAGr1crll19OsxT12AxSI0N8tYjK6nCp6nXpIMsywWCwQqoz1ZdRlmWtm3Pr1q0UFxfXiTRnXavvwaETcrRlS/zprHMOEuoNkdKgAf4rr8T28cfaOvnnn7FPnYpv2LCKO4oi5VOnojid2GfOTFple+895MJCysePJ3r88dQ780yExOfPNncutrlzUWQZ/7XXErzoIsIdOqDUr0/0lFOIAmHAnpdHyGAUK5SWIhcUYFm5EtucOVpji4rQqadS8uGH8aaba67BotoS5eURc7mQt22j/NlniRqk2pIQi+F86imiRx2FoOt6jhx7LErv3kSr+FyZv/mGcOvWxBKzljWNVCINKsnFYjECgQBer1drdAoGg2zevBmr1VqB+PTODEZkZ2fz6KOP4nA42LlzJ2+88QajRo3Cahg7ySA1MsRXi0gX8Rk7NFOlUVQyVFNf1RlyVx+rx6srxrNHypGhMhxIw0FtQpIkzVHDe889ScQXc7lwPPccge7diR1/fMWdBQH3hAlEmzbF+cQTCLGY5t0nbd9OXp8+BHr2pCghlJ3XvTumPXviu4bD2GfO1EhTEUXCbdsSa9gQJS8PwWzGFQ4jlJUh7tmD6bffkNK058eystj3+efEGjXC+v77OMeMwZQYY4nm56PIMtK2bbjHjsV//fWVvh62OXOQt27FM2wYTl2zmv/mm5FlmViiTp4KQnEx0k8/4dNZNdU0UqVBI5EIwWAQu93OOeecQ1ZWFsFgUHtfDwaSJGl2Yo0bNyY/P589e/ZozS8ZVI4M8dUi0kV8qWyIUqVDBUHQmmCMx0kV8aWq79WrV48TTjihJi/rgKGPQusKDsTlojah7zSNtmpF8JJLNGUTwecDSSL7ttsoWbJE870zwjd0KOGTTiL7rrsQ9+1DsVgQEgRhnT8f6/z5+Pr3p/ijj4gdf3yF+T4AIRarkLKs6sfD37dvfFQhNxfThg3k3HknloICbX3o9NPjpLlrF+XVqX0Gg9gnTiTcrJlG0AAK4LvpJnKrkAGzrFyJoCgEU2iWHi4cqjNDOng8Hux2O6IoUlRURFFREfm1JLr9v4AM8dUi0qUw04nYGveFeH3P6/Vqdkl6SJKELMv7B58Tc4EqCgoK6NSpU5Uzgocbxk7TuoAqOzqPEIyvVfnYsdRXiS8a1Vr/XQ89hNtAVnqEO3dm34oVZN9zD5YvvkCxWFBkGTGRLrTPno199uy44PQ117B72zaw25HWrcM+fTrWjz+ukLqs8BzNmsXHE3r2jHviRSKYFy3C8dprmL/7TttOsVjiJrubNsWH7KdNI3T55VW+Fq4HHkD6+++K0d4tt4DTWeXn2py47nA15AprCum+29UdXfr++++ZN28eHo+HadOm0ahRI+644w62bdvGkiVLEEURURS55pprcDgch+MS/ifxj1FuqSto2LAhgUBAUyyRJInc3FzKy8u1cQaoqNSibpOXl8fevXtxOBya4LR6HIfDkVRfMJvNRCIRBEFg586dNGvWjIkTJ3LXXXdVWwS6si63g4EkSdjtdsrLyw/hVax5ZGVl4fV665RwsCiKZGVlUZrQllThGjUK+4wZ2uNQ27aY16+nfPx4/AlX88pgfe89nI8/jqmoiJjLhSJJWupRhWKxEDrrLEJnnkno3HOJtG6tSas5nU6CwWDFOm0shvjbb1hWrcK8ciXmVas0YtXOtVMnhKIi5G3bCHXqRNnzzxOrhoecdfZssu+7D3/PnphXrdLcG2IOB0WrVqE0bEheXh7FhrqjHvkdOxJr2JAS3dzf4Ybdbtdqe9p55Oezb9++OvVZ+19EZcotmYjvCEB/Z6raEFV1t6ooSlLayxg9RqPRCk4NeXl5GsEuXboUgFNOOUX7caiOCHRV2papzrMywlQjUrPZXONt4oeCAxUQqA2ki0I9Dz6I9cMPERM3D9JPPxFu0QLXqFFEs7KqFJgO9O1LoFs3nM89FzfRdbuJ5uWBJCGWlsblyIJBLF98geWLL7T9Ig0bEjvmGEy5uZhsNhRRjEub+f2Iu3Yh7dyppVD1iFmtRJo1Q4hGMRcWErPZcI8di2/gwGrNMpo2bMD14IOE2rQBk0kjPQD3uHEoDRtWmT6U1q9H2rEDT9++VT5fTSKj01k3kSG+WoaRsPRRWVX7GYfc9TU94/7G+l5BQQFOp5OTTz456Zi1LQKtmueazeaDItODiUyrQ6Z1LfUK6ZVkFJeL0tdeIy/xIy4GAkSsViLNm5MzbBglTifhqkZWnE48Dz2Ed8gQ7K+8gm3mTEx79hBzOonl5qKIIoLfr3nXQdwWiYQfZVWN9zGrlWiTJvFZRr8f86ZNxJxOvAMH4r3zTpQGDar1GgilpeTcdhuKzUagTx+yHnlEWxe8+GKtLliZ6g6AY9IkYlYrvmoKytcU0qU66+Ln7Z+EDPHVMozEJ0lShdGEdPuZzeakIXc9qiK+wsJCOnTocMCzQgeKqojGbrdr13AgqM5cVTqLoqpmrtT3xOl0HhDJHm5IkpR2Ji18wQV4b7sNx+uvA2DeuJHghRcSDQTIvfVWSl94oVKdSxVKXh7eBx7Ae999WBcuxPruu5gLChAiEWI2G5FGjUD3mVEkCUlRiOoiO8VuB1mOk2U4HNfa9PuRt2yJn2uzZnjuuQffoEHx2l81IRQXk9O3L6Y//8T95JNk6Xz7YjYbZZMmaY8r87czbdmCZfly/DfeiFLLDSAZnc66iQzx1TL0pKCSU7oZPON+RmWRqtRd1DpacXExW7ZsoVclvma1gUO501UUpcZTkSox2mw2IpEIoVAoiSwPNdV7MJGp/vWpquHGM2YM0o8/YknIfVm++ILg+eejmM3kDB6MZ8cOfHfeWb0Xw2LRBtaFsjIsn32G+bPPkL7/Pu4pqLfAEkVMCaIDEA29ADGnk8iJJ+K56y4CvXoRbd26euegg/jHH+T06YO0Ywfe4cNxJuyVVLgnTEhyfFdl/FLBMXkySBLeVPOOhxkZ4qubyBBfLUMf8en996qK+IxzZvp9quoUXZMwJM0MridDr6wRCARq7Nyqik4rM8/V3wCpjU9AWrIMvfce0kUXYdq6FQDLl18SvOwywvXq4Ro3DnnjRsomToQDcCVRsrM1STYAvF6kH35A2rkT6a+/MBcXE/b5IBIBRUHJyyPWoAGxevUIn3oq0ebNq69DmgKmLVvI6dsXsbQU95gxOCdMQNRFvr7rrtuvKJOAKIop3z9xxw6sixYRuPJKYo0aHfQ51RQyxFc3kCG+WoaesMxmM6WlpciyXCXxqbWxVMcx7muMFAoKCjCbzbTVO3cfAdQ14lNRbY3OaqImolNBEMjOztY6OtNGnQ4HvnnzcFx2GWKi/mZZupTo2WcTueEGrDNnYvn+eyIzZoDBzaHaUanZjHLuuUQUBdFsJigI+Hy+w1KnMi9aFHdlj8VwP/sszrFjEcvKtPX+nj1xT5xYYb90EZ/juecgFsMzfHiNn+vBoK4KJfzTkCG+WoaesNS7v+r8gJhMpqR6T2XEp9fnhDjxtWvX7ojLGdVFRwaoPGV8pGDsMq20dtqgAYGFC8nt3VsTkzZ98w3Rn3/Gc//92N58E+mii/D374/nkUdQXC5t16rSucb1csJ1Qm1OMuJAxmSS/vbtwzliBNb584k0aYL39tvJuuceBN0NXODSSyl/6aWU0WSqGp+waxe2efMIdulC7AjpWBrfswOJ+NJZEgEsX76cwsJCBEGgd+/enHTSSTV63v/ryBBfLUP9IhiHy9MptajbV1bDMEKWZW20wev1snHjRoboPNqOFOpimqeqbsAjhQMdqI8deyzFixaR26cP8k8/AWAqKsL57LN4b7sN09692GfOxLJ4Mb6778Z3yy0gywf8flRn3rEqEjWSqWnBAsz33AN79hAdOBDB4SArYUqrXV/nzghz55KtE2jQR6YmkwmLxZK0zjFhAgSDeO+994CusaaQ6vNeE5ZEu3btYt26dYwaNYqysjKmTp3Kgw8+WGWfQAb7kSG+Woae+Crz39PfKaYiPXWfVHfd+h/ztWvXEolEjrg+Z10lmLqafjWZTEmCBtWB0qABJQsXkj14MJYVK7TljtdfJ9yyJe7Ro7EsWIDr0Uexvfoq/oED8d14ozaYXt3zqup9rNYIiaJgXroUx3PPYV6/nshxx+F++WUc06djTmjKqgh06UL5q68iBAIIOrk+Y5ORvnZqWrQI6+zZRPv1w3XeeTUWnRprrZUhHfFVV6c2nSXRxo0badeuHZIkkZ+fT7169fj99985PpVeawYpkSG+IwBBELBYLJpIbTriUyM+NTrUb5OO+Iw/TAUFBQiCQIcOHQ7jFVWNukowkiTVOcFsSBanPhAoLhels2bhmDQJ54QJ2nL555+Rn3qKwBVX4L7iCqwff4xrzBgckycT6NED30037ffQqwSHnBYOBrEuWoTtpZcwb95MND8fz913I4RC5A4eXGFz9yOPxJ3qBQElTaSkDomrr5ewaxf5Q4YQadKEfY8/DgZVGuP1VJbePZTOXnW9y+Xixx9/ZOvWrTgTTUaiKGI2m7FarQesnVtWVkbTpk21xzk5OZTp6qAZVI0M8dUy9F8K9W4wXVenvvuzusRnrO8VFhZy8sknk5WVdTgup9qQZblSn7QjhYMlmMONQ0oLCwLe++4jeNFFZA0bhvzLL9oq66JFWBctwt+rF4Grr8b89dfY5szBPnMm4ebNCf3f/xHo3p1I27YVvAMPehwlFMK8dCm2+fMxf/EFosdD9KijcD/wAAgCjsmT4wowOkQbNKD0tdeIVCNTkVTfUxSyhwxBdLspnj27ym7WakWnBwj1e2m1WhFFkWAwiMPhoH79+iiKQmlpKT6fj2AwyLfffptSd7cyS6J0z5lB9ZEhvlqGSlhGG6J0ER/sbwox69T3031ZZVnWfsjD4TDfffcd1113XU1fxgGjropA18W646HMO+oROf10ileuxDF5Mo4pUzTPPSBuUPvRR4Q6dMAzciSC2435iy+wv/wyjpdfJuZ0Ej71VCKnn06kVSvCrVohtG5ddbra48H0xx/IGzcif/ttfA7wxx8RAwFidjuhCy8k3KkT4u7dOF58UZNd0yPQpQvlEydWe9hcXwqwT5mC5ZtvcI8aRaRdu2q/VjUJPZlGIhHC4TC5ubnk5uZqMoLqd6Fbt24HfPzs7GxNihCgtLT0iN/Y/rchQ3y1DJXQ9Gm/yohPTV2m2ibVXZ6eYDZu3Ijf7z/i9T2omzJNdZH0oOLoyiFBlvGOGIHvhhtwPfkktg8+SFptXrMGc2LOM9CtG55u3UBRkH76CXntWiwJrz6I2//gciHn5BDLyopHhLEYQiyG4PcjFhUliVIrkkSkeXOC3bsTPuUUMJmwJmqMqRA69VTcY8YQOfvsA7pENeKT1q3DOXEiwbPPxnf33Qd0jMOBw6XT2aZNG2bOnMlFF11EWVkZRUVFNKmG0HcG+5EhvlrGgRKfmro0kobayaYXezbOCBUkvM+O9OB6XY32anp+r6ZwOASzlYYNKX/hBTz33otzyhRs775bYRvr4v9v7+yjm6jz/f9OZiYPbdK0pVi6bCkC5cmWthTa4lUR7VU5oKIo66pgdR88LHh0l73Kverx7N491/tjV9e960V+ugdELnp3BXT1uj6V1V1WbUivRQoUhIpVkEof0/QpfcjcP+Jk03QmmSSTzLfk8zqnRzOZTr6TMvOez/MbsLzxBgBgePZsDFdVYeCOOwCrFRgchMntBjo7gbY2GLq7AVEEOA6i0Qjf5MkYXrwYo3l5EG02/3arFUJDA4S6unGCG8zI1Kno27zZX5Qeg8uO4zgMnz4Nxw9/CJ/dDvfWrXEV0GtFvFmdSiOJ8vLyUFpaiscffxxGoxGrV6+mjM4oobFESYbnebz99tu47rrrxtx0Q8cQ2e12eL1eWK3WgOsyLS1tTBDbbrePCb5zHBe4sKT6nuPHj+PYsWMA5LPYIrXPUmqnFQ1WqxUAmKvhS09PD0zHZgmbzYahoaGEJt0YOjpg3bUL1pdeAt/Sovr3Ri6+GL6MDH9/TqvVLzADAzAMDMDQ1wf+s8/G1N6Fw3vFFei/807/LD4+9mdwR08P+H/8R3CtrejasQPDV10V87G0JDMzEz09PQGhMxgMyMnJQavCpHpCW2gsEUOcPHlSVYsyAAGLz+12g+f5cb8TmpSRkZEBj8eDkZER+Hw+fPDBB7j22mvHjSFSW7Asl9EWihqxtFgsGBwcHDMkN14x1YJwTaD1JBkJN+KkSeh/4AH0338/+EOHYNm3D+Z33okogvzp03F97nBhIYauuQb9NTXw5efHdSzA39PTfMstEL/+Gl3btzMjegD16WQZEr4kc+zYMZSWlkYUPsmVqTR/L1J879NPP0VXV9eY+F6ihCZS6rdkiZrNZlmRDSXe2iq158hqbWFSb5AGA0bKytBbVobef/1XGL/8Eub334fwwQfgm5rAnzo1JikmWkamTcNIWRm8V1wB79VXQ1SoTYsF4xdfIGv1aqC9Hd07dmB42TLNjp0ISPjYgYQvyZw6dQq33XZbRDeWKPqHtkr7RRK+0IvK+U0RcDLie8ECFIqU1t3X1xfVMRNZXyUJpdFoRHp6umpRTRZ6WsG+/HwMrF2LgbVr/RuGh8EdPw6upQX27m54T56EsbMTGBoKDKwVLRaIdrvfBepwYPTiizE8dy5GCwuBoExkLTG2tCDr5pth7OzE6N69GF64MCGfoyUkfOxAwpdkbr75ZlgslohJFaIojnF5hd4MQ2/scvP3cnNzxxS66kGsheuJrK8yGPw9J6WO/lqIqVZxU+YmwQsCRouLgdJSjNhs6GWgUFr461/h2LgRBo8H7v/6L6RddRUQNDCXFUL/tiR87EDCl2QKCwsBRC44lYQvmvl7wfEqp9OJyspK3QtbWerYEiw0Usu4eBNIoombKglr6PEAf2JEPKKqNUy4hUdGYHv8caQ984y/wP2//xv4h3/Qf10yKE1eJ+FjAxK+JCPdlNQIUjTz9wRBCEw2//LLL3H27FkmGlOzOpEhuNA/HrQWmvT0dAwPDwcsUSWxlNsevE1pnbHGTPUWPmNLCxz33gvToUP+KQ3/8R8QMzNhjqJ5ezJRKmVgsawnFSHhSzJqhU8QBMUbjZyVEHzzTWZ8LxKsundYri0cHBwMGzeNlUjiGc7Vy/M8RFEMlKZIxOLejTZuatm3D/aHHgKGh9Hzb/+GgbvvDtTpyY0jYoF4a/iCefPNN1FXV4f09HQAwMqVKzE/hqn2xN8h4VNBV1cXdu/ejZ6eHhiNRixZsgRLly5FX18fdu7cic7OTmRnZ6OmpgZpETrdS5abUsG6dDMIF+uJFN+rq6tDRkYG5s6dG8vpaobeVsJEJJHfWTzWqcPhgMfjkXXfhXPxxhM3hcsF/l/+BdyBAxidMwcDO3YAl1wCS5CISv/2OY5jokRGQkvhA4ClS5fiKoZKNSY6JHwqMBqNuPHGG5Gfn4/BwUE88cQTmDNnDg4ePIjZs2ejuroatbW1qK2txQ033BD2WEoWn5zwqbVI5BpTL168GBzHRXOamsNSfC8YVq09llGaB5kIoeE+/xz2X/wCpv/5H4g2G/o3bYJ30yYYrFYYvrlOJEEVBAEGgyEwGDcWV28i4qZyliir3o9UhIRPBQ6HAw6HAwBgsViQm5sLt9uNxsZGbNy4EQCwePFiPP3006qEL5zFB/z9ApG7gJXie1K5QHt7O06ePIk1a9ZEf6Iaw/JEBhaFT9MenRMQQ2srbE88EWinNrBuHXr/6Z8gTp7s30Gmw47JZEJPT48qYYrkzo3k+g0lnEgGjxJrbm7G4OAguru7MTAwAEEQYDabYTabVT+cHjhwAC6XC/n5+Vi1alVEzxIRHhK+KOno6MCZM2dQUFAAj8cTEESHwxGYeh6OSBYf4B9DNDQ0JNt/TykLUDruwYMHAYCJxtSsCgzP88y1KQMYLGX4hoRaKqIIobYW6Tt3wvT++8DICLwrV8Lz8MPwqRisGhrfDv9Roubfr5J4Sj10jUYj2tracPbsWYyMjKC7uxterxderxfZ2dm47bbbAABbt25Fj8ykihUrVuCyyy7DtddeC8Af73v11VeZmLgykSHhiwKv14sdO3bgpptugsViiekYwQKntF1KtZf7DDX1e2azGSUlJTGtT0uiuSklk2ALmSVYfVBIRNzRcO4c0l54AZaXXwZ/5gx8NhsGbr0V/ffc468bnCAouUGtVisGBgbg8/lQWlqK0tJSXHTRRTh37pzscdRmYFdVVeG5556La80ECZ9qRkdHsX37dpSXlwdExW63w+12w+FwwO12B6Yrh0ONq9NkMqG3t3dcBp0ccoktZWVlssMtkwmr8T2AXUHWqnfoiG8EvcO9sAk28Mb4L3FNhM/nA19fD8vbb0N4/30Ix47BIIoYWrAAPffdh4FbbgG+yVpUC8t1cVr26ZTuMYB/1FheXp4ma0xlSPhUIIoiXnrpJeTm5mJZUD/AoqIiuFwuVFdXw+VyaTIxWQqKK1mGoZhMpkxfymAAAB4LSURBVEA9Wl9fH44cOYL77rtP9ToSBavCx2r6OxC/wLQNtOHRDx7F4bbD6BvuQ7qQjuKcYvzisl9gsnVyXOuK2hL1esEfOgTT//4vhI8/hvDhh+C+aZY+PHcu+n/4QwysXo3RBQviWherwhdKPML3+uuv4+zZswCA7OxsJuL3Ex0SPhWcPn0a9fX1yMvLw5YtWwD4a2mqq6vx/PPPo66uDllZWaipqVF9TCWLT4rvyQnf0NAQsrOzx2zjeT7Q5aO+vh6jo6O48sorI/agTESdWDCCIKiKeSYbQRCYdCfGS9tAG2557Rac6DoxZvtn7s9wvPM49tywJ2bx4zhO2RL1eMA3N4Nvbgb3+efgmpvBHzvmb279zffss9sxXFGBvquvhve66+ALMy4mGlh+iAklHuG78847NV4NQcKnghkzZuCpp56SfW/Dhg1RH09O1KRtkgUnt09fX9+Y2JQgCLBYLOjt7YXBYMB7770Ho9GIkpKSMT0o1dRUya0x1rRvn8/HbA3fhRpHe/SDR8eJnsSJrhN49K8P4/9X/D8Y+vuB/n4YvF6/MEn/HRqCYXgYGBqCcWjI/7q/H4beXgg+H6wdHTB2d8PY2QlDVxcMXV3gOjthDOnd6bPZMDJnDgbuuAPDpaUYXrQIo7NmJWQwLKsWn5wrnUoZ2IKETwciCZ9bZSNgyZ0oCc5HH32EoqIiWK3WpPWgDDeKKNQ6jVdMtYDneSZbqMVTyjDiG8HhtsNh9znmeg3Zd78GPsavkQMg2mzwZWXBl5kJX34+RkpKMJqfj9Hp0zEyYwZGZ836e+lBEuA4LqHDemNF6+J1QntI+HRALrFCSn1WujjkrDKphgnwu0E//vhjrFu3TrM1xpoAYjKZAgk6wagV03D1VkrrVCum0kBf1m5E8ZQy9A73om84fJaqJysN5358NzKtWRCtVsBshsjzgMkEnyCMeS1Kr9PTIdrtcOTno2toKCFWWzyw6upUalDN4lpTFRI+HVCy+KQyBjnkbvrBF9jhw4cxODjIRP2eUmJLotpJRWqLFSqmNpstoW7eWIhn6rpNsCFdCJ8Rac2eAuP6f0Z/lFmePM9j1GoFGExUYtnVSQ2q2YaETweUhC/czS90/9BYVV1dHQCgoqJC49VGT7InMqi9+QmCAFEUVSXdRCum8VqmgiAEJtVHK6a8kceCyQvwmfszxX0WTF4QU2kDq7FagN2yFHJ1sg8Jnw4oCV80MQu5/pyzZs3C5CTGWJRg9SKPJqMzEeuPJKYcx8Uspk9d+xROdJ1AU0fTuP3mZs/Fvy/998CEhWgsU5aFj1WoTyf7kPDpgNxTarinV7mbXnC5gM/ng8vlwooVK7RdaAywfKOMx52oBUo3PskNFsvaAu5bgw2vrHoFDx94GIfOH0LfcB9sgg2luaXYctUW5NpyY7JMpWHIcpao0k8yYL14PdTVH63wNTU1Yd++fRBFEVVVVaiurtZ6mSkNCZ8OyN0cohlDBIwVmBMnTqC7u5vp+B4LsFrKEM+6gm+mmUIm/vOq/xzfuUVEYEixGoItzoyMjIBnIdTNq2SdhhIuHhqrmLIa3wPid3X6fD7s2bMH69evR2ZmJp588kkUFRVhypQpiVhuSkLCpxNyPTdDLwzpgg/dN9Sq+uijjwCw0Zia1YkMLKO1IPNGHpnmzJh/P/TfoRYNvcO5cGMRU+mYDodDMzHVCqWsTrXC19LSgpycHOTk5AAAysrK0NjYSMKnISR8OiBdeMHuTcmlFIpSGUNofC8vLw/Tpk1L3KJVIghCVNZFsmDV2gPYrUfTElHUdjKC1Md2aGhIMzHVyjKV3MIS0SbhuN1uZGVlBV5nZmaipaUl1q+KkIGETweCLbng+j25hBe50USCIATiQaIowul0oqqqSvHJmGDfBctiXJTleK0UR0vEmKF4LVOe55GdnQ1RFPHzn/8cFoslMGlFmsM3c+ZMzJs3L6p1EdpBwqcDoS5MyYITBGHcfnJuk2Dr5YsvvkBrayszbk6WxYVVFyyrafksCx/HcQmZqaiFZZqdnY3Ozk6Iooh777030MKvtbUVg4OD8Hq9gWkLcjgcDnR1dQVed3d3IyMjI641EWMh4dOBYFcn4H8KHBgYgMlkGrdfKKFCKNXvVVVVJXDF6mBd+Fh0dbKc5s6y8LHatSX4IcZg8LcgNJvNsFgsst4bOaZNm4b29nZ0dHTA4XCgoaEBa9euTeSyUw4SPh0ItfgEQZCdvixn8cnF9zIzMzFnzpwErzoyrE5kANi2qlgUZIDt2GNoHI0VtChe5zgOq1evxrZt2+Dz+VBZWUkz+DSGhE8HgoUvuD5Kzo9vNpvBcVxgH7PZjMHBwcDF5HQ6sXjxYtVPk4mEVQuB1XUB7Mb3ALZFmVWUhC/av/H8+fMxf/58LZdGBEHCpwPBIheuP2d/f39A+CSRlNyhVqsV58+fR3NzM773ve+NmYQQS1Za8D6xwLLLTiljlgVYjj2yWivHevG6nPCx+u8vVSHh04Fgi0+K78kxOjo65j2j0QiO4wJji9555x0AQElJCTq/mW4tHTfSjySmSj9yaw4nopJVajKZZPfRE0EQmHXZsRp7ZBlWBRmIv4YvVtrb2/Hkk09i/fr1yM/Ph9vtxpYtW1BTU4PCwsKEfvZEhIRPB4KFTxAExfl7ckXuwU+OTqcTVqsVxcXF446vtdhESu/meR4+nw8mk0mVmKqtiwpnrapF71Zl4WA19siyBc9qYgsgP34oGd9lTk4Orr/+euzatQs//elP8eKLL6KiooJETwESPh2JNkBvMpnGuMWcTicWLlw4Lhs0EUQSG7PZDI/HE9X5qKmTkrNMpX2U1hj6w/M8LBaLKpdvMmFV9AC246KsW3zx9umMlSVLluDIkSP49a9/DQD4wQ9+kPDPnKiQ8OmAdLMTBCGq+XvBXVE8Hg+OHDmCBx54IHELjYJYsuwSbZlKE+Il96tc0XHoa6U1xho3DQfLbk6WhY/lmJneI4mWLFmC3/3ud/jOd74DnqfbuxL0zehAcJsypfhe6E041Dqor6+Hz+djon6PpZtksJiOjo4Gyj/iSSBR280j2nFC0sOCzWZLePJRtLCc0Zmo4nUt0FP4vF4vXnnlFVRVVeGtt97CggULkJ4efkBxqkLCpwNSVifP84pJF2riexzHoby8PKFrVQPrhevxrk2Lbh7BSIJos9kwNDSE0dHRhCcfRbJWQ+E4jtlsU5ZjfEp9OpPxwLJv3z7k5+fjtttuw+9//3u8/PLLqKmpSfjnTkRI+HRAughCLwZJEOUuktDC9bq6OhQXFzPxRMfyRIZw7mS9CLb4hoaGNLEGYrVGlcRUaRp8IpKPooXV4nU5Yonj/uxnP4PFYgk8AG3atCni7zQ2NuL48eN48MEHAQCrVq3CL3/5S9TX12PRokUxrf1ChoRPBySBC31qlbbLIQgC+vr6APhdGg0NDcw8zbE6kQFgyw0bipYuMK3FJjs7G263O2w8VC75KHgfpTXGGjOdKGIXTKx/4w0bNsBms6nev7i4eEx2t9lsxiOPPBL156YKJHw6IIoiGhoaMH369HHblYRPeh8ADh06BK/Xy0R8j+XMRFpbbAS75xKVfKRkgaqZfsBxXKBhQzwiqnXcTe5vyrJbNpUh4dMBURSxZ88ePPTQQ+O2ywmfyWQaF98DgIqKisQuVAUsZyayvDaWLdFEri1e0eE4Dunp6WN620Zy40rZvdHGS6ONm2qV2GIwGLBt2zYAwKWXXopLL700hm+KCAcJnw54PB5YLJZxXVuUnq5Dk0fq6upQWFiISZMmJXytkWA9sYVV4WN5bayLcqiQJMJyiySkStsla/T48ePYtWtX4Hg8z8NkMsFiseCKK65AQUGB4ufff//9cDgc8Hg8eOaZZ5Cbm4uZM2dqeo6pDgmfDjQ3N2PevHmyT5tyrhGTyRToPDI6OgqXy4VVq1YlZa2RYHkiQ7hyEb0Jl9GrNywLXzJch7G6eM1mM3ieR19fHy666CJs2rQJNpsNXq8XnZ2dgbKaSLP1pFl9drsdxcXFaGlpIeHTGP1b+qcgBoMBCxcuHCd8Uqaf3P7ShdjU1ASPx8PE4FmA7Zsk61YVrS16WO/aIufqNBqNSEtLQ2ZmJqZMmYK0tDTFY3i93kCGtNfrxYkTJ2gkUQIgi08HFixYgClTpoxzEcrF+OTcnAAbg2dZ7ucIyHe/YQWWb+AsP8ywnCxiNBrHPTBEe414PB5s374dgN+Fu3DhQsybN0/TdRIkfLohJ3Ki6J+3F1w/ZTabMTo6GrhROp1OTJ06Fd/+9rd1WvnfYTm+x7LVwjos18mxLsrxTmbIyckJ1OIRiYOETyfkbiwDAwOBwlUpgG42mzE8PAxBEAAALpcLy5YtGzN/Tzqelp071MDyuB9BEJgVPpZdsKzDsijLiRzLFmoqQ8KnE0oWX2gHFLPZHBhbdPr0abS2tqKsrGzM/D0gvs4dcnFFNcIplVkIgsBcsTHrySOsCh/LFhXr6N2gmlAPCV8UvPjiizh27BhsNhs2b94MAOjr68POnTvR2dmJ7Oxs1NTUhA1eS8gJX+jrUMtAiu/JJbboVWzM83zYYmO5Naq1TkPfjwYpu45FWLb4WBY+lov+AXlrlPU1pyokfFFQWVmJyy+/HLt37w5s279/P2bPno3q6mrU1taitrYWN9xwQ8RjRerSAox3JTqdTmRnZ2P27Nmxn0QUhCs2liyqaMQlniJjOTENJ5pqZ/DpAc/zzPY2ZVn4JprbkKw9diHhi4KZM2eio6NjzLbGxkZs3LgRALB48WI8/fTTqoUvGKWOLcE1ck6nExUVFUxkK8aS2JJIqzRUQKUbTrhekmr7SUZjmaqBZXHhOI5pF/FEEhISPnYh4YsTj8cTKDh1OByqi7nVCF/wDfL8+fM4ffo01q1bF+eKtUEQhEBRvZ7ICY7JZILX6425eD2S5RntyKBQ4TQajUhPT1ctrsmE5fgjyxafXGJLtBmdRPIg4dOR4Jtk6A0z1CoIF9/TA5bjVPFmdCayBRbHcQFxCW11pWSZhhJNtq7c++Fg2apiXZRDv1uy+NiFhC9O7HY73G43HA4H3G636lEi0s1IKfgdOn/P6XTCarWOGT2iF6wH7FmLoQVbbtJg3HhnBKrJ1I2lMTPHcbDb7VGLazJg2eKLNaNTy4Q5Qj0kfHFSVFQEl8uF6upquFwu1cIk3SyU4nWhrkSn04lFixYF6vn0hGVrD2A7hqbVdyeK2k+Fl0RvYGAgKeUw4d6Xg2VrNFbh0zJhjlAPCV8U7Ny5E83Nzejt7cVjjz2G5cuXo7q6Gs8//zzq6uqQlZWlejhsJOELvkG63W4cPXpU1STmZMByxxbWrVGO45iyRiUk78PIyIhmDzVqymHCvR8Kx3HIyMhQJZ7xlsNEi5LwRbpOtEyYI9RDwhcFd911l+z2DRs2RH2sYFdnKKEXkcvlgiiKTPTnBNifyMCyNcrzPLPWqNaWciQLLlqys7PR09OTlHIYtdaphFKfzli+z1gT5gj1kPDphJLoAfLxPZ7nsXDhwmQtLyysuxJZtUZZh+XkEQCaiqhEuFKX0AzecE0apOSWtLQ0vPnmmzh58iTS0tJgMPhn8ZnNZpjNZlRWVsJkMml6DkT0kPDphPS0KPdUKAjCmFR8p9OJkpISJgLcrGeqsVJmIQfLyRkAu25YIHHxvWDLLZ6/jWSZ+Xw+lJaWorCwEIIgoK2tDf39/fB6vfB6vbLx0FBiTZgj1EPCpxORhM/j8QAABgcHcejQIXz/+99P+hrlYDm+B7Dt6mR5bQDbljzrDw1SzZ4oirBYLLBYLMjJyYHdbo9asGNNmCPUQ8KnE0rJLaEWVUNDA4aGhpiK77Ha2YN1WI7vATS/MB5irePTMmGOUA8Jn05IF4kUQ5Beh1pUTqcTgD+7iwUEQaDmzzHC8zyzbljWs2FZt/hCUft9apkwR6iHhE9HRNE/2sdsNo8JoIuifwCtKIq48847UVhYiIKCAtXZZmo6dMQKyzdI1hNbWE4eYdnNCbDdQ1QO1mPhqQ4Jn05IIiXN2pOQgtoSkydPxvXXX4/+/n5NaqGiEc7QH5Zv3IDfGmU1OQNg35XIuvCxKiRyPTlJ+NiGhE9HeJ6H1WoNCEtfXx927dqFBx54YJwIaXURhRPPSH0jOY4DgDHT32PpypGoomKWXZ2s3whZFz6Wvz8aQDvxIOHTCZ/Ph+Hh4TEi09TUhNmzZyMjI2NcO6hYCmyV3ov1gmxtbUVubq5sQk64dlZaFRVHElXW3bCsijIw8VyJLCEncnJWIMEOJHw6MTw8jM7OzjHbPvnkE8yaNQttbW3j9leyzpQss0jiE0vHit27d+PBBx8MXOhad+YIPVeltSu5dzmOG2ONSsTzkKCVkLLuJmbd4mP1gQYgi28iQsLHEG63GxdffLHse1qLTDhxCRVXo9GI/v5+mEwm2O122d8JXWOsllvoUFe1N+POzk7wPI+MjIyw5xqtezdcnDSacwptSsAacun4rMByfA9QLmVg+UEn1SHhY4i1a9cm7bOiFZcTJ04gLy9vXEPdYNRYo5HaQEmvg9eoRmBqa2tRUFCAnJwcTd27as5V7idUSM1ms6KYxuPeZVkQtIL1UgalPp2p8LeZqJDwEaro7e1FYWFh2H0S5fJUEtTg///888+xdOlSWK1WTd27Su9Fc66iKOLYsWO45JJLIp5rtO7dSFapGuGU4lGS5cKa5TcRLD6tZvG9+eabqKurQ3p6OgBg5cqVmD9/fmIWnsKQ8BGqKC8vT/pnRiMybW1tMBgM4+KmwYRzdYa+J9ftP1b3rtvtxt/+9jeUl5dr6t4Nh5IlKiegHMfBaDSOSaoKJd4HhXiYCBafVrP4AGDp0qW46qqrNF8n8XdI+IgJz9DQEGbOnCl7ww5Ga3EB1Ll3v/rqK0yZMgWCIETt3o03XqqGM2fOIC0tTTYxSOlc1bh3w1ml0VjfgiDA5/OB4zgm3buxZnXKzeIjkgMJHzHhMZlMWL16tS6freYmfPr0aWRlZaG7uzvivmqSjSK5Q9W6dyVxOXz4MIqLizF16lTN3LtqUOve5Xn/bSq4w1G87l257fGcR+jvxxPjO3DgAFwuF/Lz87Fq1SomprJcaJDwEUSCMZlMmDJliqp9RVHU1K2nxr177tw5LFu2LODyDCdG0hq1ytxVY4Hv378flZWVES36aNy7ShZ3MGrPy2AwQBAEiKKItrY2mEwmZGVlxSSml112Ga699loA/njfq6++ittvvz3q4xDhIeEjiASjZ4NxNeLS3t4OnufHtc+TI5KVKZe9G26f4DUqicuHH36Iq6++WlP3rlrCCWbwOVosFgDA66+/joGBAXi93jHlK3l5ebjjjjsifp7dbg/8f1VVFZ577jlNz4fwQ8JHECnOvHnzVA1IBcYKqVaEs0ZHRkYCrsRIyUbxdDkK9344a3RgYABHjhwJPNysW7cuUE8q14giEsG9ehsbG5GXlxfDN0pEgoSPIFKcFStW6Pr54cSlo6MDNpstMJhZDWqs0Wi6HElrlBNGj8eDzz77DFdeeWVgm5SEEwm5WXynTp3C2bNnAfh74q5Zs0b1eRPqIeEjCIJpop1ArrXbM5x7t6OjAxaLJVAHKXUBUhOnlZvFx8rA6QsdEj6CIJhl0qRJmDRpkq5rCOfebW9vh8ViQW9vb5JXRcQDCR9BEESMZGVljZmfSUwMSPgIgiBiZPr06XovgYgBdalcBEEQBHGBQMJHEARBpBTk6tSZP/3pT2hsbITBYIDdbsftt98eiBm8++67cDqdMBgMuPnmmzFv3jydV0sQBDHxMYhhCk6++uqrZK4lJRkcHAx0ffjLX/6Cr7/+GmvWrEFrayteeOEF/OQnP4Hb7cbWrVvx8MMPqy40JgiCSGW+9a1vKb5HFp/OSKIH+KcMSDQ2NqKsrAw8z2PSpEnIyclBS0sLlCa0J4o//vGPOHr0KDiOQ05ODr773e8GmuaSRUoQxESEhI8B3njjDbhcLlgsFmzcuBGAv3VRcMZYZmamql6KWjNnzhysXLkSHMfhtddeQ21tLW644Qa0traioaEBmzdvJouUIKKgq6sLu3fvRk9PD4xGI5YsWYKlS5eir68PO3fuRGdnJ7Kzs1FTU0OTGRIECV8S2Lp1K3p6esZtX7FiBYqLi7FixQqsWLEC7777Lg4cOIDly5fLHidSd/pEMHfu3MD/T58+HZ988gkANizSQ4cO4a233sLXX3+NH//4x5g2bVrgPbJGCVYxGo248cYbkZ+fj8HBQTzxxBOYM2cODh48iNmzZ6O6uhq1tbWBh0xCe0j4ksCPfvQjVfuVl5fj2WefxfLly+FwONDV1RV4r7u7GxkZGYlaoiqcTifKysoAsGGRTpkyBXfffTf+8Ic/jNlO1ijBMg6HI5DAZrFYkJubC7fbjcbGxoDHZ/HixXj66adJ+BIECZ/OtLW1YfLkyQCAI0eOIDc3FwBQVFSEXbt2YdmyZXC73Whvb0dBQUFC1hDJIgWAd955B0ajEeXl5YrHSbZFqjTjjgVrVKKpqQn79u2DKIqoqqpCdXV10tdAsEtHRwfOnDmDgoICeDyegCA6HA5qg5ZASPh05vXXX8f58+dhMBiQnZ2NW2+9FYB/fldpaSkef/xxGI1GrF69OmEWSySL9ODBgzh69Cg2bNgQEDcWLVIJFqxRwD+dfc+ePVi/fj0yMzPx5JNPoqioSPVQWuLCxuv1YseOHbjpppvGJLkRiYeET2fuuecexfeuueYaXHPNNUlczXiampqwf/9+3HfffTCZTIHtybJI1VijatAjPtrS0oKcnBzk5OQAAMrKytDY2Kib8L344os4duwYbDYbNm/eDACUUKETo6Oj2L59O8rLy1FSUgLAP4RWmsfndrths9l0XuWFCwkfEZa9e/diZGQEW7duBeBPcFmzZk3SLFK18dFgWLFG3W43srKyAq8zMzPR0tKS9HVIVFZW4vLLL8fu3bsD2/bv308JFUlGFEW89NJLyM3NxbJlywLbi4qK4HK5UF1dDZfLFfU4JkI9JHxEWB555BHF91iwSOVIZnw0WvSwPCVmzpyJjo6OMdtYSqhIlTT/06dPo76+Hnl5ediyZQsAYOXKlaiursbzzz+Puro6ZGVloaamRt+FXsCQ8BETlsOHD2Pv3r3o7e3Fs88+i6lTp2L9+vVJjY+GgxXLMxwsJVSkSpr/jBkz8NRTT8m+t2HDhiSvJjUh4SMmLAsWLMCCBQtk32PBGp02bRra29vR0dEBh8OBhoYGrF27Vtc1sQzraf7Dw8P47W9/i5GREfh8PpSUlGD58uUXnEWaCpDwEUSC4DgOq1evxrZt2+Dz+VBZWYm8vDy9lzUGVhMqWEzz53keGzZsgNlsxujoKH7zm99g3rx5OHz48AVlkaYCJHwEkUDmz5+P+fPn670MRVhMqGA1zd9gMMBsNgPwZ2X6fD4AbMVJCXWQ8BFEirBz5040Nzejt7cXjz32GJYvX85cQgXraf4+nw+/+tWv0N7ejssuuwzTp09nxiIl1EPCRxApwl133SW7nZWEiomQ5m80GvHggw+iv78f27dvx7lz53RbCxE7JHwEQTDBRErzT0tLw6xZs9DU1MSURUqogwbREgRBqKC3txdGoxFpaWkYGhrCtm3bcPXVV+PUqVNIT08PJLf09/dTjI8BaBAtQRBEnPT09GD37t3w+XwQRRGlpaW45JJLMH36dOYsUiI8ZPERBEEQFxzhLD4aUEYQBEGkFCR8BEEQREpBwkcQGvPnP/8Z27dvH7Nt79692Ldvn04rIggiGBI+gtCY8vJyHD9+HP39/QD8RdkNDQ1YvHixzisjCAIg4SMIzXE4HJgxYwY++eQTAMDx48eRnp6O/Px8nVdGEARAwkcQCaGiogL19fUAgPr6eixatEjnFREEIUHCRxAJoLi4GF999RXOnTuHo0ePkvARBEOQ8BFEAhAEASUlJXjhhRdQUFCArKwsvZdEEMQ3kPARRIKoqKjAuXPnyNojCMYg4SOIBJGVlRWw/AiCYAcSPoJIAD6fD++99x7KysqYGqZKEAQJH0FojtfrxebNm/Hpp59i+fLlei+HIIgQqEk1QRAEccFBTaoJgiAI4htI+AiCIIiUgoSPIAiCSClI+AiCIIiUgoSPIAiCSClI+AiCIIiUgoSPIAiCSCnC1vERBEEQxIUGWXwEQRBESkHCRxAEQaQUJHwEQRBESkHCRxAEQaQUJHwEQRBESkHCRxAEQaQU/wca4fUdXDB+wwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#\n", "# make a nested dictionary to hold parameters\n", "#\n", "timevars=dict(tstart=0,tend=27,dt=0.01)\n", "uservars=dict(sigma=10,beta=2.6666,rho=28)\n", "initvars=dict(x=5,y=5,z=5)\n", "params=dict(timevars=timevars,uservars=uservars,initvars=initvars)\n", "#\n", "# expand the params dictionary into key,value pairs for\n", "# the Integ61 constructor using dictionary expansion\n", "#\n", "theSolver = Integ61('lorenz.yaml',**params)\n", "timevals, coords, errorlist = theSolver.timeloop5fixed()\n", "xvals,yvals,zvals=coords[:,0],coords[:,1],coords[:,2]\n", "\n", "\n", "fig = plt.figure(figsize=(6,6))\n", "ax = fig.add_axes([0, 0, 1, 1], projection='3d')\n", "ax=plot_3d(ax,xvals,yvals,zvals)\n", "out=ax.set(title='starting point: {},{},{}'.format(*coords[0,:]))\n", "#help(ax.view_init)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "A plot of the solution to the Lorenz equations as an orbit in phase\n", "space. Parameters: $\\sigma=10$, $\\beta=\\frac{8}{3}$, $\\rho=28$; initial values:\n", "$(x,y,z)=(5,5,5)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAGHCAYAAAB78sGDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9e7AlV1U//uk+z/uaO3fmTAKJEBIiREIIYlLArwITZIwl8rMiUsRAkKBItMpCSUSChUlQqS+KIRiJorFIDGr5+smACl90TDIhGMmA5kECE/IgAWYyM2fu+7xP9/79sXt379699qPvPfeV26tq6syc2b3P6v1aa33WY3uMMYaCCiqooIIKKmhTkb/RDBRUUEEFFVRQQVkqBHRBBRVUUEEFbUIqBHRBBRVUUEEFbUIqBHRBBRVUUEEFbUIqBHRBBRVUUEEFbUIqBHRBBRVUUEEFbUIqBHRBBW0xuvvuu/Hyl78clUoFF1988UazY6Urr7wS+/bt22g2Cipoy1EhoAsqaIvRr/7qr+JVr3oVnnzySfzzP//zyPsvl8u4/fbbR9bfH//xH+Mf//EfR9YfAJx99tm44YYbRtpnQQVtNioEdEEFbTH6zne+g5/4iZ/AC17wAuzatWtFfYRhiCAIVswDYwyDwcCp7fT0NGZmZlb8W2tJqx2HggpaSyoEdEHbik6ePIkXvOAF+PVf//X4u+PHj+P5z38+PvjBDzr3s3fvXrz3ve9NfccYw4tf/OJclp3neeSf7373u5m2d999NzzPQxAE+IVf+AV4nhdbuv/93/+N17/+9RgbG8PMzAze/va34/jx4/GzN9xwA84++2z8/d//Pc455xxUq1V861vfyvzGi170IgRBgHe/+90xLwBw++23o1wu46677sKP/uiPolar4ctf/jKeeuopvOUtb8Fpp52G8fFxnHfeefjsZz+b6pOCuP/u7/4Or3zlK1Gv1/GiF70IV199NVqtVqrNLbfcgpe97GWo1Wo45ZRT8Na3vhUAcPHFF+OJJ57ARz7ykcx4rWQc/vRP/xSlUgnf+973Ur//V3/1V5iamsLS0pJhBgsqaA2JFVTQNqODBw+ycrnMvvCFL7AwDNkll1zCXv3qV7N+v+/cx9/+7d+yyclJtrS0FH934MAB5vs+e/rpp537OXr0aPznyJEjbN++fexHfuRHWLvdzrTt9Xrs6NGjDAD71Kc+xY4ePcra7TY7evQom5qaYpdffjl76KGH2Fe+8hV23nnnsYsuuih+9vrrr2djY2Ps9a9/PbvvvvvY4cOH2eLiYuY3jh8/zkqlEvvkJz8Z88UYY7fddhvzPI9dcMEF7D//8z/ZE088wY4fP84eeugh9qlPfYo9+OCD7PHHH2c333wzK5VK7M4774z7fNe73sXe+MY3xv++7bbb2M6dO9kdd9zBnnjiCXbw4EF23nnnsSuuuCJuc91117GJiQn2J3/yJ+zw4cPsG9/4Bvu93/s9xhhjJ0+eZC960YvYNddcE/M4HA5XNQ4vfelL2Q033JAai4suuoi95z3vcZ7LggoaNRUCuqBtSTfccAPbvXs3u/rqq9n09DR78skncz3f6/VYo9Fgt956a/zdz//8z7M3velNK+bpt3/7t9kpp5xi5QUA++xnPxv/+8Mf/jA7/fTTWa/Xi7974IEHGAB28OBBxhgXTJ7nOSkPpVKJ3XbbbanvbrvtNgaA3XPPPdbnf+ZnfiYl2FQBfcYZZ7A/+7M/Sz1z8OBBBoDNzs6y5eVlVq/X2cc//nHtb7z4xS9m119/feq71YzDjTfeyF74wheyIAgYY4x9+9vfZgDY/fffb33fggpaKyog7oK2Jf3O7/wOXvKSl+ATn/gE/vzP/xxnnnlmruer1SquvPJK3HrrrQA4dP65z30Ov/zLv7wifj772c/iE5/4BPbv35+bl0ceeQSvec1rUK1W4+/OP/98TE9P45FHHom/O/XUU/HCF75wRfwJuvDCC1P/brfbuPbaa3Huuedi165dmJycxBe/+EU8/fTT5PMnTpzA008/jauvvhqTk5Pxn5/6qZ8CADz++ON45JFH0O12cckll+TibTXjcOWVV+L48eP48pe/DAC49dZbcf7552fet6CC1pPKG81AQQVtBB09ehSPPfYYSqUSHnvssRX1cdVVV+HGG2/EQw89hDvvvBO7du3Cm9/85tz93HvvvXjve9+L22+/Ha997WtXxIvwFZu+n5iYWFHfgkqlEur1euq7D3zgA/j85z+PG2+8Eeeccw4mJiZwzTXXYGFhgewjDEMAPLL7DW94Q+b/f+iHfggPPfRQhndXWuk47Nq1C29961tx6623Yt++fbjjjjuKKPGCNpwKC7qgbUdhGOKKK67Aueeei3/6p3/C7/7u7+Lee+/N3c/ZZ5+NH//xH8ett96Kv/zLv8S73/1ulMv5dN4nn3wSP/uzP4sPf/jDuOyyy3LzAADnnnsu7rvvPvT7/fi7Bx98EAsLCzj33HNz91etVp0jm++55x684x3vwGWXXYbzzz8fZ511llHhOfXUU/GCF7wAhw8fxtlnn535U6/X8bKXvQz1ej22Zl15XO04XHXVVfiXf/kXfPrTn0ar1cI73vEOhxEoqKC1o0JAF7Tt6KMf/Sgefvhh/M3f/A0uvfRS/Mqv/Are8Y53YG5uLndfV111Ff7iL/4Cjz76KN7znvfkerbT6eDNb34zXvva1+KXfumX8Oyzz8Z/8qT+/Nqv/RoWFxdx5ZVX4pvf/CbuvfdevPOd78RFF12E173udXlfCWeeeSbuuusuHDlyBM1m09j2pS99KT7/+c/j/vvvx6OPPor3vve9OHLkiPGZj370o7j55pvx+7//+/jmN7+Jw4cPY//+/bjqqqsAAJOTk7jmmmtwww034JZbbsFjjz2GBx98EP/n//yfFI9f/epX8cwzz6DZbCIMw1WPw0UXXYSXvvSl+M3f/E287W1vw/T0tMNoFVTQGtJGO8ELKmg96atf/Sorl8vs85//fPxdt9tlr3jFK9hb3vKW+LszzjiDvetd77L21+/32Z49e9gll1yS+b+77rqLAWB33XUX+exTTz3FAJB/nnrqKe1vQgkSY4yx++67j73uda9j9XqdTU9Ps8svv5wdO3Ys/v/rr7+evfjFL7a+D2OMfelLX2LnnHMOq1arTBwRt912GyuVSpm2zzzzDLvkkkvY+Pg4e97znseuu+469ou/+Its7969cRs1SIwxxj73uc+x17zmNWxsbIxNTU2x888/n33kIx+J/z8MQ/bJT36SveQlL2GVSoWdcsop7K1vfWv8/4cOHWKvetWrWL1eT43Xasfhk5/8JAPA/uu//stprAoqaC3JY4yxDdINCipoU1K73cbu3bvxmc98Bpdffrmx7ezsLE4//XT89V//NX7u534u9X+f+cxn8KEPfQiHDx/Gzp0715LlTU2XX345Op0O9u/fv9GsWOm3fuu38KUvfQkPP/zwRrNSUEEFxF1QQSodOHAAr371q43CeTAY4Pvf/z4+9KEP4bTTTsOll16aafOv//qv+IM/+INtK5z7/T4eeeQR3HfffXjFK16x0ewYaWFhAffeey9uvfVWXHPNNRvNTkEFAQAKC7qgglZAd999N97whjfgzDPPxB133IGLLrpoo1nadHT33Xfjp3/6p3HxxRfjjjvuwO7duzeaJS1dfPHF+NrXvobLLrsMn/nMZ+D7he1S0MZTIaALKqigggoqaBNSoSYWVFBBBRVU0CakQkAXVFBBBRVU0CakQkAXVFBBBRVU0CakTVfq01bkIC81Gg1rsYWCOBVj5U7FWLlTMVbuVIxVPnqujNdpp51Gfl9Y0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CakQ0AUVVFBBBRW0CWnbCGjGGBbnAxTXXxdUUEEFFbQVaNsI6O891cfBLy+heWy40awUVFBBBRVUkJW2jYBenA8AAEsLwQZzUlBBBRVUUEF22jYC2i95AIAg3GBGCiqooIIKKsiBto2AjqlwQRdUUEEFFbQFaPsI6EgwFzFiBRVUUEEFbQXaNgI6DLlkDoJCQhdUUEEFFbT5adsI6CCKDQuGhYAuqKCCCipo89P2EdBDYUFvMCMFFVRQQQUV5EDbR0BHgllA3QUVVNDKiIWsKPhTUEHrQNtGQIsDpbCgCypodfRv/7SA+7/S2mg2CiroOU/bSEDzz7AIEiuooFURY8Dxo0VFvoI2PzHG0O1s3eIX205AFxZ0QWtF3U6I4XM8CLFwERW0lejo9wf4jy8s4uSJralQbjsBXRwwBa0V/ccXFvHVA0sbzcaa0qBf7J/V0NJCgH5/61p0W43mZ7lFNlsI6M1NCcS9sXwUNFr6wTN9fHn/wobnt4sYh8WF5/bh2y8E9Kro7v+7hHv+fXmj2dg+FC1Xz9tYNlZK20hA85kqfNCrpzBgmGtuDo300Qc66PcYWksbKxgHg+2xruQ6AlslkntpMUC7tfGKk3B/dDYBL9uFBGC6NVZqlraRgOafxWUZq6fvfKuHe/9zGXMnN4eQBjZeQA56W/UIyEdM2j/hFtlLd39pCXd9cXGj2dg07gHGGB7/Vndb3OwnDLLhFlWgt4+Ajg6TrXKobGYSV3duBqtE0EZvwM1y+K41yftnKwTEsciE2gz7frPEv7RbIb71UBcPfr290aysOQnEZ6PPh5XS9hHQRZrVyCh2F2yCQ0/M60YLSBmZ2SrQ70pIFjJbIZ5jo5EVmQIJcNrINdLr8t9emN0CE7hKEmdUIaA3OSVR3BvLx3OBNtOiF8EfG30Qy4rfVhBcK6UwBXFv/PzbaDNZ+ak1soHnULxvN0Hg1Pe/28fj3+quWf9inLeqa7M8qo7CMMS1116LXbt24dprr8Xy8jJuuukmnDhxAnv27MH73/9+TE5Ojurn8lNs9W2eDbvVaaOFIgD4vgeAbfhBLB+4QchQ2gyn3xrQVrOg5boHLGTw/I2bF5mXMGAolTaGF5HxwDaB0Prfr3GY/ewfqa9J/2K9blXkdGQW9Be/+EWcfvrp8b/379+P8847DzfffDPOO+887N+/f1Q/tSIq0qxGT5vBgha00RtwMwguxhju+fclfGcdLBJga1zdKq+L4QbHNAbSGtnIgknitzeTJ2atDKfYgt6i5/5IBPTJkyfxP//zP3jjG98Yf3fo0CHs3bsXALB3714cOnRoFD+1YhKLkbEkcKSgldFmiowM4/S5DeZDhn43SHAFAbAwF+DbD62PgN4K7iJ5XWw4yqJY0BvHx8bvW5XWCo2LLegteuaPBOK+/fbbccUVV6DT6cTfLSwsYGZmBgAwMzODxUU6zeHAgQM4cOAAAOBjH/sYGo3GKFiKqVwuo9FowPdbAMKIn90oV7aN+92ZxFjZyPc7AAJUKrWRz1duYkucl2p9XXlRx2q+uQiAw3U7dsxg567quvEiaHlxAGABANZsLGaPJ+85NbkDjca49RnXdbUWNOi1AfDCIDumdmJ6Zv3nRdDi3BIAfsmIbo2sx1gdPzIPgJ/VG7l/udCcBwBMTc5gx3Qldx+28SpFZ5XvbdwaXA2tWkB/4xvfwPT0NM466yw88sgjuZ/ft28f9u3bF/+72WyulqUUNRoNNJtNDIeJ+nr8RBPVaiGgVRJjZaNej2OF7XZ35POVl4IhV7pay5115UUdq4WFXvz3ZnMWw3Bk4R3OND+bYLhrNRaL0nvOzi2gUren6riuq7WgudlB/Pdmcw6DoLQhfADA/Jx9jazHWC0uJgjLiRMn4I2wzFYwZIAHJ/+6jGgcP3YS/UH+PWMbL3FW9XqDDT+rTHTaaaeR36/6FDl8+DC+/vWv43//93/R7/fR6XRw8803Y3p6GnNzc5iZmcHc3Bx27Nix2p9aFclpDRsNh251EnDRZvBBBpsEwtoM0O96pJqlfe0bP/822gyuB0Gyz3cjzyD5txkbXRlMxhi++P8t4IwXV/GKC+zISio+YI0g7jgPfoue+as2I9/+9rfj05/+NG655Rb8xm/8Bl7+8pfjfe97Hy644AIcPHgQAHDw4EFceOGFq2Z2NZTaHFvAd7aZSYzfqBd9px3i6Pf7uZ5hmyQIZDMIrlTE8hpFAG0GRSQPyUpkMGIl7vjRAfo990FgmyTALlijlECRX/30E257OEjFB4yOD5mSNKvNr0xStGY476WXXoqHHnoI73vf+/DQQw/h0ksvXaufciLGgFKEF2y0tbXVSQigUR8yD9zfxte/2na+v5WFbNMUoElHN28MD3kP3hPPDnDke/kUonCTWIGuJPM4ynnp90J87Z4W/vtgy50Xaew2QxQ3//vo9k1eBCddO2CNg8S2wFqlaKSOsnPPPRfnnnsuAGBqagrXXXfdKLtfFTHG/SLBkG3ZydostFYWtLiAo70coj5m1x03g1AUlIrQ3SAFMFQO3lLZjF0K4XLaZe6BU5vFCnSltUI2Om0+EAtz7gsv7WbbuLFja5TuFeSMkg/WSHmSKTmrNv9apWjbREpxAc3/vlUna7PQWlnQojfXlIvNACvHv78JclxXykOeeUwJmS0AcadTm0bX72Bgb6MS2yQKZdrdN7p9k9fFIu/ZtVL2tnolsW0koBOLYqtO1mahtbKgxQHmCpWtpQV98vgw3+GVgn433gdts2bkA7Sf4yYutgneMw+FbG2EwEqCmuSx20j0IXUj2Sgt6CCfghjkRGOaxwY4diSfZiTWOQu3Zo38bSSgk9D/wgedEGMMTxzu5gp2SarzjHYc89bVXqu60M3jQ/zXXct44ts9e2Px+5vAN5vHIpHHLlegEwM8P9vHetHC3BA/eMbdb75WkdOrFdCjVG7aywFaS+4vt1ZKi9yXy/jkrV9/390t3P8Vd58/sHki51dK65+suUHEGFAWQWJbcKLWiuZnAzz6QBdzzQCnnW5vv5YQp+/zPl0t6LRFMjo+2su8s/kct/2k/Hob5YNOXQVpbitbUf0cwT0sjOaJbYwVeM9/LAMMeN7pFadc2xSsPMJ5kQUQY8wpl3it3CD3/PsyBgOG//eynU7t12rfyLd1ufij85SNlc+dPDXVGUvOla1YI397WdDlwoJWSQS7dLuukdPJ30d9QItpcbVOxKb1/NFaJDHkm2Mvr5UC+PQTvVQBEhMFuSxoqW2OFBcujAC/tEE+6IhtkdJjbb5GwkgusuE6DnLO8SjPIIE4ufaZhrjXxoJ2Ges8Cou8p/KUBWWhdO5vQcNsewnoGOLeYGY2EXVafDB8R41U7Cnf55tqVH4dxpLoelfBLw6actlbk8M3T1QqY4Afra9RKS7DAcNDX+/ga/e4wXphDh90ynrJ+Z6e58H3vQ31QbvC8msVSJhGK9yVBc9P9s4oSEZuXGMJ1qomRN70rTyQ/zBYyXsyRXHeeobZthDQjDEgFcW9sfxsJsorjMSmKpU9gNlvxOGbxMUflfzd1aJLeBnt5hPwcN7gKd8frWUp8sFd+chlkaxAwACJFVjaKAs6ol4OYST4HSmcK1uLrus1BHyBPoxovQ6kuXOtHxCGDH508tsE6bM/GOAr/7HkBlmnxsRBQOcI8pTH2HlfymcVtmZw8LYQ0JmJ2oKa1FrRMAqKdLYCIiEgtFLbxrrrS0v4n/vs9ZrTV/HlCxIrlz0EI4zSFIdLLsEVCkEwOsvS9cAVlMcqli2vvO/p+xxxWe99FKzIioqsVod5aR4f4u7/uxi7fYz9rgCBYIz7Tkul0SE+suBydw3JsK/5mQfub2N+NsDCvJ3h/BA3//Q8+56Xx3iQ05goO77rZqRtIaBjS6uAuDMkNkaezQ24LfrhkKG1FOLI9+ypESu5FlAI5LKjNe9KK4G4wyhQaJTwpSyEXJQP7m/jf89jQefzQWPDfNDyunAWipHVWirZkbMnvt3F0kKI5nH7gIQrUHDCUIydNzIftPzbruUyGQPKFWGs2Nry/nsOMSr5Ie5o/1bsyl6wgrkPlbNqo4sZrYS2hYAWE7WdSn0OB27Q8jCntRgLaIcNLvzbLpRX+07x4rABw5Dh4W+00Vq2dy6UlTypNMJS49bRGhy+LmkrjEljYfNB5z/wxG+M2gcdhszp/YKc4wEkVqvvMC8ifazvIIxW4sOP4XYHJY4x5nROrWhMQne/rDBqXILy0kLUzkeCgNmVp+FKXArquV9Y0JuUFIj7ue6D7nVDfOmfF/D4t+x5vGKxD4eO1X+iTeUCkckHhjVoKUeAk6A8G3DuZIDvPt7Hg/c7wO0RL65jAiQQt+9gqbmSfIi7VK7iB68bnLdSHzTWwAf92CNdfOmfF6zRuUNpDPJarSXf7oP04C6M8qS0CcoDt3/zfzr4z39dTLkiKJJ/23lMZEXONiaRhHCxoMMgiVLPEyTmZkEnf18RwobCB71pSUyUHxdY2HqaVB5aXOAn++Pf6lpaSoud5YSlHCw1eSPZgnrifhz8UTEvQgN3sOaXojFx6TlcoTXvedw3a1tfjz7QwVfvXLL2mRfWC1kSqLZWEHfIEph2VEjBk4e5Irlk8XOmCmHkEYqem1AU69VJGK0AgWAhg+95TgFr3328j26HoW3xh6/Ugnb1QYu14aIghowle9EpSCw5S2xrcCUQN8thTGxW2iYCmn96nrdx+ZvrSMJ36fKe8qE36DsEx8SwMv80WYt5IFrRb6Vi36zJM2llwbQBRfETF+t2ZfAlh35dDt8nDvcweyKwCri0f9HtwIuDkNYqSIwlqUKjRgpsufgrmpdQuB7s8yLWqEuebRgkyE2uNKucPuhu21GxzcmH75DuxRjL5e5hId+/nC87H7GPuOKuPKl/N/KTAzkNAoZH/rfj5AJbT9pmAlocLFtPk8pDw7hwgb2tHI3qcjBlrVYTxC393TEvt+IAd8XP5PBBi993e8eVH3q2KG4ZMrdFC+eF9fKkFOWp4pT6jVAuVDLafWSDllOBWa7lYBm3Wl0saLE2XKzzMGSoVPMFH4UsURZclRtbJH8quDJHiVyXjIMwSM5OpxiIkK8LLvjdzxK+581t03XmrV3z/hVjwsTTsSMDPPlYD9951L2873rQNhTQoy1qsZ7EGMOyQ83dgVKG0ETyoediQcupTYD5cMoDv8VwV8Vu/SXP8M88/nDXg0b43lwPgyRC16YoJH+3CuicgTFh6KYkiLYAtwJXUqik5LCPet3QabyF39IGLa+mOIiL0hKn1zmukaqDkpriJZTPIIMSl6P4SDqa3ImNGO2xrdW8kephyKKIebc9LAd5WoMao/8vlVfugzYpRd0Ob+uSYreetP0E9Bpo/utFT32nj7u+uGQt/ZgOzjL3GYaILYHBwAXiFhvFXjY1D8QdW9BVz7lCWUZDNvAyyANfhkA1GpMVwZeOgXO2muN5Lx9IgpBcLGjeX6XiOR/s8W84FNtgjOHAvy7i0FfNVdCCgDlbaUnluDx5+4m1aBMCg5xKXB5/K5B2g5iEhZzna1uvMvKUxwcdB6sZ9kxKIXJefx5X+nKU+iw5RHELXqpVd4RNVeCN50O0F/Peab3WtE0ENB90Hs3pbVkf9JHoFh8R8KQj+eB32eBCQA+dBDT/TA4nfdvhCg8axtLQu56XtLLgAnGHgVsKUiW3gI78v5Zo4TwCOgzz+TnDOAjJfoixlEKU14KOrHTDe/a6vHRr85hFmUwpcebfjpWKmm9tK/PrUr2LMSYFRDmOdSkSRjkgV9+3B9jJ7+a8b/IIrmhMSpY4giAnfC4jOK6VxOL2jmmBXKF0dW/wTxcLWqCHrhXq1ou2iYDmn3GQ2BaFuEWt57Ylv1jeTHbLlcWBHW6BSPyz7JBTnocPIWxjXvKkaThB3DRfFIVysEtOS22UFrRsybseeJ7PFRbX6yZd/H+p32CJ9WX6jdZyskbNwkgaD8dUvDxxCq7Vu3L7+3MIF0GJ79ccH5Jr3wjBVc0nuFzmUPTteXmCFPn7uexfmY8wTEP7mbZivB0ivhOG+Ico8Wx6V7EXbXtyOGBoLdsDPEdF20xAu6XBrDf1uiGeebJnhXXFZu1YIjtlrdumgbOcEHeewKwgAGp1N+Ef+7ardstcUJ40q+EKxySPdeQSoJUHvmQ5LfkUD1bXRnKw5/JBh44wrXTQtVt6ZvIpTvz/qzl4Dh0VJwF/VmsewsDuBgsDBt8XUfvulqvnUCY1z/5NWdDONcHdMg5iWLnmOSEWXIh6KJU9JyNIBBzGAtRw/ISy8plj7oHE7WNSimQXmOkcPnFsgDv/bQnLi+tj5W0vAS3SQzYZxP3wNzp48FAHC5b7h521vCHiqxKth14g+Vud/EwRrOwQIBMEDKUIBrTlUSYWXfKsjRJlIfq3xVKL4WKr5boSiDuBL11RBbsPmltopZJbAJCwYFwilkNJuVkNxK2zemTB0u3o13WeyOwVCSNHxUkIlGrNbS+sxKKLfdAWn2s+lCW/Be2a7iXWRbXmYTC0VyaU14brfdB+hG7Iv0f2HXKFqFzO854CAfCsgZPxnejMrNyKNSjQzLWm7SGgpaLsLofXetNsk6+IJYtWlghoW+oFQ60mrOIcwsjFB61EcZsOGnGIlR20Xib5mABXC5o58xIEDPUxvtyd/PK5I3QZIAkC3WEmDl/Pd7Og81gNIYNzIQzZpxfkqZgmFBER5a5ZMrKQMV0NGcPWVXuQk+w3d4FQ+TMsLsHKmN4yFmtJ7BsXxCcvxC1HcZt4Ef3Vx+xjIixLlz2W5d2+f4FIgWd2wyZRWtyCxOSAQ8DtLMnr8weS9FojwuYYtyN49NdJcm4PAZ1jokZJgz7DM0/2rHCZCHKS/XYqsZDFC6fv4Lus1fnU5vG3DofuQWIl334LTRgw+CV+eOSxjoB8pQJdrPkwlKwjw0Em7pBdCcTtRzWqTRd3iHEYG/edfNB5rIY8flGmjLdrXIacQ8ufMysiANDr6TsPJMFoF4qJtchCt2wMXl3NswoBoWhUamLfWPqNLLo8aWpJrryZF/F9re47KZOiz3yWvB1ql4PyALvSIgrluFaZS+y+r9cAACAASURBVIrIuO3fWNnP4VIAkt8wujiCZF5M+1KMie8XFvTISIY61jPN6jvf6uLBQx0cO2Le7WJBmAo1DHJBo8wJqhPCyC9FgR2OqRSA5Nexar0eyg6Rl3kKoKi8uNTaDVNjYuYZ4Bva990PX1EC03b4Ch5rNTelhR9KrpdlyHDu6BUiAICUQ8ufo5vltaCrdS+XvxXIETjn2YVAzIdj36EkXJwLlUj+cCMvkj/cBXmK91guX7g9jiBlQcNhTFhyc5gb4hNlHYg0SSO0zGI4PE+KHeBWnyAIWGzUGC1oAXEXFvToSLag1zPNShQVmTf4llnIYoFrKkogFmWl6jlZ0C7WYrLYeGCHiwUtDg/h17FqvSW3YhihEsWdJ0jMLwHwzD7oIARqVbslwKQNWMrl70oiUgGTIEgOXxeLUcyNE2QYut83HCrugVzVsBws6MGAoRzFE/S6dh90reZzqN0YyZteI05+eUVx0r2nLBR53w5zU/JyQctyHjTvg24neKzW3JQWgZqw0LwHYj5CkXpm2b8Zv7y93zxKi5yPzX/PfJZ4EsTtVidBMswswcGhFNBaWNDrTJlCJav0Qfe6Ie78t0X8IMpL1pGoo2u6dlEWtiZLQyz4sXEeIWk6FEIpOMu0qVRh5FQGMwUbOUDcMURr7jdcgQUthHqstWsOBcYYWOgWACRvQBdfbvwbSkSq7vANAz7eLj7XdCCS29x4Hm/PLGkrAg4XAjp/gBH/t8mCrtZ8+CWg52JB1+xCV1igrldqcn5ZWghoxkS1Ft190MAwz4UqfnK42y1o3yqMZMEF5EtvskdxJ0YB4IIqyAqlo/shpTyZ96XoG3BzyYhhs50PAHe1uLgFCwt6DSibZrW6/o4fHaC1HOLww+bbosREdw3QtSygTUnyYnPEi8hiGYvD19wu0jB9D+VSviAxoYG7Bom5Qtx54EvE82q+n1gW/racTjk1I09KhyiBaTt8gwhVcFVakrYOB16Y3GbFebC3jYu85L3T2OaDHvIrDatVD32TDzoQ69oe1CgjMoD7BQ6+ZLXqkBlVGDnNTd41EluuUR8WH7RQWlyg31hpsfDNGAOYIwKmwP4uSoscMW+N+pYQH8C8XmOF0sFfHfOTcsfpzwfGeFEdJ9RRBImVrD8/EtqGAtocjXj4mx18++GOsb/lpTDVr47i6+sMBe+ToCHPCHHnSQPhwVmeNThL1gZd4dxcFrR0eLho30A+yDXM8KJpJ22qsqUkojwm+VI63CJSY1Qh4sN0iLFQDkRy4YE5+VsBPt7CD8nb2vsXPHmyEmCAaUtlPt6mrIMk15YfRaZ1wlRh5LhGZL+vVomL95cbH2BJilCuPGgH5UbO9wbclHFXRYuKIdGtQdmSt/Eh+hZwu0vUd6o93ILEksp65r6BtA/aeD6IuJC6w9kaIWWeKCC/xrQtBLQsoU2a1KDP8Ngj/EYT02LpRgXVu93QeMCKzWIK/hJtRFSvrr/Y0qjZAxmCkC9IW3BWRhi5FCqRfNC2i0fCILF4XFJo8lp06Q1osqAT2NpWxzkFcTumiwDuh40Yk3JU0tRW6CWPopDklSbPm9uu1IL2rEImGHI3S6XioW8S0JJPHhitMAJkv2jElxbiVoSis2LrZi0C3CXjohTFbpCKC6rAcrkqZATMBhdng/KMXWdgaJdARfc0q3x9A7IP2pzzLdZgpcoRNiuKs45Sc1sIaFcLWr4L1FTvWkDWYaAPKGCMxVreYMD0kKdIqRgTWir9m3G7uDIX3U74W33fxVpMC6NcPuhog5uL7bOED1dfmoM/KuFF3oB2DTkRdoY+pcAz14IL4jm3KG6Gku+hUrYLgnTQl9vcuKetsFTKT14rMM6D1r1nkCiJxihu1fdrORzl93NDfKJI4dj1YObDpUBNsm/crUVAyoMW82PIgxZKHAAExjWS7F/AQYjK+9caTc4/XQPnMsqQDW6XctRNfAB8P6Xa5kH7PM9Yd1ysiVLJs56ZLAoOXC/aFgJaLEpxFZquSIBc49p07Zg8geKaMpXioK6JyOLVCHKx0OoWeCVUfHW6BSpHZtusxUzEco7LMmJY2RLU4wpJCg3Z5Ro8mRcBN5UMGrLY+L7DBkxb23nqG4v0I/PhK1vQgN1iLDlGrgrFLG2RuBzs7lHz/HccYdrIzVKxQNyBZL0AdsEo1rUrz2p0vQ3iTrIO9H0mcQpePmteUW5Mlqs8N7Y14km+WVuQWFxf28mST6MKTmlWvn1tpNvnQ3zyzj1grzse36pVst+UJlCt9aJtIaCTYCJpcxBnhuwD7hrqXQ8HDPUxvgh1F6on0LU5dD+pGmQR5IqPTGfthrEwErC19jUSYVTyUC65pVmJDe7HAXcWAVOS/MrGAiHJvcB5bsMRzxgt6FhDdvdBJykdOSxL3+XwZbGmDugVMsZYcvi6+FyFEioH3dgioh2tlzRfbmlLspvFCHGHqsJi4DlQIG6XQCGBbIiD3ZJm5aKYpSDuHD581Q1iCmqUhZE5sl2Bfh190L7nbkG7pLWlgs8sYx0/oyAKZoUy/Z5Ol+k4+qCDWDkTCry+T4E8rRdtCwEdGx6WxSAflh1TYNeQxZaxLidZbPAxm+CNFn0McWsObDXaVWtpR2yXHAqEqMIoV6ESl2L7ActlCYiF7xoUJdJFgDw+6DyHr3sRCtWyNLk0/JJ0+GoFtODD7fBNQZcOAkyuhGXrO81XUi3K9BtyMJzNBy37UE1wbgzLr8BqdRGKgJvPP3V9bR6faJjOgzZZrrISZys9mbYs3QR0KtDPFNkenZm24iPqvnHhRU5VAxyDxFYAcduMCbEmSiX7+SCQp/WibSKgxYbyjBb0YMAj9MYn/DgQjKLhkGFcQNeayGuhhcUQt2aTDWML2rwZEwFtjqgMJKgulzAqexi4FCpRYCOX4gKiYIVdM+Vj4OxzjSIqxTvYLIE8qWe5C/M7BrzIggvQWyUqz7yto7siD2QYQ6P6turvyLmr2iCxgKFUErW+mTH/OIUoWJU4nhLI2zrwKxQKi888QZ48a+pUqsBPLOQcrHkFbjem4klBYmalJY0quNYbkJULmyUP2LM8mKzsO6IyonCLOJddXGCuvnbRP+fJfM1wfGY6xO0E0pisB20TAc0/0xA3bUGXKx6qNU+bkyyCv8bGzRZ0oFjQ+nb8s25Jks/kJGotaEnAVMxX56nCyKUSkStsxEJeRlRopYBdwMjWsHNQlCcLdbpdCvavAIFDqU8RoWtKQ0n4SMbRxYIuyZCubR5LjqUQZavOCTLk7+j5UU31FdyEBOjTrMKAH+q29wyCdLCa3XpBLHBdIW7fYUxSClHFAucqufJADn+4rMRpx47FigJgG5O8EHdirNgsV4FuAA6KrVw0KA/E7YCAAZKyn9O9ASR7Qhd7JCtnlYq5YJMI3Fwv2l4COhUskm03kAS00RfMuHZbruhvlhKLuT5u8y2zuLKU4EHXDkiEjE2Qpwo6WAPK4HQYAAq8ZxCkAdG3zSrJC3HLfmtThbhAtniig0YndNXAOc63hQ/pILAevtGBWrH5oHOOXyI05DrZdojbxVWR+h1hBca+9uxvsJDF1q4tVYj7oDkfPEBH/9splCVPdTUZzrX6oO2Xu5BwrqNPVJQbBuyWaykqYeuUeuag4Agesryb+uZtypY9Ka8/1zERlcQAcwxJwks+iDsVe2RAtpIobgcLWrpUYz2ovNoO+v0+rr/+egyHQwRBgNe85jV429vehuXlZdx00004ceIE9uzZg/e///2YnJwcBc+5KXWAGiDu4YChUuFpBbo0KzF55YqHatW3+6BtQWJD5mRpiOhffpDpU4VUfwrvE6hWs23zwqJAOnJaLnSgJu6rBx5gv0UqZQ07Hr6+pIFbLWg/yT8Og0SBofn2UlWLxPyQ/UsHQZLOY55HIXQHNleF8/hJPDhUZgrD5P3dhR3LzD/1G0IhKpVk94ZhPISVVvGscK7g2RZtG/MsXA++Z7x9TVhoYn+1DO4e2Qotu1qLEspiVRYiCzpWWmyFM/wkOMteSYx/ukDRIoAPsEPcZOCcY5oVYEfNYqQgh3uDTCkLGcqgzyo3H3TC83rQqgV0pVLB9ddfj3q9juFwiOuuuw6vfOUrcf/99+O8887DpZdeiv3792P//v244oorRsFzbqIPLwPEXfW1Vb3E5JXLHr+4QtNOLM5KhW8ynaUtNLJSCcYk+SAKHBG/rYUMU1CdWdtUIW75/XQkR07HsGGY1SqTfGLPekiLPmQ4rd91iSiXLWhDEEgsMNLvKYRkqm10aHoKqlAz8UFq6voxL0VBN55nsqAjIZAjDQVwt+pSiIVrNaz4PRNFinrPQFIS7RZ0sq5dhIDsE3Uqa4nECrRVm0v3nc+CdrVcY+XGN1vQFaGIWKOKZSvX5QKWhA+b6yQMWKxwuuQHA/mi7MUVrYC7BS0Qonx1EqTYI4MFHbvAhnoomyuJWwji9jwP9XodABAEAYIggOd5OHToEPbu3QsA2Lt3Lw4dOrTan1oxqddNAvRiGAy4QK3WuDVGbdKUBW2AwsVGKUWCXCt4I0HheeYcXRlaMUVny/6UxII2w+FpX5odlhIapEkYyRagC1ScFhhukGuYsrrtaVYicA4wwf7Joe4akCIHo9gCXkQepW2+k2h8dwQCUHyLznCxe9Q8/w3+qXtPtbQqoA8QlPNKXQL48gQSykKR82OO9JfhXOeAqBz7Js2LKU5BUcZdlRaXMUmtE7sF7UlKi9kHjWy/LrW7HXzQcsqhaJurUIlFaU0QNrfgzS0FcQNAGIb44Ac/iGeffRY/+ZM/iR/+4R/GwsICZmZmAAAzMzNYXFwknz1w4AAOHDgAAPjYxz6GRqMxCpZiKpfLmJiYBNDB7t27MFYbAmhhYnwKjcZEqi0LlzExWceu3WMAupicnMHEZHqIhr0OgGXs2j2Nk8cWceJYj+T5yNNzADo49XkNjI114aFMtiuV+qjVfDQaDdTry/D9KtmuUn4WlSpDo9HA2HgPwyEj23WWWwBa2LVrZ7TwWhgf34FGYzzTdu7EIoA2Grt3oVoZAGhhcnIajcaYbjhRr51AqTRAo9FA89kFAF1MT+/C+ER6nBbKfQCLmJ7egec9bxLAIqrVMTQau8h+y6UuvIqHRqOBickQs82WdS1Uq0OUK3z8p6ZmwcIedu3anUmDOHlsgb9nYzcQdgG0MTmxE7sbWbuYv1MHjcYu+OjxtpPTaDTqaX7LyXx2OwGARUxNTaDR2IlyZRHVSp3kn4ULmJgcR6PRQK22jFKpRrbzWA/AEqZ37kDjlDqAJYzVJ9BoTGvGr8/bT09hzymT8LwF1Gpj/J0J8rwWxsZq0brrwPd963gPBiGABUxOTqDRmEGluoxKJcv/wjyf+507d2DPKTUAy6jXJ9Bo7Mj0WfK7KFf5vI+NdcEYtHx4SHi2tQXE5S8SvxWaXwCoVo+jUgn4WtpxEsGwj927d5M1l/udNoBlzMzsxM5dVQCL0dzs1PLCU80WMDkV8VJeQrWaXSPlchmeV5LeswPP088NYwuYmBjj66neRsmvGMckHHYBLEdzUzfyXi73Ua3y356YCLC80NH2XfKi9To9hVNOnQSwgFp9XLvfAcDDIsbHx6I12IXne2T/XGkWY7cL1eoyymU+PvI+VOnI2CyALvbsaaDbagFoY2oyu+9PHJ0H0MGePbuidl1MTe3E5FQly7PXRr1uHuNR0kgEtO/7+PjHP45Wq4U/+qM/wjPPPOP87L59+7Bv3774381mcxQsxdRoNLC0tAwAmJubjS3eudkFjE2mL8XodgMEQR/9qKLWs0ebmJ5JD9HJk9wUaLcWEbI+ut0hyfPiYgfwgLm5k/BKIVrLPbJdp90HA0Oz2YTnM7SWu2S7drsHIECz2QRjQ3Q7Adlufr4f/f6CxPM8auPtTNuFhR5/ZmEurpx28uQ8ytVWpm3CRweI+O10+PPNEycx3kmrlYvz3IxqtZcwO9uF5wGLiy00mzR03esNUKl6aDabGAy6GAzo95Op2+khDHm7bo/fLHb8eDO2OGNeFqP3nJ9Fu835ajbnwLzs8l+S2rZaYkzm4JfTm7XRaMT8iWI1rVYLzeYQvs+wvNzJ8M8YwzBg6Pc70XyH2vmem+Uq/PLyEqr1dsTTEppN2hQV473cWsLJkz34JWB5qY1mU4PwDIboD/h+C1mAbodexzIJFKjdaaHZDACEaLey/MtzX1/uRO+zhGYzez1rrzcAPD7vDEN0OkzLx2A4xGDgRTwP0evq25L8ejS/ANBudeJ92B9w4X/8WJOEM+fn+RwsLi7Ai8yphcVlNJt6GEKUO22325wXn6HVyq6RRqOBQX+IwRDRmATotPVzEwYMvZ54pwDtdmgck7k5zuPS0iIq0bpa1PDe6fTBGB+TIOih39fvyYWo3+XWEmZne/B8YMmw3wEgCEN0I96DcIhhj55PYbl3O200myE8L0Qrmkd5H6q0vMzPhNmTTbTbnL+TxL5fXODtFhbm0O3yuT1xfBbdXtZUHvSHGA7N624ldNppp5Hfj9TdPTExgZe97GV44IEHMD09jbm5OQDA3NwcduzIas/rRWr9aCALYfH0KYZKlfugAZD+ZQFJliSIm7p3dzhgKJc55MPLHdrhLCMULsNehijudERi9J0GDiIjOh2vlAPMqTYyVCwCb9yjuB0vfGeSP9wQGZuC/V3Tm3JB3Pwz5kXzrowB4hYkwBxLQEXYG6Nopeh6wA53qhG6brcDJfCo+A3K75/LB63AubZIdVfIVcevMSBKgtoBt+yHOL86RwUvAMba0Km5MbhBMtCvQ7Bf4o6JeDcEzjGpapZrHnTK3+9SqCRer3qffBKPkfDiGtTIH5TOfcodF8fLJC4ZU8zEegaJrfqnFhcX0Wpxi6vf7+Phhx/G6aefjgsuuAAHDx4EABw8eBAXXnjhan9qxSQfoLryeWHAF5nwLQN07nI6SExfhCQYJhvdJHjFvblAJHhN6VjCB+0QxZ3yt2r8f+otT5xv+0GjBolRz6gXm5cq5kIlahQ3C+mcRd0zptiCOKpYCpyzHb55/ItygAyg9xvKJUcBSyyBlAfti7zfvAfkiIPEVEXE19Ril5VEXoXKHNToKgRk/1/ZwQ+ZEYqmco8hQymeP/6p40X2464kehoQSqg+NiR+T4M/XK42x/t0WatI826op8+Ff6I8GWsqqEqqQxU+kQJnay9XRwTgfMucnHFgOt/CgAGekA82BR4ZF9pa0qoh7rm5Odxyyy0IQ3714mtf+1r82I/9GF7ykpfgpptuwp133olGo4Grr756FPyuiMggMWWihACtlCUBbbCgyxUvzl3u9xmqijtTjhI2Jb/LwV+ViodFQ0CX+D35LuFsehP/TAc8uAsjmyUlKjMBZqEoKwpA3mCXpF9T1R45zcpU71vwIhc6cLFcnSPbpQAZQH9QBpLQBfh8yxe06PjgfboG6UTtLQckyxlwBWQFdLlMI0MyYgEA1aqvRZBESpHozxYk5uU4pOX1LfjRW2kJvzbEIjM3DuMnR08L/rU314XqmLjxYbupDUDq4iAb70GA+FyT0SSfSNmk1qtLEJ8L4qPOY6mkRyS1/RvmNAi48i4CNwHzmbmelcRWLaDPOOMM/OEf/mHm+6mpKVx33XWr7X4kpFYS87zsBMSWsSx4KQEdW9BJVS9qsciWcaXKU0LkSFFBgSLI9dGuDPVIxS+X9bm8smDUvWvcNmcxDCAp9Sj40D0TKhadS41b2boQ/QqIVMe/ugFJy1WkaEiatMlyTW7I4m2sgkC1jkp0+l0c3Szl/dpuL0sVbzEK3HTfLmVYV1IYBkiPOVUSN4G4+b8rVd9ikfC/xykuhOKZ5dndgk6EANDToUlBMn82xYypAsNFGElGgvgN6p54xlgmN1yvjCtrJE9keypjQr8XfD85cwDEbsBsv0IJtmdVyO19SdnXViVU0uXKZc9422DMP4X2aVxgsUJkrUdRXDc5cpI3qtCS1M0toOVK1YusTzp3eTjgB5rnJYKcEtDBkMXCIPbDUe2imsUAXxyDAV3lKgV7GbS8BM61p26lhVHCj4lIiJta9KR2b7IAWZwT6V7LVz5U+SdlQYQp90DUTnNQM0UIAHlgQ/Eb9EGpWpamMVEha37bmHn8OA+yD1DDL+W7zJFX6ktjTtXwTtKsIgu65jv7oAGab/mec9E2tLhB5PQ38Yy2hn0o5fw6p+Lxf9uuXeW8IOIlekYz5pl5lwrrWNu6+OUz60SPtKjjDRhqKlCWeQ7ER7dnAMKCzgNxO7gt0mdr1M5BoVwP2nYCGqDhJXGAiIWoK1YiW8ZVCeLOtksOeFMZz0BuZ8jBCxQoEKAXkZyDytuaLQGx2OIKZQY/MZDOgzZdghEqGrLNP5a2oPmnS/5xAiubrXnBhyj8YTp8Y63egkDIfADp9UVC3BkfdFIUgeJZ8CDez63Up9Rem1cq+k6EuVPNcaGvSlYg/Z7Cghbr32JBS9WqAHq8KR87YAmcE8/IQkBbP4Dgw3LTmEvwmYkXUsFW0AeTskAKLuu94REfDkiLDLXbSgHnRRUohYXHAdmRJ/fraKnzIdtOdSkA9BksKukVt1mNmghtzQRxA7zcpy5IrKwKXsd2agBYGEQXSjj0F1BaHrlpE6s4fldDkJi82MoV3+GgYam+AZ3fl3/6ktVvrrOc3oCAgwUdpufUxIus9doKhHiS0uIUeKMc2DpfoKq0mIoihApkWLYpOBkLxlC4hRD+gLsVGP+GVsgkPABc2aXGW1jyvoPlquXZRQikFHOdgJEKlcTZD3S/WV5yrBGL1R3X3HcaE7qtS8U5GfbXVxJLoyWcD12/ikJuQRWyqFPUP4UUqBXhnKO45aI6HjyfXi/CBy3alUq0MaXO+3rQthDQcrg9QGvSgxjiRvRJ+xFFOVDRRn5WpkAW0FH7vjLpGW3Z4P9Ip1kJizz7rrIlINqafNCeKrjyRHHnPDxspQLlACDA7dBTD2wdLyXJb2S0pBQIyzUaFbCngWTRjXwCyXaRRIoHg1WX9UO6uxSAtFJEWT1kkJjpwHNY/1mFxWzRyf2n54W2MAMCzjUJc7nfskNaYMy/l+xhE/rgO0Cu6vjlu1Qlecbsg474sPSdVUAsMRDx7VduCJjcdzmCuO23zCVrFdBH/qt+ZZ0Cr+7f9aBtIqARhdEniyFjQasQt6aM51DyLYv0JJ2lXVIEuWpBJ5ZGWpCrh1kcOCKCbkwQt2IVlyy5trIwqlR8JysqG22tX8wl6fCw+aSyFrSZlzDMauA0hKUIXYOvLoMquAQjKfAlzw/OCi4RxV1SLWgHbd0KcStWvKmUJGXtACuwAjVWj2pBV2q0BR1f7OLiJySsVhvPVGAWv3Iw21YNQDP1nfhbE4jbPdI/+Q3Kh661oDXKOG+LqC2MfHM+0mNiylcWN40BiM8yU1veL5J+HYIaXQLzqKh5wH4+yD5oQB85nzFqdGmSyr5ZD9o2AloeU35DTLqNmLgY4q56UXk+pd0gaQNEOc5KO3FntNgwor0qyMViz/iglcNMvuwBAMqGO6HV69AqllzbjDBy8aVFjwgI2OSDVq0Mysck+nUJPks9Q/ig6SAQVUM2XVJBbWozH9mAF/6pCi4K9gfMFmMqoMwSlQ2ofjq3ti7QqMyT7HsFsod2EDCIG6QAoFrxMSR87YkFqLpMHN7PAZbXCQGbFWW75pGOhNbzAWSVm7JGKcqkJxoCQtVIaJdUSdUHbXI9UW4nG6rgXNgko7DwT7LAj+jbwdpWn/MlE1qn5MroJGCwoAuIe21IFiqAHuIulaVDpeZjOCA0XAm6BngAjGpph9Gd0RkfdAbi5p8xxK2BzFXYy1SdiRK6JmGU9s3qg3ni/hnRv1OaFf+3zseUhqv5p4s1L1/coAvoUpECW25pfohbEVyaA0TVwAUSQl05mRW4OYVRxQRx0wd73rQlndWjWiSVmk+2CxQLsOSisEhR7VSfqWdiSzfq3xTpnwmYdMuV5/2uAGXRCNPEgub/NgnolfjlVUvXaC0yYv9qMwNEv4my5WLJZ90Kep5dkDuVJxni1rl91Asw9AK6sKDXhDITpYG404I3snoVP7R6TWGV8FUPFcu4VOIHpypQYx+0YkGr7UIFCjdaXhkftHvSfbnsEiSWHUuT36iUsXgoDZl/qv7FPBvQFNDl6mPifGddBHnTrHTWfB4LOilTGbV1PPDkA1JX+Ul34JksdP4bSPOk4V+1SKpV/gNqzASFEgCWKO7YZZL8lp5fBcUxwLS0a8PQr5czipuYH4BSWsK4z1Q7F7+8g9JCKVkuwt+aZqW2r5gRs0RRsM991gdtR08AwgetgbiDQA2WdfP5rwdtEwHNlInKLsrBMF0UQ1QTU61ZOUgMoMt4ikUsFpKuHncMcWeCvzSCPGrH70XN4YPWBMbIlZkAriDk8UHzd6QPdgFzei7+VtXScawLrsLRukOVtqDdlBYXiDsDX2rgumxQIP/UKlp+2io35f3m8dFSwVO8Ldl1TFThD/5e2f7lQ0zUts+4blQEKUfQoROcqwgBazEbiWdznELaZeaS3pQpZqMReBkL2iigkWrrgjyp6Em5QityaqCfX+JR0K6Bcya0AqADKznv7nPvdDWuizGhIj5lDwONr5rzYfzZkdI2EdDJJgXo/FNV8FYJC5qFDEGAjKWdEeLR5MpVvqh24mAT/qhSiZcitR1kscB38EGXKx7AaB9ZRnBVfLu/lbSgs+0y8LnROlI2t7DorGULsz4mvQ9a4sV0AYEUuQqIyE8zH1nBRQs8qroaYIdcAXtQVFZJMPWtHHg5fP70bxAWtKz4RRB3FhlShIWhiIzeirJbi2rlO+qiHGq9mnzQqTiFaPyo4DP5GYCIU8jcCaCiCqLd6q1cIBkT4fLTCXXK32rMfojH2m4RA8R4GJRVtUpeEpxoU+DTBsjqfdDp9boetI0EdPJv6pKL/MdjQwAAIABJREFUQV8R0PGFGcmuSwLJkGrX76erfw0VCxqg63EHymaM22l90G6LKNXOopmqfeYJzBL9u1jyxkpfiuDy/EhRWYEFrauuVlLhS11RhBDZTW2ts6wKmuhwUp7TBgBpxs/zs/NozUO1wM+8LSJ++aezz19jkVJWYMnBgpZvEQKSeXe6fMUBZaFyj/kzur7T69U1uNIpvUlV4jTPiN+M/eG+PRAziyoYLHmNUM+4YwgBbaofTsVAmHjRK4l6njNpgXkhbk0wX9ZQ4eeIiogUQWJrRBkBTUDJQwXirhBXTpKCt8pvXpIXi1r0RLTLQtz8U7a0KcGrBpOJdyCDxNSiHAaILGs1+E6ViNJRzjqtNJu6AGh80MrhBYi65HZoOW3Nu25A/ulmua4khYZ/ZgRX7JcXrgoaMdHxAeitXJ0fP1/aitt7JhYp/6QQn5TSqbn1LUmzUhQ+DQrCf1sII0Q86/lNos6jvjVCgxZGJh+0Gnxk54WqJw3oo7jVvH1zdTXBM8g+KT7sY5K1Fm2uIZmX+P2s1djS7XMVZHHYly57OWNBl8VtegofhKG01rQ9BbSIlpaF78DugyYFL5FCpfqgRTubb1nXjloY+mR6Fc5N855qm8mD1ueJCpIvywCEDzrbLlSg4pJBo1ZrG/N+3S5DyMCS2jGhrFE3y9+qtGh8utSVpoDi79IpWirUblC0gHwHXuZig7xR3Jmo4XQ7VwuaCrqxBi1FbcUVnG4BUW5CUV0jrvUDchUIUSxoyj0AOK5rVSiKIDGjooBMpUEgK0iptWrak5nAORvErawlP0ptMwWRuhQlUp9Tz311HNUaE4AefSos6DUiNUgsjtCWIW7FB12KboOSBa9azATQCPIIjrL7oCMBbfFpUxZ0uaKp7U3AuTJPMoWBCqPy5WArKKIG3Ok2lap9cz5MB00aNtRdsJD8RhZu19filni2pK6oaVZAcmCRfGiEI5Vm5UmBX3ae5fHgn+7lO6P2udJW6L5l/gFCCbBY0FqIW/FBA6YI2qzgci7eYjnYSX+roX5AxrcZx0yY943Mi66wjtadZVBsk+tfo3KWFohbjSGheKcs6DyBc9a0LCXtzJTalhk7AwKWfi7rJgrDNFKUZAekxxugBHR2Da41bRMBnT4U1WsiWcgQDNOWsefxe6FdIG7eV2J2khZ0NXtTVQxxWwKYKNhLBwFTAVEy76m2YZIGxduKfNVM05iowAud31eN9tbxoVqgnBe3AiEq3E4FjoQEhAUYoGUlmhcwB6Q450ET91uXTa4KeR5thSIUC8apCIqwXgxQe/o3+KdcrYzKPVchw1LZg+eZ0gel9yzTOerqZRniOZMfMlSEQFnrg6aFkSkgShZGpktuVP5dLejMmeDgqgCgLWcp8+GR+9Khb40vnOzXdm2jsmd4/7osjPT82NCkFE/UPEnPxW6nUradbr0WEPeISQtxRwJaFIqoVNLP8XrcUpCYsKDlIDHhqyag8JRlXIl81ZKVEgTcopIPBhoK558qNKqLdk1bJOaDmtpUtgsIVAtaV4/ZVw5pwM2iA8x3Y+t5yfbPGOPKAuEP18G/VHCbMXWFpfkXz1AujZKyuU3WUZ5ApKzrwfSOgl/zuss8p1gy4jpTqlCPfODprj1V86ABQ0yDxk9sVJyU7ABd8CGtKECbnphXGAFZJU5XWEe8exputylaaaTFXEksnfmgtRaVgEbOh6mGfTaPHHCI4lbQKmo+VWvb18xj5jn1fCAELx0HgYj3dH8FxL1GZBPQQhDIFjTAq4mlBW/UjrSgCQEtC1SiXTBM++oAd191ueJhQEQaqv4/W7BQ+pC2Q9zZwAv+mSlrqVjQpk2lHl6Cb6c8aAWuy6bQAHJFJMCc0jEK/yIXSLQPK2NBaw9fDSzvcAsX79c878AKfP7KewK0Xy9QlDPAoniq0LKhcIvqJ85Tn1w8o4XaqewHh/iKPBd3yNXKqMI6eh800SehuFtr3juuE53byeRTVhV3ql+5PQAln1zn7kkrWoB7EKltD1HGjx3iLizokRJV8s0vSRZ0fJOVIqCrXiaQDMhGZ8t9ANzaKpfTBwMJrwTIWlTVqHCApEmGGtgLjIDrAvqgcRICDgeNKhRN/lb1kHYNdgHs0dNqVKzonyk+Jh2MCmiiuAPVv2gX0GotboCGrlVUQbTTpdCo9cMBU5CYmhMOLd+q71LHb/Y3+KcK71KCV1U8TRa0S8SyPu3HLqBtiohOYQH0WQeegxVK8aKuEXXu1TrmcbscipZtTNz2L9238y1wlohySuhytxbdtxzYJnixQ9wMUMYbSM8TheLoUQVEbY0/O1LaFgL62cU+nl1O74SqFIwl/MeVjAXt0UFiRDCZakHL8DYgBabJgpyAPCn/R0D4Pqh24n5dFaoTPKlE3QcNWPx6RB60ygdA+1t1GjLtgzYLDLWmsHgGUJUg9w0o+qW0bqpedsx/XMDDDBmrPn/AIJB06XKGGuLy+JkvMuGfrkFRghghZai8fUo5qxBBjVRlJl3+sZoLK37b5AahLH4KAqbgXGvVsdwQN80/VYVQFQAmN4gquHSphjIf6mUwAAX7ZxXgkhH2Tyu2pvUn+BDtBOmErpoOCrgplDxWQF6r/DMNcfNPF9QxVigLC3q09Mx8D50gjK/7A/jmEMJSTJjI14zbREJcLMjBgENbslD1PI/7qhVBrsLlWgu6DLLdgBIylkOBgqW86AJyrb/aMVdZkKv/TQvnUhqycjes4EVXSxrQ504DygY0WEdURals6hnI90s9p1EWKOuIgn71hV6Sf/tRwQrdoaRaRkA+a9R0OYTxOQXiZozpLWhNFoO6nqi0Nkpg2KwoMhCJEHZkoRJjZSum+E4B0+1X4hlAFRi0O0uFUHV7gd5jljFRbnjSCVJdChznkeiXpZGVmBfHNCvAUAkwJMbESaHUKfDJd3QmAX2mUXEQa03bQkB78BCCYbmfrKxKLblOUkRqZyDuGs8LFhNFCV7xnGpBq9Y4dVMV90FnF574LUEiopeC1Sht0EUDp8ob6gpKpJ/LBnNRz5CbylJwQYW7AHNQlPoMde82FQEfRx9nciKj/3cMsss8p0K/GcuStgTU1A/OdzZaNM/NZHF7Qx50Bka1BOVBoxSlUJyQtyN90ETQjbquS+UoF5+IaeA8S+9nOaS1VisxL5m+TW4QJXbD8zxULIJRD3GrAjrMKjfagjBZhc92cYdqQfP+KaWFVogAfa4y2a9hvQLZPaNDtbJ9663z+DeY3ZigUlhL0fmgq0eh8rKWtE0END9bBpIGWqv76HXTFnQ144NOR2gP+lnBCyBjQas51aKN6ENQEBBQeEXTTgOFU/4UFYKhNyD/lDdgtVbK9CmTuBbSBiuL/ilFwaWMo+AZMORRUla30T2QPMtzLt18kYkCQvPBeYn6tQSxkD5oQ5COKnBNgTGq6wHQB1zp4GIXyBAwC2gqbUXHS6jU7Abs8CL127oiMmRQm2Mao/H2NQKtKFXMAkPN5QV01QXpOAWAjiqmlDIrAuZg6ZKCy1rgR+nXoEDRPmh6DeogbhcfdGruhTtO4okqUiOyDqjzQb7AZj1oewloSbOs1z30unwHD/p8IlW4Oa7HLQly1coGhD87nY5V1gjefipfOnuQxYJcsYypaG/xW3F/Ggu6RGiyZmFkgaVkmE5zh3VIQHUmCIvz4m656oSiyj8ViATQBypZ0czBgk6ER5p/1+Apqn8drKedG42VkUchslcSE4dq+j2DYTIGlLADkmjvVB2AILtWdWuQEYdjuUKXZEz4jd5TUShd0hjt2Q8K32XPHKdgUDDSvLBsnIJmjVCCy5ZmxS+YyfavT7PKwv7k5TgsK7hMQXzkWVLRQflp/zZgD4YTvyEr8D5xGZEudapMuJP4mWb8yZHTthDQvudlBHSt7mM44AfYoM8Fr7rAanX+724kyHUQd62WWONJO4UHn/uq5Xa6vFgga0HrtGpKGGXbulUK0qUHCTIJxdWkFFH92ooRuAeJ8U8X+JfKD3Yp4kHBhsJSkwUSLXSR4Vm8Xx6rIWR0UJ7uNqtMVKwGapdJl2Yl80/FSwBRhD1LH+5kMJlG4VNz2QXP8m9n+I0XVrp/1eqm4Vxo+1YDogQvVoibGPOs0pIHZdH4Zi2ogso7hSokdeOT7/IEzgm+bUFiZECmuheIte1cq9/yHJXCKnih/PLrWaQE2CYC2gPfrP2UgOYD3euG6Pdpy3hsnA9PtyNZ0JSAHuMVx4SWPBxkI8IBoKZUJguGWUubKh1KWV6ktUjAUgC9UZISd0pbgy+S8huVygAofw0FeWkFRrZf2204ZJAYcbjrCtybYH9qU9v88hnYsBIJJMmXqlYHE+0AOrLYJZc45iHMQty6Q0wHGQL5U4XUdRhDo+XsgSe3A+hIfwpB4jxnhZEN8SHTc4TVHaTbAUqaUEVA3ES/jAiIsgnoMPtMhVgjQUBEcetKqlKWfDWrCKX4oNYqcac95W81jbcaOAfoXVq8Pf+0VfoC6PcsOSiUallTgI+lU9yO5nwoLOg1oATiTrCw2lgkfLvcglb9zwAXlp4HdDsWC7rugzHE104OhnS7at1DL1WZDBlLu1zmFpssyMMwa2mXylEgg2JpA6C1am0aRfr3TUIgiYpNvtMFyFDapr5uNwGdWgsdUM/wTyqKm4INXSpb6dqm+acPXyAbI6D1ubqkZJks6BypKGoFuRQfLnnFKUUKKf5NELfcDgCCkC7UAyAT8a17P7VPlV9K2QI01aQcL1Qh3QmWgDW1LK2OfxOqRlnQlDUMGNxUBO/agEYlgE83N3F7NQbCVLubiLDXoSek8hmnd2r8G0DmDgYgu4fMFrQdsVhres4LaMYYPAAh0kFidQFfd0L0uiGq9ezAe56HWt1Dz2ZBx33xFBMwZCxjgEPhQvAyxsh8aYD7tPuKBa1qeHF6lyzITdqg1gftLozUKw2TZ4h8bE0edBgmB2KWl3SfgCGPkrC6KYieyoMGbIFzsLZN8cJoyBPIBqy5wLRxupdjPix/JmstUHAukI1C5n0jw0f2N2jIGEgOVWG5ubwnXyO0IO9nBIZ+jI2R7RrFiQpsS6e1gSzFKXghMxSMSlxWWOiqC2YVEf5JKnE5Yf+Q0UgEZUHrlCzSgqYUEFOalSFzw9XdA6TvQKB5Mr8rlU5GtQNoBGyt6TkvoIchgw8PDGmIe3yCv3q7FaLbZhgbo4eiPuaj2w0RBPxCDQoKr9f5s71uSBYzESRfvhEEfAFRAr9a81M1wKl0LNFfanProrgpC3oFcC4FcQLZaNTY0tJZAoqAJlNQHEsF2vjXp54ZKgURsKGq1aeeI6A0ymKkYH9z7rZ6uHCFRV8oItu3Wv9d9K/jwxiJTEDGKv/UhTJUu5gP16A5Cg4nCk/IZFKcqFQ8tdCLbt51Lg1rnALhglD5Jy1oTUZDGNBzrvaZ4kOzVuVAP86HSShqLGhi36j9xnwQaIw+ZZPiBREvBgFNKGhlZU6pWty8fyqKu7CgR079ICSjuCtVH9Wah8W5AIMBQ33cIKDbYRzcVSMs7doY/67XZUYBXasnvmrqxitB1C1aVDs1vctkQavRkbq6skYLWmwqC/SqE3RJ4E36+5VET1NpNwClIWsgLMIfrh2TnOUTZf5Th++Q8M0S6TxaS17jrwZEII2bhUn5c20+f8ACGYu69hYBnV4nhOumxH/D7ZC2rRG94kQpCpQApV0EtLKgq7IFZOsH6PgnK4kZfdA5IW4KadHA/tm5iUokkxY0neZH8S14B1yLHtGIBZDOisnyBHSD9P9XFQGdIGzpZ1VfteC58EGPmAYBiwV0X5msiUkfJ0/w005vQXvodhj6USR3rZ5tV6sJf3aYVCXTWMYAh+9EuxLVruomoNX0Lq0wIop+6IS5LRAJ0B1kyb91go66mpP3yz9la8f3+ebNk6YBcA15qLgHRH+pdmSUNd3WGiQWMgQs3ZcqkMKQ55BTsQQA7RPVHUq6wC8XCJXzQsORKh9OvyGtaSCBuMtKyqIW8lf48DxPXz5UK4w0/BqEkaooUAev1oLWpP0AhuAsauzIMQkz1pxf8uATe4FUWgjkxvmZFBpHw7nU3Oj6NQaVUT5ozXzqfP6A3oIWNRu+cHgu9b0wfsTvB0NaOStX+P/Jt/SpV/muB20DAR1GlcTSPmgAmJjy4whtAXmrND7hYzBgWFoUAjorKMsVXi6v1wljwSqisWWK86p7kqVdzjTL1ADnd1UT7ap+OirckFIEQCNEs+9iSuUB7PCeSdABtMAAsv5k3WEAyClR2d9IvacuCERUrJL2NxWsxt/P7Jv93kIfs90hHni2nfBRTeYaSJQjNdee8pub/GKA3iJxPSBXYo0CmqCbMu9LvCd11aqufypSHUh856vlmfSL6qB2ArrUCWgq7UeXIiSoPwzRHoQpI0FXvIgSAnQtA4PSots3hKWrs6CpMdGdD2TwmUZB5Hy4z6fRB60JEhO6cqgoztWqqA7J/60zfii0SrdO1pK2gYAWFjSD6grZOZOcljt20qrRxBT/fjaytCkLGuB+6F6Xxb7jGiGgxXe9XhhPPG1p84OBW11cmFPBZJUa7U/R5Zba6nYLfnTpC1Rgh3jGFhUr85FJoYkjss39ymRSFsgAIJegJWPEtx6+bPdDMADfX+jF38XKmLAs4xQ44jBQ4HaT+wFwhxh1463LnwUc8r2V3/A8jyuUXVURURUiZHgZBgxlSkDrLGilrS1HnSl1p0XfKh/qFa0pPhyVIZuL4Jn5PpYGAe5+ajH7jApxU8oCmYmxgtxwR0FKpXYKPsgxYdmxNq5XAlGI681TRY80fnm9BR09C2AoNUn2Jf+SuvJX7l8ecwrxWWvaBgI68UGHygH7vB+qwC8Bpzy/TPqMAWByBx+iE8cGgJdEf6tUH/PQkXzVVUKQC4jb5qsW7biQ5otNB3EHQSJMhxorTaSQ9VNwOP/MY5XofNBqlagkF1Ztl7yXTFTwkejXZAkA2cMmA/uLAKCM5ZfdgKbAOUAPX/rgB4GsAJZK/LBRLUudtu5iQRvnRpM+AxApS8TB7nThA2H1AOLe9CgVUaxBIusgE2E/zK4RgJ53KncbMCtx/YBheRCgK53QIj1RHW9XCzoMGdT7xQGz+wHgAZwMQE/mJboJTyhxSWZH9nmqyA8VdKirIy2IV9dS3pNEFQzoBgn7G9afY6qfeIYqmqIqzQlCpRHQ0dcMLDXm8dkq9mVA70kKiaDSXdeanvMCuh+E8COIW3FBY2zcxxt+agd+7P+Z0D4/PuHD84BOm2F8wtdWkpmYLKG1HKLX4xoZNen1KJis2wnjhUVC4VKqic4iASgYlX+vWiVCMKq51UC+IBOqpKV4hrEEDop5dqwSRflERXsbxK3yUq3xCnGCV1FOVWtd9u1jYoMvAX4QDBWIRo7GF3NDCiTFOjLlqOv40BXPoNoHRD62yGc3RatTVg/A17BQTIfEXegy/xnLVXM4ugbomFwyx5cGWOgF+PfH5+PvRJ3lNPJk8LfmiFMA9GvEAxAqKF6MPkT7Mi40pNnr9OUr2Xk058sTkd9kgZ98CpEuilvtVxCFxgB07j59KQg/M3o9+m5NIZRDAD3CrdCLYyb06KTKuw5VWEt6zgvoYQrizi6U8QmfFKaCfN/Dzt18VnZM62dnYor7g1tLASl0Ab44SiUu7GNfdZWytBPBm1he2f7UqmPxZe8lVWjRGxDIaaVpYOW4fyGMtBXNaO2eihgF3FK+VKFUVZUWjRBQ23E+oj5zwoYe4weBGoQoB/vpCiIAWf+iKUddxweZZqWtk64RSITvN/Uc4YMG0hXydAee4F/4/ljIohrzdkQB0Ke4GC3oIQMDQ3dAzIuimOksaDVNzeZGMqbjIW1BA2klzoSyVGo+kRueH1VYTboXkKBl2X6JPG+jS8addyrfW8So6CzoVvQ9Ry2S/pKzKkG2aHRSBD+m0bj1LvVJHPv5qNls4pZbbsH8/Dw8z8O+ffvwpje9CcvLy7jppptw4sQJ7NmzB+9///sxOTk5Cp5zUT8Fca+sj9NfWMVcs4Pn/xARqRXRxBSf0ObxIaZnaEHueR7q4zxty/d9+D5tUdWkvOpKhfdFQuEp6LoUHY7Z/szWYrqt2c8ZvUdGECQW+vikXhhR1gvnJb91pONFFJzp9xjqY4YUNUpp0YyJtaQk49ZRT4HAq4rgAjTWUcWLq9UB+jQ1a9CNellBFP1L+6CzA27L99ZZPfw9IyEzoMcbSB++QuiRiidlLQY0ymLLP1ZdDwm/yZd8jdB9A3y8xTtpLWibgA75GdTJCGhKics+rmZ2cF7yBXIBtGCkqhIaUQVtFLeqUPJPLSROLBPqfKDuyAb4mPPKjNmF0Y0taJZycVQVaDwYAtXxLB+ykRTzYVA+14pWLaBLpRLe+c534qyzzkKn08G1116LV7ziFbj77rtx3nnn4dJLL8X+/fuxf/9+XHHFFaPgORcNAhb7CIMVSugXnV3F806vxLW5KZqMgsmCIYe7dTQ27qPTDlGueFEp0eyE12IonKE+Zoe4kxxUWvtWfV2AKUiMf5pyFzNWayYgirYyAM3hS/jS5LZUAJQuDzqrtNBKkOxGyLxfToibsUhTVy3omoflJTOqIPpXC5oA2fET86g7IHVuApeoWNHWKqCpear7GA75vOtufAO4tdha5gNhQhTK1ShQUToQA43/T1VuZBoGDKFSoIjz4aHTlg9eOjujKu2vsegQ1ypxFgHNIiVuqAjoWs3DfCvtBtHVRlD3AlXoRfCi44PKDacUZ8oNAkhzo1jYFC/CyiXPEg0aU6l4aLeSMdJV1QOE0hKAEmP9SCFW92Wl4gGenBbIUCoTKCaBsG1JiHtmZgZnnXUWAGBsbAynn346ZmdncejQIezduxcAsHfvXhw6dGi1P7UiGoQ8zYqB56quhDzPMwpnIAkmA4BpTUQ4kAjofi+MAxZUqla55dPthPGmoWuFp33LuopjcVWkHiWM0m1NaRpU7iLnQ4GVDf7WcsXLQnUBLczFYRASbiZdHrQ6JqYiL3I7zocQjOm2VdvhG3IFsDtUBYHsg9bDl5ncTI0wj8u7Ola3AmiLRJfPaRXQGqunJs1/v6cX0LW67Ks2IwoAUeRlBcKIH9DKvFSVSn0GOFflI3GDEGiFpogHkChxncwaSerzm8ZETQ9ijK0ocI6CokX/rhY0QCBPjA60Uyt3Jc/Qe56sSsj0bXUQd8oHLY255wto3Hw+lMrcHRnHB2jqGKw1rdqClun48eN46qmncPbZZ2NhYQEzMzMAuBBfXFwknzlw4AAOHDgAAPjYxz6GRqMxSpZweGkutqBrY+Mj71+ml/+oh+88uogfefkpmNxBw+F7TpnF956aRaftYWpHVcvP+GQLLKigWh0H0MKpz9uNHdPpPnkO4CIq5XE0GjMolfqo1T2yz7HxNuBV4v878vQsgA5OObWBcqRBlstlnPr8BoAlVKu8T5l67RaAFmZ2TaPRGIu/n5oMACyhUhlHo7ETJ48tAGhjz57dmJhML7GJyR4G/TDFY7k8QLU6yPDdnFkA0MXU1AzGJ9L9LM4uAWhj1+4Z7JypJuM2NuT8VybQaEzD87oYG6PHpFpdQqlUU8aki1NOScYEACYngqhP/n5irMRznjfLhWupkvqdmZlZPDXsYefOXZg9zvlt7NmFyan0PM7smsMTYQ87p3ejUvWxOLcEoIXGnl2pdwOAsbE2PK+SeR8WLmBiIru+x8Y68LyS8v0SxsfHMm2npkLMNVvaNVmpDFCpZOeps9wC0EG9ugNh0MbUVF2ZXz5WMzMn8fQTc9i1azd8rw9gCTMzO9BopF1f/P07mBifxszuWvJ+k9n3m97ZxPe/O4/du3cTKWCzCAGUKul9Nr2ziSPfW4i/Y+EyJibr2TENugBaGKtPodHggaQ+egCWsHNnlu9abQklv6YZv1keA6OskZ0zs3jqO7PYNbMb/W4HwDJ2796Z2l8AMLd7EUAXkxM7MTVdifb+AnbsmMzs08mpAEsLHZoPRq+TickuwtCTxmQBE5PZNcL3XQeTkzvjtSl4mZqayPDC12s500+lTK+l6Z0n8cyTc/F88oyMBewg+p6cHKJ5vEe+Z/3kLIBZMDCMTUyh0diV8DTegge+JsJgAZPEewJAfWwZnsfbcUt9ATums3ysJY1MQHe7Xdx444248sorMT5OgPoa2rdvH/bt2xf/u9lsjoolAEBnkFQSW261Rt6/TGe+BDjj7Cl0+wvoan6mVOEq8OL8ALsanpafao1hfr6D+gQ3R1utOfQHaXWZMR4xPje7jGYzQLvdBwMj+/RLAVpLQfx/i4sdAMDc3Mn4YGs0GlhcnAU8YH6O9ynT/HzE+8IC/HIrxQc8YG52Cc3mEAtRPvDCwiw6XVXFH6LdDlI8drs9hGGW716/DwA49uxJTCkBeguL/P8W5ucwDJL/ExDk7MklNJsDdDt9+JM+OSblCrC40DaOidwnH5NhPFbiuTAIEQJYandTvzMM+DgcPdLE3Cznd2l5Ht1eWpAMh6LdCYxPljA/14v4mccwSI+fVwqwvBRm3icIGXr9TuZ7zw/QWh6m+RqG6Pe7mbZh2EOvF+DEiROk66XX6yEIsvM0GPJ1cvToLLqdACHrp9qIsQpC/l5HfnACnQjGbLWX0Gx2U/31+3ydHTs2h4CV4/SjPvF+w2EXYQgcO9bMWEJhECJkDK3l9HNB2EUQMDz77ImopGOA4bCX6bvd5u918uQCxqf42pg/yed/eTnLd6nMsLSY5ZHzwhACaHXoNXLkyAnMz/LfW24toNlspZ7vxWNyEr1BGb2osmG3187s0yDoodcbknwEIUO3R6yT0hCt5WRdBQFDv5ddI50e5+PEsVkMAy4+hBXb6WZ58fwQrVZ2bLvdHhjLrqVh0AVjwLNHT6BS9WN0geo7ZH30ugH5nrPzy7wNgNmFBTSssXTTAAAgAElEQVSbiaVdroRYXOzg+PETGAwYhkGWP94umU/hRukSfIyCTjvtNPL7kURxD4dD3HjjjXjd616HV7/61QCA6elpzM3xMmtzc3PYsWPHKH4qNw3iNCuWSbNaC7JVmpmaToZ8YlI//PUxXuWs3+OQFBUkxm/b4pd5APT90oKqVZ+8IYsqPCFDQDLpArM8z0tHLFtSw5yjio2FDiK4XS2L6PN8WzkIRBu0RNwGRo2J2meGlwi+VGMc5Oj5wYArMXQ0fhQUKF2kAuh955kc4ZxwpynHlbpcI3mO/o2xcd5Xe5mXutVlMVSlO9jFhSkknBu7KcL4dwEaXjT6fg2xAbz/BObU+cLVvnWFbwB9ABXnhedBZ1PxEl5M+yabncC/18H+w0G6TGXMhtZN4afg3DA0ux/6RNYBf8Nse+31lGTcSdpFpQuYBKL92w/JAkLiamEGltmX4mw1uQ/j/h2yMNaSVi2gGWP49Kc/jdNPPx1vfvOb4+8vuOACHDx4EABw8OBBXHjhhav9qRWRXIubSrNabxqf8OPoxl179AAGX0Rh7NOjLBqAB5T1OnJVHP1iU6uO6dqqt2TFz2jyoIF06kpyL7WeD3lTBQEdkGKLWua8UPz71sOXt8sWzteOn6ketwgAYurhm0TjD/r8qlLd2AFEWVCtjy4tcHTBbUl7QiHSzA1gDnTS+bnLZWBxPoj60VfbA5RCPYb0weSQpmMDqLZphqEJEksUAHE1qi4/HVCuAtXkygPQxgcASZBYRomToorNaVZ0ICa9RqL301Tso3iX4yCcUjuJmgp/9vVjmO+kUxnUq2iTZzQBh8p76qoSAlL9BaIW+yB6hxBZpSg+W6Pf0MZMSCWXTXE1a0mr/rnDhw/jnnvuwQtf+EJ84AMfAABcfvnluPTSS3HTTTfhzjvvRKPRwNVXX71qZldC/WEA34vqLm+8fIbneXjN3kkszAXadCwAGB/3EQbA0oI+rxrgh97iAj8YdfdVA/Qd07qIRLWtIJ0FDWSv0qQsUSDZVEGQHABhCJzsDXBsuY9TJxOfq4uApgRNreZJ1qgJVfDQWpaDhfRjUqn6BusoUgAzBwH/3W4nNM9NXRHQhnSbSpXOhwV0Vb74XIroX3GJgM0aHSO8VLoobpE+OBdBtLpqe7XYgk4UNMp6yRTgMZRJTV/AogwYAwJQQWKJEEjQimzfovRkn7Cg1cpWghdRsz9D0RpRC7XJQY1GwVhNC0aj0iK1rdWS7+NKeaRSy/flYMAkYWRQJomaCiEYnlnoYedY8gLawiaO9Ql0VfUAOYgvRKWabiBuLuSGWfq5+hi/3a8d7f2K5nyVA2s3yoJetYA+55xz8A//8A/k/1133XWr7X7VJCYqZFntdaNoZncZM7vNQz8ZQeFzJwPseZ7J0vZw4hhfaIO+PoK2UuOLUqSu2KxtEW0rkwluklNojLmwkhCIr4wbhHhmsYf/uHsOn3rzWUlbSy1fQH/YdNohwpBpLxoRvKQsAQuqQFpp4lkwKBk0qEc3pHXazDg3CayXwPI6BadaTe7YFZaQrngG59sHGB/varQGAODeZxax+8wSdo8ng1MhDl+ZqHQ3QRNTPo79ILoZTnPxjJzfLwR9mRiTUklxUxgOx6SgRJZnL3Jt9YncY0CBlbXzno74tglG0/3EIVjmLnShtHS7fI3o3FnJ3KiV6WhrmLdVLWj+SSlZNUlREO20fHhpd49QcgIwLPWDTHtR2U+23MMQqJgsaEUw6hALIFLglWKQA0lpoCxogBs/gB7irtb4RUlhyIwuhbWk53wlsUG0OX0fK06z2gia2pGsBN1NWwA/9IYDvnGDQK8Nqpovr7BF91nVpC/oSmEmz0SwssFapNKbBgFDAIYTrf+fvXeLsSy5rsRWxHneVz4qM6uqu6u6m91sNrvJZlMiqaGp4ZAcUbIFWx76Bdsfg/kwYOhLkGzAH4Ig2DBsCAYECZKlj/mwAQ/8McCMwZ/BfIgizBkY4phjjtgjSnz1q95V+c77OM+I8MeOiHPOPY97qzIr61Z17p/qzjx5M/KcOLH3XnvttatYVVfLlylXNDmMeo2ppZ0t0FKORha0pRZu1t2VQUvU95fjUK/7ogza9SjQqDybjuAJmG9zoX/besmBEmSo/9Z3D2P82c+Oq5+9aIRfS/0SqA6eaduvjkv3N4mLZ9OO+PBaHbKt3kprbnDQOoOefy5e2UGL9qwVqKqkAYvLCW21X6ZY4x7xA91SOaNyVhA6jXu64EEszuiaeniBEm+jJagFgLRSfqhfOM83AYo9JQBENdW2Nv39FvGRuWEWj/rsc1uDrnNDjIMuSjLtEDewmB/wOO2Zd9C2t5ApiNlswdWrY0HIbKTbBYUbGHVyTBuyi/AAVGHDZevVxtpGPAIE06YJObsusYpgjgBk1iIA9Lzq38kd6kXszKAb1hL26HA3zMt2CKtaq+tyjG2wPwDdZ1+vdZm1RDOqQTdli0Bdk7lNXMWsA5gXWOmuLQKw06aMgxFQjdKkwMPXoAFYOVygfeIbY0xPfeuuyZt1LyN80+mgYTTS5z7bY2BMk9V0TNh28M4jJ21ysMBixbmmPWLKA2aPBC3aCAA5u0LWV6+7aR2WnLg8V8HskySRC51RXSpV/wtVd9At2XyXTClYVb4YaHn2Xjt6YpCKphq0Iefu646MtnselEtUCwLKx2XPvIM28BZLYogfPBmxlEcxxhjeeCtE2GO48ny7xKg5DE0dul0kwjCFC9iwTVfWD0gZar6mKqwjqP9Mr8+hFDGR80y1Tgebr7cCFNkLqJpCmfl7sgZouStrNKIyJwuClvm6nhAKx6nAt949ql3bRG4zRlrczSWUXp8h1lPOmkaQ2rWUBCseOYPuIlHNHewCQDq3Xjtt7CFkIo3tXHHx4is+Pvel7hbLXp9hNpOdQZxZ93wNunFOcoe6GleMMuh5p8gZgpBViELtMGfxXIDuYKjr/pk90hTEWfGilDLoNmsKWjph/5o0KPTa659tzgeqhdPX2lAFrxa06DUpVZMy9YL6+w60TyerdYToZ/8//YubuDdOq5/dEZxZiFvVBaqCkNCIeEZBYts+NJn2oumDj9OeeQed2SxBQqRp57WrZq9+MsQv/4frdqM0WV9Hg8cH3Q7aZNpJVMCG7YSo5o1fZK3NsDJAUF0XnFvMxC47aDq8Gro0KqMMy9Ym9QkAoW77MRBW6+EbVtciBXDjJMEff/de/Vqt5DQ/cjKXJCUrgFqmBpDs68kxReBhhxqdH/BipnIHsa1t8hDQzg0A6vXcHArTuXqh66GSvcybku01aMYY3v5CH89f9xu/b6w/dKgdq6MmT+suBSw6o/sfv3ML79yr9ge3qasJqewEqTanSGUQjbJ01CGbIe76tW3vTbGWZrnhXo/Zjo029IHWUnBDiiy3ft18yaRY+xJIS7LYGfkBs4Nx6HP134kmiLv5nrRB3OZnyuUyANiNc/ybu9PadUBzQFSGuOffS8aYLSG28SWA0pmmS1RA+z55XPbMO2j7cioJ2YSHPuVmxmEeaLimzRkFpZYfYDGcCzTDUkDz4WQCgCiSnRk0tYzN9RTrWuF8mxLQTs4yEXiTw7AZtKkxtWSuYVi9J3lOmTxQh8XaCFRJXuqzb1h/ue+91xFohT2GWB++WdbND5hfR1frT12GteygqyeX6YFvlc7sgLiXtf6QI4kVphPZqH9drJvX6q3TXODb7x3Xrm0qyaRCwbH6Bw2lhxKsTJ/RAnNqYp0plS0z/nV+LZlUdo80BXG9AQULcSQ7M+iwx0vvL32tU9q37f1tRCKY1TXvavcC6poKRQ26CeKul7TMWtqOY6+EFJi1ZFCYzX1205APY8IGDc3P37S4bm61329L4NMOmvOnsA961c3O2X1GHTTnDP0ht0MZ2iJC16OWkbgUgbc5AW8O+jXWlbUapxhHqjODNvVWkwkorfLR9HID7Q5atEBkdi2loKW1xmRfQH0I5Aq5dtCzBjYqUK/rFY6guQZdHlFadtbzFvY4koj6cjvZ+PbZlGr4HYGT65JG9LwISg6FacP9XjSDu+2eL2sDvT+nY9mJDFnHmClbJ06h4Df0NzXxA2gOvAn86p/f69FUucJBt2eLQBOjvOHaliAuzSUcvZYmZzFac6AUBVHzMrBlC0JqH1RyCfa5X39vupAWgJCnaCY7SWJAXTvecjhaBpMATXB784AcgN7XpCS+BNB+nT8f6Cxpbn8UHTVoAPjYawGev+7hY68Fte8Z47YU0l22e5z27HmsOTNtVkwpCMahsoau9qfchnrUpeO0Z9AALEEHWNAzvYDY0TZykHHqLRR5NxQ0P6SegSFT9HI3CTk09mRL1Qi1A3RoDYbUR+4HrBOqM2QhgJxBqh30vPPyWtp5jCMAa47U1zcdBCFlJ13zxMMeh5R0kHU9G9vmsiRJDDBM5OqBlylVKv+UPr9hmEn595w2xi0PlemCFwMDL8aFw0ghK6MDjTWJtyS5tOM3mzNoBiGA6URSa1MbYmEyQBvYdrTAzRHy7Fp0EKda4PayjO1oraOlMqSWuUTvEcbayYTlLNTYon1CtXCFNCXn+Sffu4f3D+PadX5gpo3R/5vJUVTmqf5Ox6H71XiWtAQXYa88VIW+lkNh1vDsw57TGMAbkhjjbdwQjs99aVCTEJ63IOQLuzAepz3zDlroQ4gpCcE4EE0X/MTTZxu6p3ow5K01QqCYJqQUZSVdMDTQzAJti3oZYwh7HEeH9Ea9N47x3/zzD2yAVDY/4LUJPiZzzWpSiBQhzxPWutYCFJlrV4saSaUyW5cXOTkBADU4ra2WFmtH4HDWeBAwzvCLvzTEl3952DnsPZxjjLZBrowxEmKJyw6a/m1rEZtXVgMo22l+Nt3ToRZJ2S6ycpDS1Z3QM/djVtT/mmBOoA65AkCsr3OdlrqvJRKKbqW+Oc7EMqWhZA7OjbVYkuOwxjJOOWjZuRo2fjZQZRWbjK6VBe9X68RAd4kKKE/aU2Au8O33j/G//X8PGj8bKFqhUn2vJVTt/W1qyzJrac2gQ3rnhSCkQGgR0SgTtWvD0GluCTWXKgUxnTT/oiUs1PyALL3IoB+L2UNICQjmAHH0ZBf0GOzaSz6GaxyvvN7+cgOUlSRR0VrSLpzRnEF3Za0AwZcHu/Rm/LP3DvHuQYzbJ0l9HQGrEKKAkoOeF3IImh1jF0QGAJefo6Bl+0q3IIzRMheCoPZMH6DzBKq2+mKsDykuM+RxDNUgZD0YOhiMuiN14zBmU0IgupCQGrO4Q1rVXD/Pis0b4Mjis7scdOefsdAYZ/jEpwKsbzrYWiB1C1D5Ic9prrMEMGs4pJtg+SQrIOCmrLWv7/fhnmhVPgPqXQc0nrD9b5vXd6+shUmILK/9HOcMn/tSH6+/FWJ9o51kV5ZKXZTREbmyJYNuCTB6fXKM0UyC6b/xwbSOOM6PdDV/X94R9JWdqOoYTwmUCK0x1cNt2akhOAt7TuN+NUEZy2Jk/8+3G3/PMjYYckzHEkkk7brO085ZWfT8zTgABgXJGPAMQtz9AcfXfnXxMJIwZNjTLzfQ3tPn6j7RJpJJ1wE9WufY0wF3BDpIj+L6gTrf8wsUDrprmEBQij+6IDIAuPayD9djuHzVwz/6y12MAo5vvLFVuy7sMUTTMoxK/7axUecPXwPvudEYwmHAgzvAc9db19VmVt1IS0V2RetByCswatGf3g7lT8dzEHdDtgPooQlx8zuiOpi3D2Ovf7qH1z9N/IN/c3eKt6704c59boVBmyrkrP2Q9gNSVytnt6Yu6nJAyPrPDEuZfBfUXlN569APAOrCJpW1RBPkTELt74Jt7VSuWcR+B4oM2vaRdwVxDaWhRRm0QZsOdnNAT9Js2iPz70IZ4WgKhtqY8G3lEsNkN8FZwQtZHuK2v0MJQk4f0YZrDoSgls3N7fN3l898Bp1biFsQSSx/ulqtztKCkKTrTM21zQnY1pUmYkfH4bS2URx6M4cc82FUzxjMOqRQFZYmUM+g/TmIsVhLd7DAOcPz130wB/gnP9zH//793cbrKINWpUNG1+jna2kukezm12GGwbsiQ845cFJnGS9jQUi15fECdSOg7gS6JiwB1ZJCmXTTmEGHVJvNG5hVXczbR7Ef3Jvhv//2TfzTH+7Xvud6uldVw7nGQbcRCQFUYP9E1yudyQFyxSAf3K1+vstsO96wA91wPfqbyyz4LjUpP2Q1iNusxc0i5NyFun+n9ee7rOy4sgWkJc8vpH2NLUJaTD1WSkB6ep+07BGgeBfSTELoaV1tDr1J2KSVrFYKRERenA1N+9U46Hn1NlsSkxo5fUQrKzp2kRoflz3zDtpm0KYGnX10HfS8Bm03RFaHOhc5xZ2rxEBd23DANdv2OKk76DIJTSxRgwbqbRrLZnN7syIbbJpmFvbI2Rm0IO04DCi7nGNxm1qnTCGZA3VSFzlZxjhn6A849ncN8/xRIO52yFDklOmkJTgybyCJFfKGDXU9dXqIu2zvHhAB6fZJ8ztpJFvzXLUGcEBZZKNYs0E2vEjPBd6t97Zfe4my1p3n2jMjW/MvK/B1JFLz2SIAJKkJ4ujvlLNHq4k6DnEmZhrxWfT+AvPtePRv2z4xZFMAyNyij3jeLNSulfpM90PgsA6Iu+ygF+3XciAikSgTNDdk0LotrRUtUDlyxhsFhpaxcudFVxfG47Jn30GX+qAFc55JiHtZG+gX0AyG73rBCUZdniQGUA3ry18f4he+PLDOMG4QESgyHlnMHubmAJ7vo2xr01jOWezNigBh0giR0YdMNLScmsOg0RHUgxbrCCQdvtn40TJoABitcZsFdjKctf66CT4XCfmX4eJEZzsuZy016Cpr2diiuuGj2L5GV9o08o1Mapooe0jPq58BJSJXac1GQdATxIHITk5qP/f6p0L8nV8ZYudKe2uTWUe8xEhXs5Z6GUSvReq1TB6dqDoY0lAaI5XaZvPtYcBipIU7DJd26JtTX/+9DffbtmxGpvuBAr5h4DRC3J5f17wHOqbp6e6KOJJIEoXYPPuWDJr+zvn9Sv8yJSC4AySPxj3yA46tHQfcAS5dQNxnbwai4UrqGvRHN4M2GrRW1KRDtWieKQwsl7VubLnEfNSZ5bz0H1AnAAFAoHV15zPoNoGQZeHWMtlrflYtUCixHR3Q94oMugFKDZktDxizDlo7AhnX21KWtTKc1utUHZsTHzG9uS3Qa1nlLUkp21kLnJYadHtJAThbiNv0mo+TOk8BoIxuMhZIYomp0iNVm7L+sO6M5p+LmNSzVu4wrG8uPnRD3TMNkINu6w8GSj3CpXtrHIuX01ry2aM76L4hLcXK1qSbrBAmKmfQ3ZkrAPz8Fwf43Jf6GOsSVZzLxuyTRFMK2D+Dwsh3GiHxQE9Uq8mUttxHxhh6fY7ZhIKzGO1Bs3HQ9f2qoKDgKoGcOUBSJ6sua1/42wN89d8bdaq8PS575h20rUUYssBH2EH7AUW+Y61R3cVKDBpqactmrYlQMO9SU9+qcT7RrBDmDzQZZ/4FdxwG123IoMVyEHeZVNQULAyG9IIbaFm4HVBqA3xpIGM/J8ecJ4++v7Yuk7PwA9bpBII5BTSRK4B1tc8UgixpqpBAYi10IFU9Q/IbnB2wuG5Ytn/6w3389p992FhSKJt5NidtDnrNQZ7RuM6x7ptJRV0P3Q/rzijT+8rXDjqfjhcvvMWo1cbUZLtHDloEImtfi4gefWjPYOjoVsluZbry7G1ji4RKAHo3n7/uY6rZ8kK1DIHRWuYAOdwcCoNshnRcRyoKclvh0IFust1gxDHVkrAJJDjrdtD1EhgNSnGkPveTRw+cPZ/bc+K87Zl30LmFOhTVCD/CDpoxZgkxQcg6HZw/B6MCj5a1xk2tEWEBYZnDK+Q6QzqsE4bmZ/KatSzjLMpyls3BAo37Gx9LKCgEJmNvyi6NklPJQZiMztf1RXEKB71z1cVrbwb4uS92D5yo9ebm5DTaemJNzTDSjOgUCkMzCajW1sYrn23MONtlgqL/4y938cMHEQ4aEIuymX0yaXHQo1J/8ERJ9FxOQcXco3FdmnrW5aBF/OgZVNgnUmOeKeQL2NNBQ0nGrCUQOog7xVoq0rELyiAAKohPUftd/HtmlfemOYM2qoRSEJFr+MFfI59NoeZq7JbcVpMpbf/9gyHH8aGAkkCkJNYCp/GdbIO4CQhTcExpM310B/0k7Zl30FIfoJwpSDybbVYPY6b3dKGCTkNd76yyVsYZgh7JCsb6xQpn5JjTH/zr2vVNcp/LksTKfbNNwQJjzEL/GVfo+w5c3p5BQy04fE8RADLG8Mm3erh8tbsmarPcJYZrAAQlej6zoh+JkhgdEJM4vXVz7lo6wOs1aPr3YUhiDybd75pRa0sa7jUAjEpdAfsqw7ohBDWWH3gF8bGBn0Y2TjMox2SqUbTcFC6gev9MDdrXELc4xRlU7h3vEnoxdeJGQZsl3puykl5TYGsUtpRSJMmqFIZ5hIy5wH61Y6I+qGeZDLr428YQWA/cxvKGIYnVynEKgJIEcfPTQdxP0p55B20b1h1OD+ojnEEDwHPXPbgucO2lbidgmbGVCHzJ6HvByw3QoRfNaEBAqiRGOcF+WVx/Pn5DPfws12KE82eOQOhyeJBIj+ps7KZRmXmpzQo4nSNY1uYHn+QLiEsAIQXRTEJoOdPRIbUdJTfeq1zHGGtsFerSYS9bUrrHuw0iF2Uzz6btuQQBx5XnXfghwx4yjAI6jJuDJ9YYOPl6X+XpoztF045luh+62pt8i0AUf1OuY0SbzTeIlSxrfsDx8U8G+Nhr/sK2n7KmNfBwZYpKYNvIIzFa6XpcLFPwRYacu8BB1UG3ZtAd5f9y8HGiBEZIkeYSSlbRFq6HfNS6DiQAKHDTvZNeOOiVtILcwi4yaBAT8d/9j9Zx/WPtIvFAqYZV7rdd0ANqzECXvtPMFAb0uL+ZRJJIJJAYJVQjzCb1WmFZQ9zYsnB71UE3r+WFF30wBtz3UoRcwotnSL7/3dp1RV2vfPhq2FDSvsrTRz98lzXHxdzgk+7DDqCMZDKWkBkQQWINtM4mdnNTrX3Z7GtSKm80sebLZvZJKlRrvfoLvzjAq7/oQwBYj2mtyc0b9TXPEfgsEcnUoE/x3psMetH4UrMOoDmIc8weOeUZ9MbbPXz657vLIGYt1Qya9Lu71ACNzVLZHRCVtNKZYJBM2WxVzXUyuC71tCclJjzQLTS0cckhpIIDB8gxuvVTSDCID96tXTuPsNF4TwaAMmh5yhr0k7SPgIMuMmjJOJA9nZHUWdoyEFdTDYuUmhZ/vqn7boRO48sNUP0smlEbRQKFQUSHb9YARQW9YoqPsa55smWbpVS/Atozta3LLn71P17HDZYizBP4MmskxjTVZ0125CpNMjsHhIYxZqcxAd360MZGa8SKVTkwVaJALMb1gKgJsbAQ94LnX2Zkz8ulVj5Pka62URBrC+QYZ0j0sxg9+JCuncv6AZMtVoNJoOg9Pk0G3RtwMA4c7GkH3TIdDWhWnCuCOLNHHn8QBxQytnYdeXfdt2zTTGLdOOjGGdYF0ZNJQEDCkzlB3HGdBGcEgYDyRLCOsozD8Hd+ZYjep+n/18Z7AID0/t3atfOaDTRhjrQvHCWRMwfqwkGvnilVTDLhnGkH/dHOoJe1phr0IplDYyZrXRcx0uNm4Y7RmgMpgemhxEwJDCOKuvMmQfwet1N8ymtZiiSWCWz2KL1MWhw0QHXaKBcI0wiezJFyr/ZS+w3M2OLw1Y7gnPaXmWcMLIdsDEstXDMIjHQ2ms0aDtOgDhkuEpcwVs6am8ZZGotyCamAS/rZtAVPQKEeti6olzXdbyAShtURiBZG1c9F5I/uFDlnGA459h/QZ3R1P3BH1/ujUj3cOKQzWMvD2HwGvSwCJqRCnEusS9r/yY9/WLvGtCeOjwW4YpBMwJM5BHcgZ/We47CEcCxDEgOA/sBBovUR1nRAme7t1a4L5hC2TNCMdigB7jh07l9A3KtnuQQ9KFDtTFzUoJc2x6X2ploGvQzErZ3s+q2fIBtPoBpaXNY2aOspCUwgMDIZdMPhVR6cXl5LFzHK2CyjDNplCtG4W8EpyhVCmcCXOTLuAnNwu+8T+zxNmiBuWrc8B4gbKCYPASZw6r5+vUS4OlA5BjMKiLIG1jkRrqpsdVsqWnDLxxWIuz2DNkHcpSWCJ+OgR9NDAEDa0NMchJxmKqcFsxgA3Pz0dV+gGuCEHT3qQDEByZjNGDXEfV4ZdNirToJb9v0193tjRvc7a4CVwx7NGT/apxutmICre9XzhjYyGtSzXB90ZS16X6ylugQ2rX92eTwlQKRDDoDJHK7DT91m9STtGXfQyv6B7CKDfmijyJQ2vlLKtvMssllKfYujbIqUu8C927VrygfeiRIYRpRp53m9z9WQYcprkQskF8tr6TPKjKN/+/3Oa+NMopcn8GRG654LLGhAPKsx24GSIMY5ZUe9Pq3D6JkvClYGI471TQfCVRhzgUAHRHkDqS0MiQCUZXUHvQi1MC1TgcMaB1sYM208lxIKFOKf/bj1WnNIr4+JfJQ2tCnZcZ2zqhPwLLv+dM+lrDPfVYOmtXDbNw2UgoVz3iPzGuXLvr82wI7p2aQNymem+8GIHgEZPB2kNpWpwhLcbgbkLLOWOKOzpJ/Rc8waphEGOhCxg2D0/G2uBLjrXDjoVbVM0oMCqHZGwzIuHPSyFvY5Ip0JmAN6GYh7mgn0HcCXGTLuQjXoIDsOw8YlekPvqhTDKTnorEHtrSxVCZQhsiXXkscIRYJ43K7glEua7hTmMXwNcaNBM3mejGQdl3YE5+egi3uyaLIRQAfqL/7SEA+uJQhcBlf3hWYNAavJEJOSk1lGhQooMujtgdeZFZv69OYeEb6i9+tZmjEDf68ZWL4h6+/N7RFTM7ewcsMY0Iexqy9Q18Pz14ujTdcAACAASURBVL3OmetAVRoUANQcYU2e0x4pAtuC7b8s6gQA6zprTRuyVoBEU0wgIlViM2gR1Z1hoPXg84zmPPOOvv2yRblE6DD4Gn1Io7rzt7PD9d+ZCgmHMXCRwnEcLfH8dCKnz7aDFrIhg346H9STsF6PVSQOgeVgqVkq0eeqBBXXmcIA8LkvDeC+AuwjxzAj55kzF5iDyObr4Q8Dkc0yiYFM4cscieNDtQxvN04gzCK4Zt0NDjrU7WHGlMmOmMlSupnLZ2WhVWNTSzlogAKaSCoEHAUc2QDJh6W+X2NiyQx6nAi4HFhnGeKOkoKpT29qGDXdP2i91kCua3qPpE1Zf3/OQQsiLlmncQYZ9Nd+dYTP/q3F7OlQkxoNtCwlPRvTipef1x4xjstAy0vWoA26sa5RrayldXBjq0iBuYrgaqigMYMukcoW6YiXLc4lelzZ7DxtJJEW0sEAkcRcMHCRwOH8qS5tPtMOmiBuXYPWDlpdZNBLW9gnqE5JtTSxA6DDt69JI10Ouj/gSId0GPRFDK4kcsaBqJrpcoeg5WJgwXJrkUohyiR6eQxfZpQVt0ybsg46jeAyEPOzwZn3+nPZkf5PT5NZhDxdprasmQx6fCKg1GLY1ViSS4SlA68J+i2EJUpIgam1L0AtJqnA0HcQvPc3SG7fbH3fbA36mFi5UQOxyFiUSXgcCAwRL6l/phnXaerySlIpxNEZvxDikScaGRuuOUuhNpbUaEohWp7UdU2Aeb4oSzRdnqsAFBD3xpSCpqwluNnW+gECCq6M7b1pUkobaNUzM4mrq5e8bFFGDtp0SeQt8DlQBGeZdtBOHsN1OCRzgHPQJ3gc9kw76FSUIW5OwzLOCV56FqzXJ+JNkqilWiOMzTKBAXJ4MkfOXYgOHWQDgwYihQtFYjINJJN57V9gcQYdZRIKwCCL4AtdV26ZNmVUxsJ4As9zSXChKYPuU4+wzYIkIJWE4+nDSjQPFzhr6/c5wEqTyZZ00HEuEeieVQDI87rjKqRBywxg+ndR3X+cSAxdIJAZEscHbn3QeJ2FuI8fAADSWXuNMMolehzwTIaW5bU1c870HtFfV4CCgOMSNC3Aij/iMZuFlktwu4SEq/eIlKomuPE4zA+IyDV7CLY/UIK4J8SYzoRsDLQ2thy8+XaIf8mPEYoUrvb+TZ0MhvU9m2g1tofJoCGKZ98QnIVWa94o00nroLljMugLFvfKWSYKkhh3GAQuSGIPY01DLZYiZmUSfZkWWVpH7TfOJVwGuErCZYog7hYiyMOI7Zt1AEA/neh6uAdMmh20ISKFCTlogrjr6za1ztmE/jYS5S856HOqdzkuw2DAsXuP9vOyk3aSXCKEKOBI5tQINEYaNGliIi+RQY+QIxApEu4De/cbr7MQtyaJJR0ZDmVRsiAhoZn0Y8ZTAgAkoMqBE+PnlkVZaFnvVyYZ7REdLOTnNPbWTIWKSv3y7jK8DQNxT6idLWvhYzDG8OonQ9wQCYI8gefSvW7qOTeDeqbT5TgTxqJMItDBPtAMt3seBSImOKMMmmr+jsPpfl9k0KtnmVTgzGTQzgVJ7CGtXDd6KGJWKjAQCXw9Ji5p6LU1FmvIFQBcxrRubv3w7fWqbUW0lsXrAIB+PCbil+NBNUzbMesAgDAaw3U5ZdBNTkBH69MpHRhMAlACjqcztXPkOYzWC5JO13jKssW5QqiKA68Vseixag16yXs+SQWGIkYoUsSOD3VU71kG6Nm4DBjmure5QcaxWDNlUQbmzHhzEBeWyg+0pcrPxTm3XtjyeE8ANLhBCTi+zqDPMVjo9bmFuPNcLRlgaxZ3Rk45406t5dCYVAqpUAiyGK7++5rKJowx9Accs4lA+jAOOpfoyayK+EhZuYYxViHmmRq0JxI4+txXT2li9mw7aJNByxyO52ipz6czknoSZsYURnrIAtCtQ2xsmkn08xiep5WIOuqLca4QMHqxXIe1qv70BpRBi1wtTVizGXR0At93F0DcZmjHMTzHQeY0O2jjCGcTOjCYApTK4Xg+AO2gz0mYf9nJRmWLc4lAlQ68hgwa0PN+KxD3cvf8JCGVMl9mSB0POGwmf80yiYFm+gOga1vGMEYZZf0G5mwP4ojUqJSCqxiUzOD6pcDpnBx0EFC/fFQKFlQpiKMM+nzW0tcZtG2TXBLidhnQEym4UpRBt5ArEzOUJJtZCD/PmwMtctASSSRtGWWRRRk5aM/MA+du42Sqcu95kks4YHDzGI5ps7qAuFfPTJsV04oy4iKDfijzfBrjF81ozJ75WpcpTczqZzP4+oVtauUxFucSoc60Ha4HmiR1h943JJOZLMGt3eu3Dnp6hMBzkDp+60FjIO7e7ASe55BkYYvjAoDphOqgXDESRAhKmdo5BYGXn6PfGYRs6ZpekkuqF8rSgdfydzaJbSzTBz3MZgg5kPD2DJqY/rJw0B1OwGRRFuZkbuseyXOS2XQVA5MJuG8Cp/N7LowzQiBmxkEzMJlVg7jzyqB1YEsqa8uRCaepxMDR7zuTdL+j5jKV5ZAkkQ2GctmMhozWHYxPCI3rUmMrW5xLhCKBZ84S5gJRk1JZ0Xue5oSceiLWbVZPb/fOM+2gU91mxaQA1/WR8+pBfBbMiBFMxwKZcdALHIGRcOwnE3j6hW1jgQLGQdP3PZfrGnTdYViSyVRant+ibMBC3OMD+K5DpKWWg8a08oR5DNclkphqgFFdXZ+dTvIiAJT5HMR9PtH65paDt7/Qwxf+9mDpn4lziSBP4Wl2c07Fu9p1YY8hjssqVN0zpwF63xKhMEwmCDwHijEkLa1W0xKRENAOuuPZhDK1ut05b94jZkThyYmABw4mErje+WfQANAfOkSIEmaPZHD0+0CltvODuAHg+NDoiC9H8uxzeh88zpByF6oF3Si6H6ZwdQCSM7cRRSpPqHoYxKeXRXADGu7Ttl/7WttfSWXRPj+P4LjuuQZEZ23PtIPOBbVZcZXDcWlznFaw4KNmgzUH03EBcS/KoE3WOojH8AJ6YdMO+csklwj0IU2OsRm+NBl0pEkmwOJgwWbQ4z34nkv62g1C/kBx0PTyBJ7vUrtXi/pQ2GOYTjKkuYLHGJhM4ei/VfDzOwwYY3jxlQCbW0sUFrXFOYmxOL0QQHs22utTq1BcmkC0KCAyOtyj+BiBLm8kDaIVAGVpfZWBAfCZWpxBiwROvw8OXRNteDaDkZ46dSIQgIHnMRyfDnbBz5coNBhyTCfSMoq5TOH6JSdzTmsZrtE9MYpfnr/4yJ9lVPMHAM9hFBC1BE+xzaCncPU70IaCXdou9ulGxyxrY1IpKoFlMdzQ3LvmYRy9AYeSRMyzo0ZFDMdzicF/kUGvntmpJjIvMuhz0sF9Vmw44phNJeJIwnEWk8QMA5TqvvTCZgqt/bBRLtFTGRD2qAbttLC4QwbOKYPOloTbbbAwPSpq0B11TgAIZQrP85AzB7LFQfcHHOOTHLGQ8K0jOH8o9WFNaLW0IIvg9AfgjA7Tppr/oNQWAyw3yczIfA6nRwg05B83zPcGdJYmU4BxGkvqNLe1AVqCNYuB/hAeJ1i+Cd3oDzgYA46PBHzG4WaTUunhnDPoAbXjzWIdLGSRhdvPUzBppCV1zaCP5TJoCp4AwHOdzvcm0aWPMJoUDpo5jRl02OP4+BsBXnrVXyqDtkFzOoUXmoCyOYM2+3U6kci0qo6nM2jJONTFsIzVs0yWM2jtoM+pF/JZseHIgVLA/m6+cEA8AMwMrDw9gq+j3jbWLQBEmUJPJEDYh8sZcsdvjL4ZY+hpkkmWSrjuYtnJWSbhMCIiBQE5XdFQvwIoUPC5gqNkUUtryXIGIwfj4wxxJuGDw8lmtr54ngzdh7VEH1xBOgP6A3gcrW1t/ZKwBEB60otESozM53Cyj1A/+7RBlhPQdc48AgYD+A4ndKOhrU0pRUFcRmt2OWvN+jmnPXKkx0I6yREcDY2KcyRmAYXDGI8lAnA42QRueP41aNdj6PWZHZW5DNt/lpL6HjiH77nInPbyg82g52HohucDAG98pofPfL6/nMyn1SaYwtUOOm8JFgqETdjqgSsS22Ynn1IW9/LYWIf96Z/+Kb7//e9jfX0dv//7vw8AmEwm+IM/+APs7u5iZ2cHv/Vbv4XhcHgWv25pywzEXalBP34RiWfJDEQ2PpbYurx4u5j+1kF0DPRCYIoiAh+u1a6PcokwT4CecdBeK7Q8GHJMxgKO6yzVpjFNSROcARQsnABZnMBvuDbKJHpartMLAgCiUbHKrEMIhclEIgCDm8/ghAEwBUHjK8oYjQ3jNik5uxa4OOxTNjqtZNALHLTJoMf7SMMASOkAVw1B8VQTCTFYg+/yVu3zRChIBfSSKQUVTnsrHgCsrTu4d5uemx8dwAmGQE5OUaUJlqMmnd4MZ2IyFggYh5tNCWWJzz9YWNt0EM1yML4cOWuaCfSFRiwchswNgKiZ7Gdr0CIlJ3qiM+gGjsDDmiVuxmP4l3oAqLyh4qj2HHtauGc6KTQbvGyquSEJ8lw2vverbmeSQX/1q1/Fb//2b1e+9s1vfhNvvfUW/uiP/ghvvfUWvvnNb57Fr3ooy6SEAxoFyC8y6EeytQ3HQpsmK+gyW/cVMby+eam81gya4MuIHLRDDlq1vNxrGw4mJxLRVC4lzDHLpCW7+DoCTxtEFAANtet2L09nOm3ktqGudU5OBDzG6SDQ2YNkDtSqZtCleiHrDeDy9n5vztlcD+1ikRozXnKUTREO6NknvK5/buYND5IpMBzBdzkR+BoctNlPPb1mz9FrbtlPmyV96DDao8AJOnA65xo0AIyP9J7KpuA2m+fnukcuXyVEaDjkS2Wus0yin0XAYASPawfdomVg2qwCmZbqxE5jK9TDmsmg+7MTOOEADO2cCe4w9HoMs6m0SZiXz4oM+int3jkTB/3mm2/WsuPvfe97+MpXvgIA+MpXvoLvfe97Z/GrHspMBu2oDNyQxKSsNbpfWLtxznBJa+6WD782s8zpvHDQaYuDVooO6jCLgLAPj2tCSgs8trZh4HaxHFSXCQyYHn/Y73bQZTa5geqyLGuU7TRs4ak+fP1sXIJSV7eloyzGggFlR201f4CyQJNBLzPgwGTQo2wGv09DJRLHhZwTh7FBXDwGBiMELkfqBY3QpTmke/GJzaAz7rXukZ2rRRTRix7ACei5y3MUKgGIjNXrM0x29f5LjixMe9575NpLPl540cMbb/cWXmv06/vJ1O6RzPWhFkDcoUhtnThvaVF8WCs/ezYYlAhrzcGCYc7rzr1SBg2IBknbp8HOBOJusuPjY2xubgIANjc3cXLSrOD0rW99C9/61rcAAL/3e7+H7e3tM1uDG0zBMYGjJNbXRgAeQDIH2+vrYPpAvbDCXNdtvP9f+eV1vP/TMd58ewOuu8Axvk8H5yCP0bt8GfhQIOMO1nwXwdxnR5mAAtDPIwQbm+iFAQ5cD57IcalhHa6T4vt/QeMJL20NFu6VRN3BSGfQly5fBn50C2kusbW5ATaXDua4iwEkwBg2t7cBHCEHx/b6Gphf3StKKfj+BMkxOawwOcTGzs8D71OmNvQ99M9wH5+V3U3pHQyiMXpbbyDIXeRuiJBNsdaw3ktbEjfen2J7extSTDAa9TrvuXAmcBgQigTbz18FbqdIuQ8eTbH9wov2uvSYDu9BPEb44g4GoY/MCxGIHOtzn78rSMGqF52gt/UqQuYh8wKELGlc8/Y28OObd/CP/uo2fl1mWN/ZAbtDz2XguRic43PZuZrhxnvk2HrxLjZ2fgG4SRD3MPAb90jbO3hau/pry103SXIoAMNsBn9zC4MwwLHrw8uzxnfSuUlBTyBSrF2+DPwkhmAcQ89F75R/h6vfr76IMdy5DC/myBwPPc4w0p9dvl87lxXe/ckYvE8BtO+Yc38XgjW/y6tuj81BL2tf//rX8fWvf93+/97e3pl99slkCpcBHBKTKb0okjHs3b8L1j/fevjTYNvb2633//mXgKOj9pGAxnaPxnCZgi8zHOuINeMeju/fA5/77MOIMtYgmiDdcCDzDBk4sumkcR1KKbgeac0E/XThXjmeJriazgDGkGrhhIR72Lt1C2xQff4nswRreQz0+kh0hJ5zF3u3b4ON6rXz7csB7tzSwUi0hyhNAfQgmYPJ4QFmZ7iPz8ru79M7EGYRIjAwJZG5HuKjQ6QN6+VuijgSuHd3F0ksIGTSec8fHE0w5JKgSNCzTxwP2fERxqWfu3VADro3PUDivgwmBRLuIz46RDb3+Xd3ac39dIYInNbstK8ZAMRmghsqQSBTTPIcDmeQ3MH06BDROT6X/qBo6RzM7mOW52CgDLptj3S9g+dhu1NKP8PpEbLtAErkSJmL7OSocV37xxRAhSLFLDfysS7G+3uYnvLvuLdPqn+9PMFEMZoy5wWIDvaQ6M8u3y8vSIlACoVcSVCyTftHMAd7d+/W3vtVseeff77x64+Nxb2+vo7DQ5r1enh4iLW1+iH3uM22WTFi8wK40ON+zDbLJPqMDmlflz3SlpqhhcfisSWJiZY2CoCY3G9/oY/nrnu4olW0uox0oSMNo1JUnbYwUo1iEXoDO1Ag66ilbV8J7X8PZ/fAw549fFeVxW3vt0wtASh3vMY2K6Bo0Tk5EjSBaAExb5IKDJkOuvT7nnAfcm7cqKlVDzXETW1WzSSxqNSfTsxzYvqrFogbKE9Iy4CgB4eByIfn3Gpz9Rrt0X2VYZAeA0EIh6/2HjElqkF0DAyG8B1GXRhtbVa5AgdNR3N1WSM7K5JYic/C+vReZm7Qej6sbdB+XU9dZCoFC0I4uub+tMp9PjYH/fnPfx7f+c53AADf+c538IUvfOFx/apWy4SCBwYHwg7NoAd1QRR7XDZNpa37eqMRANNm1VFfTKZFm1VHiwYAPH/dx+e/NFhKE3ySCvRTYo/7WmSD6uHNa+nlMdXddPtW1qJqBgDXXyb1riOVY5geA0FAh6/jrmwN2hKu8oQOPM6ohaaj5g8Ae7aHtvu4GCcCIz2z2Tpox4NqcdCDLAJGawh0m1VnDVqQg3Yds+Z2B5Dq3lxfZtopMgjXO3enOFpzwF9X+DNxSMFC2ANnTO+R1XQWU0vMOi5IYi0DVQAd2OqA3B3QO9HFI3kYM0M7ejkFzh5nyF0fqqVVcm3DAecAB0OmEgrOeOncX9GgqMvOxEH/4R/+IX7nd34Hd+7cwa//+q/j29/+Nr7xjW/gnXfewW/8xm/gnXfewTe+8Y2z+FUPZZnUg7shYFpmJS4y6Mdpk1RgoDKAMXgDiqjp8K2/VHbEo0isY8zBzyT6zoSyspMYrcF3eLGWBkZqlEuEaUQHgRk83xEsXL4aIn1R4FviEIFIdabGIBxvhR20JvCJuJSNtju7Xp80vu/fyez/d9lJIrAmqT0n1AIhCfcaMmh67sM8AhtQ8JS2jPcsHHQM1h8WRMKWLAooMmhfklN0uH4uT0CsIvUlJpAIJGXzrl3Lau4Ri27kkSWJpcwB4lkjuTbOJQKjpd/vg4Fg6LMYGDPLJDymaFDGYEgBpduskwCQDK9RK0vzEyAMq8jpir6XXXYmNejf/M3fbPz67/7u757Fxz+yZYKmmjhM2EhKsqdX9u1psHEqMJQJ0B/CcRx6qbyw8UC1QgQiJWiZA5kuQag8B3MffXtOsxJUN1xD4JgMup7NGzZ5WQwDaB8kYdffkzhBTpOhggAOZ8hdD0ibCZFP2soZNPpDuI52jC0BEWMMow2OA81EXiRUc5IIfDydAmvrcDkDZ0AaDGos7mnZCQxH8E+0E2jI0izjW6/ZM5BrRxBXgcWDHhyWPLHAKZnP5tlEr6V9BOuTNKMEOMxmRQYNDihF70KvX7k+yiT6yAHPB3M9QsE8H0jaZ8Ava6RNoIOC3gCeM0bm+K3ZPAC88ZkQ//jP9yGjmzY4A8wEsafv3H/mlcRcMDhM2Qz6YqLV47VpKnT0TfC27zCkftgIK5f1r1lfQ9xmS56yj9IcNIPpEdhovcigHa8m/J9qMYwwHoPpQwlo77k0lgiJQMN7ptYpVzmDTiV8k5GYDHoBHLm1UwRJpibdZEopGjWZjIHROhhj8B2OJOg3QNwSHIqQkyGhGykIrVBzWvlRRtf6MgMGAw25dq85yiRcSPo7Qw1xO+4TkXtMclqLoyRB3JytdBnE1qDzGGwwgu9wctBAI3djlkmSbNWO2+UMwvXPpM1qlkn0tSa4CZxFR1sgAGxsufi2OoaXHoFpVAv4iEPcq2pZruCAw3Fga9AXJLHHa5NUYpCSAAUA3UcZdtYXiZw1pAxU6UjqlDC3heomB/Ua9NxBU6ifndgsDdA61R3rSHJlR2XC80uOYDUPAiLw6QOvR5Bh3kHKA6jmD9Akoq66f5RL5FJhFB0Bo3UAQOAyJH6/BnFPU2HZ3uSgGVJw4n3PBXIzLSDDAK3FzVpnWNu1lDMvTRR6UhB3lEn0zB7xA7js6YC4+3lJqMS8kw1lKqup3qP6s+voOvFZOWiV0YzTINTBWTOHxJhSigbwpCR+pOPypxbifqYddC4UGGNwXcyx+S4c9OMwpRTVoJNJkUFzhswLGqdI2QzaEIA4Qw5GB/UpX3CbCWSzeg16LliwpKV4UiGJtalsGUtyCV/lQBCCcU6OgK9wBp0J9LQYS6Fr3e3s1jYcfPmXh/iFL3ePtLQiJdNDMOOgHY7E60GN6ySxgVnHYITAPpt6HToqTVayJLGOSWPFz+SA62rYFZDcfYIOOgeCHu0RTSRUK7pHJil1YThQtgYtwejcbMigp6kmV5YyaNLTPwsWt0BPdxwwxkrljfaAMhUKClrONuxdsLhX2cyQecfjBUmMceBiJvRjMTMLehifgA1MBs2Rut0qUaFILeQK6JfplCzQMhGpXINO3KDmBApYj7IGd0mIO8olQpUDWvzAsrhXdHIOwZFUC2WOU2SjaQIl28ewblxyl6o/A8DadL+SQadeADkZV66dpBIDSUEZc91OdGOWCZp21uuDcVqzCSraFAFpQho5RYDQs/wJPZco11mgVtnijEHw1YW4J2mhvofByKJJWQtHIDKyoMZBMxAP46wyaJEUaBwvHHTbsy/Ppy7XoAVfXQneLvtoOGjXsZOP5FM8G3TVzdZ9Z8f2pfId1krsmGYSvqkV9gpylliQ1S23lgKqY8N1e9CkQb/WbzutsIqrEHcnGcnU30JyBA5nNHd4RfcXOejEohuuw0ijGji18zIZ9Fo6KRy0Ds7k+Lhy7SQVGOaxHZ7iO2UHPY9uSIw06dCu2YxKaOEpRJlETzO4Acrq5BN6LrNMUhYYFGtZ5SBumkrqwuC8EjRn3GuU+7RDT4yD1r31XVnusjbLtAxw435tfvZ2upZIdVsbfX2VJXi77Jl20EqLpju+U6LbO62ziS/sdGbrvtGxfak807fa8HJbYQvG7DxowDjG02bQJabwaB2cMXicIfX7tQx6Us6g+6U+aC/szKCnmdTwPDkPx/S4rmikPiv1egMoGLrAqWv+JyUd7koNmntQ03El45mmAoN8VnLQBYGv9mwSYVt+7JqVWXPzsyGnmABah9vhZoDD+TvFWSbRE6nNoKkMsrpB3DQVGEoKngzRD0DjTGgz9KSfTMHKEDc/m3r/zE48K2XQTBMV24bv6DO/JxLb1gZckMRW0sxUEydwSiQxdkESe0w2mWufAVCoRDVk0LZnOuyDcV6Clmmk3GnsOBEImYQvc2Btg9biMqR+D6olg7YQt4H1/Ob2MGNRJkhsQx9OzorDl7NUr1c7RlPzB3DqgKhw0NNqDZp7gJQVYs80lRgm01KmXWTQ81naOBUYZlMbBHlOiafQNmM8l+hlBKED9Fwkd57IAR1lQs8713A7xxNbyzI2SQW9B/rZWIibu7Ug27Sz9eNxQRLjupxwyhKV1HyWUXRcKpeVujxaxErisopcr18VKlnR97LLnmkHbciTju/ZDPqizerx2aTi6MgJeA63/cTzLTSTVOqe6eLlBhaTs5ax40hgg+nnPCoytdRrr0H355XE/F5nz+XUjMo0joDrqUkrSkaZZhL9ZGJ16N0ya/6U9/swyuExZRELQGfQTLdp6ZGTQiqMzcFrg7iyiEw9gx4kJQdd7mtteTaRHWFqnktRaz9vszXaMsS9wj25k1RimE5tEGffBbdeppqlZQddyqA7FPiWtVlKfJbRrEDjlgkoi775CKwEccsVvudd9kw7aNNp4fXcogZ9IfX52MzUIYfZrHT4ahEKoNYeQVBnXIm+ASxso1nGjpIc61rVirmkahU4DKkXNkLcgamFl0hiuRd2ZvKzVDs8k0EbqdIVzI5yqTDLJEbRcaUFLjcT+E6Z8ezPclzi+vjUDtp3OBLoZz8lotg4FZAK2JjuFRC321yDzoREIhRG8YkdclDN6NoddJhO7c84Jad43iMHZ5lEL52C6SCOrzDEbbsw4gmYcdDmfvdGjQQ+QCvTlWDonDskNiTaiYeLzCIy8fFcecM46OZnX+7jLrO4c7a6pacue6YdtCPpz/OGvTkW99P3oJ4GO4op8NnIJtW6kTmkGzLXYT5ryKC79biXseNIYCObAWvr9msEt/t1klgmqRbOORD2qDWPa8nCFieQ5hKZVDQ3tzcHpa7g4WvboGZHlYzEttCcMiDan2W4JCPAda3jDVyG1GQ8OoM+jmkd6/FJyZFrhn04qOwRy8SfHVZgeaDdQUujCld5Lho5U+pc0TMhSW62F09KPAWsbAYd5RKpUNiY7ZdQJ32/w0Htflvd7rxw0BatAE61p8ZpidMwLDpCCgfdfD5UylVhUYOWnr+yyFaXPdsOWh8O/vrQRlLE4r6AuB+HHUU5BkxQ3XeDZoFTBm3qRnWG7iAe28PAjJrOvfDUENlRkmMtPbH1Z1oLJwcdTSuZ1DgRGChq9WJ6n7ic0+SclkH1FhZPxiUotSCjrNpweOug02nFQQOEwm6RkQAAIABJREFUWHQJsixj+1GOrWwCbGyBcXqQgcORSPodRk3MBnEpXWuuA4wTKO63OaSHydQGWp7+7Iy7rb31Chp2HRRQvjBO4xyzKDuNaX4tfDUJS0cR3e+NyT4wnKtBh4OaAp9trcumNuO2A2+A0zno0meX92umX6v5tRibzhE+9XaB8FZXn6DLnlkHrZSCq9me7uZaQbfX8MuFnb0dxgIbSCkTHRYwp2Xdlg5foSHXYXRiSUXWYQT9U73cQiqME4GNkqoVrYURjCpE5fOPY4GNfAaMCmfuOVpTuDVSJ0fTy2OgX5DEcuYASgJitcooJw0H3jJDQZYxpRT2Zzk240PrdAEgcDkSQ96ezWXQ2QRs4xKAUptVOKiQxCamZFJ6NnbNzGkMnsYlspoJnDhjEMy0Zp1fFlVogsc2g+YmWBB5Z+/5k7AieBqXatCaHxD2a/e74kSHhRMVxq2c4h2ukA5LaJxUgABr3a/TjERWApkBgyIxE66/kkHRIntmHXQuFXrMgRIJeL9fsLgd78JBPyY7inJsiAhY27BZlOcwpFYqsHjBDTw2jI6sM7ctEUF3e9MiGydU51yfHICVM2iXU7sIUIFSj5Mc6+m4km3TKMZ2Yf5KratERpK2T3O1DgPruPKp5QdUBFlOweIepwSNbk12wTZLDtphEArUu6rFSowTWE/H1plbkljQr9zv43KGpp9NhUjYwOSttHvZ0olGNoBzhTmtbKaeHgaQkIdY0T1ScdDzEHcwqE2Bq9zrcgbNTu+gi/1aQNyVNsyO93KAHIxxIOxXHfRFBr06lgqFATggZmCMWahDut4FxP2Y7CjOsZGNgfVL9mu+U4KlSi/4sT4M1tJpCeIuMujTtFk9mNLz3R7frzjdoExYK9Whj2OBtegYbH3Tfs2OYoxnjXD1JNEZtEjA5mudwModBpXDtAS3AiaDfvTD9O6Y/tbnDm4Cm9v264GuWaRrW8DJIQAK4hwoCmxMBm1IYn61Bn0UlR3GHOTq91p66ynwG+Uzy1bnrJTVnWMGXYGA+yXCmlnLip1DhwbiTif2XbBOseF+jxMiVwYyq6h9Wab1KYLsk0TAgaL69tqm/WwAyN2gswY9AA1WMdKqADnoVZVX7bJn1kFnUmHIHDBFL2QRSV1k0I/LDiOBjegYKDs6hyGToL7VUtRbjdZNfbHUf3wKh7GrHfTl+KDiMMxQBgDWEaRCYpZJrE8P7EFg1p07uoe34VA/0esflhweHb7nD6UuYxXod1i93zS/99EP09sndPA9P74HbFaDMwDIt65CHR0AoKx4HSl4rw+mhUQsxO2HlcDpMKaO5/WsXIM2rOJh4yE9bsygS8/lDOYUL2uVe14OFgzcvmKkpaM4B4ei9Rp0g5eeTa0GnWMNGREDA6Omh6KkdYp3+CDKsMkyyoTXqggbPfuWDDoTGIgU6BekNQArPaCky55ZBx0nOTbgwvPooVgWt+OuXOT6LNgkEYhyie3xg0om6pdIPabVBigIKetp0dJho3XvdA76vnbQO/ER2KWdYi0OR2IOj/maaHQErM9B3AYOb4DTjiL6Heslh0ftPKuZQR/FOUIIBCUCnz3wgsGpSHm3jhM4jAIitlncb5tBb+4Ah/sAqF96I58Bl0qZdhninlT3yIjlenDDXNvPHOPbWNHqV9RFHY7CQZ/jc6nW/UtwO1YT4t6b5dg091s7aK+cQc+hSSexwEglwGCtRK5ksOyLU7zD+7OcugLW1sE06cyupSU4A/SwD1Go5VlysHvB4l4pm7x/Fw5jCLcKwXzgogb9uOzehO7pleM7FYjbHqjDDaCkyVy0ZBUZtO1Z9HunqonuTjMMuMRAxMDWZft1v1QPN6xi66DTSQUO98oOuiFaNw56VMruHPZkHMEyth/l2AIpWrGw0E0GTk/K+8l+jJf9jPrIr16zX+9pB52s7wA6g34wzbAdHQA7z9nrHM7gMJAMazS1c5uP4hybIgbWL4E5dEjboCIcNLK4x2U1O/08CeI+f2Sjms2X5GBXdI88mKS4rCjbZwENgPFM8OQGhCaV9sk4FfS3lQLysvjNaUZOHkQ5Ls3xQrzys29REpukgoRWBkVwBugBHisWEC1j7uJLnk575e2XcXn7Pq68/nlE0+OCxe14UPm4+4cv7KHt/pQ2/5VovxHmTEebcw5agENhmEUWhjYOQ3jBqRzGvXGGy4hJ4/tStSaaGlbxMdVED0t1TjYXWFjd35YMuo8cHmQlWi8cwWodBvuzDFv5tBo82Zp/D+ohIW4hFf7ou3dxqefiJ3sRfokdEHv/cuF4Bz6djtFoCzg5gsxz7E4zfObkHtgrz1U+z3c4Up+CaZwcAdtXcBjlWM8mwFaRlZfXjJM7tXVNEoE+cjrYSsQlYRK/c86g+xBwlbQsdL7CZZB7kwyfSo+BEtHPksQ8ctiIZla29DDK8UZcvd51Svf6FKjMwSzHp+Ojyn6tdnk079ejOMdnknEhUmNKmysswdtlz2wGzRnD2rWrGPRIRcpCHRcQ92Ox+2OdQccHYKXsyGbQo02btQL0Iq0jBfd9Wyu0h69/Ogf94VGCl7JDYH3TqogBOoMWCqo/AI4po9udaUJZQk7BmFsWXGhx0OsqBQYjC8FVatArBqftz3JcSo4tMQsoQ9y9h77fP9qN8H+/f4L/668PkAiFLx7/FNi+CuYV97vv0X2JhpcAJTHe20ecK1yO9iuOHNA66R7VpMvB02Z0WClTVCDXhudykgiMVAoMS8+FAcJmdeebQY+g94i+L+4TgtsXWSaoVe7KdK/icG3W6vj0BU0Uk0pRljvds+1y5vrcBMEtE6cWWZxLTDOJrelulbhpyxv9xmefCYlpKrE+O7DBmalBS+eiD3qlzUp9uu4FxP0Y7PY4xRoXNL+15OhsC81wnTIjbYemJevSdqV+BQC56z8yaekkEdiPcrw4vVeBt2ktNGQh39iG0k5gb5rBhcRGNgUuVTM12y4ypzwGkINeE1Glz9rhhSNYpQxaSIXDKMel2X6NqQ48Wknhw2NydL/2+ib+wc/t4FO3/xJ47lrlGptBrxOKsXvzLgBgJz4Eu/x85drAYUhd7QTGRxBSYT/KsXNyr/ZcACAP+xVOg7H9KMemmFWgUYeXJE3POYMeiai6FsaKPbJCDuPBNIMCcPngJtjOVft1hzNwBhL4AaxjPIkFcglsTXZrQV+uFMD4I2fQpgtj6+gesF28w8V+7Tfu1yNdrtqYHVrYvcI9WqF3cll7ZiHuebMPil846Mdh7x3EeAUTgjmbMp7+OlDKoB9MMzyXHFVY1oWDDkiNSwqbBS2ySSrwwwcz5JJO4k/c+2uwl6pOwAYL69vwtIPeneXYUjH4+mYl+/OcQqJUTU5MzmPtKMrIqZcdNGMw0hMqS2s/86TsOBEQCtg6uQ9cK55NhZT3kIfp/UkGjzP8V5+7DEgJ+eAO2Fufr1zT9wzETQf4/Xv7AF7ATnwEXH+lcq3vcCS6zqyOj7A3yyAVcHm2D2y9ZK8rsqghMDmBktL23APAwSzDy8lJzSlKQ246R1j5MMqxk44rNVqCuLWtkIP+4JCe/0uHHwJXPlX5XuhyJI5+N3QGva9LQ4TKFBm3Y8REghDuIwbZpivghWgX2P6a/bp99kFzQFnpDNHQOGcUYOSOu3Ko1jL2kcmgbS3iAuI+U1Na+/jGcYJX4gfApR1L6AFKbRqDNX2gCiilsDvNcHmyC3apwUGbaP0hnMaf/Kt7+J+/cxv/y7+8g4HH8PrdHwLXP1a5xtbD17YsjLo3zbCdnlSyfrMW2895cox5259m2IhPKkIoDmcrmUHf1Qfe1cmDCjmryEgeXhhmkgqsBQ6hH3v3gTyvZdAG4p5xHxit48EhHe6Xh56tERojSViXMq/DPZtF7SSHYFdesNcVsHyfSEsldENp2HUrOmh4Lvp/ztFB780ybEWHYKX2PZfBrkWt0B557zCBwxSuz+7X0Q2XI2HkoE2Zak+XhraSE7CmIDscPvK9tm17s12wubITUDDK580QPjfScQV2t3Pan8Jz/yPjoC8y6LO3v7gxxt//Jz/Fn3z3HnIJvH3/r4DnX6xcY0Uo+ms0rODkCONEUC3y+A6wXcBpRQato/WHqIv+1f3ihf3PLmdwlAR74aXKNbbtZ30bONyHEgL3Jxm1hl19oXKtZ3R/+0NgUnXQSS5xGGXYnoNfndLhu0rR+i2TkcweVOBLt+ygO8ZqNtk4ERgGOhC7dwsAwK5WHbTnMPgOI8nOl17FzeMY6+kEa5/4ZO3zPIcjlYogzft3sDulbOhyfAiUnqOtieq+2zLxcJZJxLnCpZP71efC6bkodn4a2HEuMUkltse7lfa9SrBwygElpzWlFL717hHeO4jxg3tTvOqlpKN/pcoP6LkMsQmadbvc/oyez1ZyXOETmOcjwmYYehm7c5Jik+dULivt10KkhtowlZSVn6sM6ymRyxyuz/0nMM3stPYRctAXJLGztn/2k0OMU4l/8eEJtvsu3nz/e2DXXq5c03PpEI+H+oXZu2/7lC/Hh2DPXbfXFhm0cdDLveCTVOAkEfgHP7eDf/yffwJ/L3+XvjG3FptBbz8HiBzRvXvYj3K8cHIbuFbNtl2HIROKIOzxSeV7e/pw2pntzTkCBmGh1NXJjm6dJPCZxHZy3HzghQNgOn4obehxIjDSNWZ19yZ9cS6DBoCBxzFJcrDPfhE33HVcn94D+9y/U7sucBjSXAFXXoC6fxt3xym4kth2RFWCtUwSAyoO2sKu8XGV8GfefT88twzaZpjTvUoZh7Myy/nhgqKztnfuz/DH372H3/rnH+Cn+zE+Lx8AjgNsVdGk0OWIFafWpYNdAMCdcYoAAhsyqrDsC6Z175HbrN47jPGiHANB2NhmlXshBftzn783JWGbjXRcqYs7ZsQnsFJlhWXsI+OgTT+cvBiWcWZ26zjB37o2xN//7A5+5w0GR+Y1p2jqkLMB1WrV3n3cHZeUvkqHup1m5eqWjmmdnNVkB8Zh9j2ELgdufUB64KWXGyi1jFyiA+j2DSItXZvtgl2vrpvYqOSg1biaQe9a+PUIbKucQT+Zdp5FdvM4xQuIwB2nElAUcGSfDrwl7zegJRX9Uga9vmnlLMu20XNxMMuAL34VN0cv4MWtAfDGZ2vXEcNeEpJx/w5uHCV4LjuB98J1SyIEiuENua8Z36Vns6t78bfjQ7ASuYiXnMZ5IRsmw9xOjudQC0CabP4hUYuzth/tUgC8Hjq4OvTwK/f+X+C5FyslKkA76FwCm9tQB3sAqGxyVYzBd65WeCKPOvBGKQWlFGaZwIdHCV4f3wCef7Hy7O1na2ldU6Yydm+S4hJS+C63nSEAPf/8KXXQHyGSWKkGfeGgT21JLnEYC3x8K8R/+qktyL94BwqoZ9CGKBSScAB27+NGmIBD4YXkoAKPMUaCFbmvHfT4CMuYnR2rIVd168MKLGrMkMQSrXZ18/4RgCGuRbsdGfQacL/ab2sddHxYYYo7pcOXrUgGLZXCT/YjfGl2F3jueuXwrRymANXaS6S3LkuEtCUDde92RaCkbJd6LvamKfYyBzFz8eLnPls5dI31PI5oLClgSxPc2J/gxeNbYK+9WbnO5QCDFs4AoMbHlox3R2uCPx/tzbXM6XsRhOcm9Xl/UtTQy6iF5cL0B+CnEOM5C7s7TrHdd/EP/96rABTw3/4N2NtfqF0Xupzesa0dYP8BALrXL013gSvVerUVBhmuAfffW3otf/zde/i392f45Y+vQyrg03d+APbxlyvXWMSnpwPBo/3K9+9PMlzJjoGd56qOnWmIGyBka4Cnxj4yGTRAdWjJV3NY+tNmximuB3rj3/oAcD1gjmBimbySEey0exc3jhM8nx3Du/ZSpU8Z0GIi5vA9Wc5B27GEvkMw7Z0btUCBPltD3G4A7FzFrd0TcCVx5eoWWL/61gYORyK0wMTcOu5NMnAoXEpOqg7aHL5B75F7QM/K/uxnR/juzTHeP0wwTSU++eBHjSgBUIaLl7vfAA2j8R1GNb27t2o1fGObPRf70xQ/3Sdn9MqlsPG6UeBgnAiwT7yFlLu4N5MEh89l24wxhC5HxH3qGDgsDunbJykGyKn9bbOKbABA3qI+9jjs5nECHxLb8VGFZ2G1ocPBE8+gxwkR/RzOwI/2qcvipY/Xrgs9yqDZJXLQaS5xf5Lh+cObYHPX26BvsF5BN7psmgr8+XvHeDDN8H/+YA87PY437/6wFmQXKnLkoNWcg743yaiP+0p1L3JegrhXTBxmkX1kMmhAt1twlwgGSjVG8he2nBmnOAp0FvXhz4BrL9fgMd+hNodZJoFrH4O68R4+3IrxytFNsI+/WfvcwGFIuCakNLCnG9di5B19Djy4SwFYg4Meakh2kkqwT38OH+wxvKAewP/5L9au7XkcUgHp1hX4kxOoOALTCko3jhO8oKbwNjYrjt0evv0RvIZJS+dlN48T/K//6h4A4PLAhcuAz9/818Dn/4vKdW6ZdANAjevtZG2WConAYdSLPJvUDkVjl3ouDmYpfrgbwXcYXtlsd9DTVELsPIfbL70NyTiuuynw8Tdq1/Y8jlgoCo5279mv3x6neD4/AbvyQqVlzj6XwahRv/tx2K3jFNfkmNr3tGwmrYX+leHgVBPbzsLGqbCoEz4k3gZ78dXadaHLEGeSCKDRDDdu3INQwMuTO2CvVPkENugbrAHjehtckxkS43/y5iXcm2T4NXYLHArsldfn1kGfE5uA8vDAfi/JJQ6iHFeOb4N9ci6rN+c+8MTr/g9rH70M2kwoyvPFP3BhrXZSyVolcOM9sJfqLzdjDH2PI8oE2CuvI7p/D/cnGa5P7oJ98q3a9YHLkUhQDWnZDFrrdw58B7j9If3eBge9rg+j4zgHvvbv46drL+Lj2T7Yl3+ldq3RkY43dfazd99+78OjBC/N7tcifDvarj+AOidH0GQ/3qODf+RzPJjm+LtrEY1fnHN2bpl0Azx0Bu05OiACKnXWsl0eeJAK+PN3j/CJrdDClPO2FjhQoDnhP/ul/xIA8Nqv/QeNh3vP44gyCexchdIOWimFD48SXDu5DTbXY22RjXDQKDrzOOzGcYLrk3vAi81ryfuDJ+4sxknhoNWHP6MWt7lSD1DUoJluW/zZB3TPX53eAV5+rXKtnek+WAOUXIrX8ECXA776sXX8d19+Aa/fegfw/VqvvHHQCVySGy1l0B8cUWb80vhOLVh0uO6DBs4tQDsr+4g5aEYsbuBU4/UujEhCgM5Kd++RgEEDPAaQs4tyCfaZL+DHoxehwPCJbBf41M/Vru2CltssEbSW0GVQtz+kg6bEDjc2DBxwRv2Su6PLOPEGeP2XvgLW69euDTUcnmxoqHSPDqVZRq1Z1/ber7VxWUfQGz5R+PLuOANnwD/8xqv4H/7udfzXR9+lA23u+TiM6rm5q+HiOdJNmymlCojbZLA7zzVeayDtOFf4hWuj1s8caXRjnAj8WI6wFjh47o3XGq+1DmP7qn0uD6YZjmOB1/Z+CsxB+TZr7Q3PxUEfRDn2Zjle3v0Z2LyDNg4saJarPE8bp9Led/Xhu8Dz1yvZvrFQv7/q2suAH+DdO4cYihhXrj9XIwbaoM98fYmgbzLPIfnZ3wAfex3MrQK8DmcIHIbIENZ0PRwA3j2gktIr49tgL8/vc0Za3EDjDPFVto+Ug7b9cMC5zoV9Fi3Wgrs9j1P0DdTqUcb6HsGX7KVX8aNP/CK4kvjk179Wqz8DVCdOcgWsrUOdLOcwMqHAoA+Hu7eA7ctgnl+7jjOGUeDgJBH48R690J+4XGcem78LAKI1UklSD8gRmJ977egDsFer/bz28O0Nn2ikbjKjvufgs88NwH/0DvDap2rlB8aYlmYEsbtLKEGXZVqtLXA4sEsZNHauNF77sc0Ar2z18f+z9+ZBluVXfefn7ve+PV+ulbV2Vy9qSd1SN91CG2BEC4EExmYwwgaPNTAwEY6RCTQ4woHMRIw1RGiwDcMwDkAgbI+JGMYYBAIsCbUWlm5J3WrUm3qrvSqzqnLPfPtdf/PH79777s33XlZWVebLKpfOPx1Vfd97t+79/X7nnO/5nu8pWxrfdVdl5HdWbD2999dWu9w/5YwsQaUZ9MwhaDURrQavJ++lcQnl3rwSVlq7LIznvby8LB3vGzfPDEDGSRAn7OJNTWy7WYuEoB1D3EIIuHB65P4tWxpBBD3VkEF2W+Xk1kXUIchT2gZnJw762mWqbIlKuD24dBbl5GBpA/rvXpk/Bpcvpn9/Zr1HCZ8p3IF2P01VJPcIEAccFF2v3VEOWk0UZeBbGfRNmhf3E5maIutXujEgUpJYxdZSSPyVE9/GiZpF6TveM/RaS1dxgwhlciZljO7mXkxNQVEUxNWFkYxikDD3lhvw/NU2RVPlRG0wY4BMvctwpPB+DJ2/tNRBRfCGxgW47825z6QDWZzigUbqDTdI4XyxsQZLiyhveGjotTIgysPF17L03euKhLhrkyjm8OeoKgqf+OBb+M0fvJuaPZryUnfk/3t1tctiw+ON087Iax1dZlFpSeXcKZ6/2qYgfI5HjQHY1cw6jV4XEe6+3/ta5oeCf/WlS3zimaupCMY3rrRxCLm7dRXuz5dxUpazNXzYx7is60dEItZL31iVjnRIiQr6paFGL2TzAz/BhdIhHqyC8ti7B65NlQNjpvVuiJ4tL8LUFFkyOfsaRNFAOSYxW4+DsyPHYeUqotdFCMELV9u8sXkR5e77BuSBNYU+SexbGfSta7IGHb+oA1bxud0tgZVNTUVcvgiHjgxAUonVHZ21ToAbRLy22uONc8OzVohJYqGQbPD11XQ28I73EkSYuioZ3FcXc+InA/dSMFhp+3zjSpu3zBXTrHe7pRl0EMHd9yPOvQ7A1xdb3Ne9QuXkPQNylWkN+sAdtGTnAohXXwAYWu8HybLv+JGsIV+vg9YU2Rc7NbPj9Y6h9VXHRth82UBV4NOvStTk2w6PXiOOrkkE58S9oKqEr77IMwtN3rr2GsZbHhtACpLeaS+eg72X7+bFpTbPXm7z569v8pVLTXpBxJMXmry9cQrt7iFrJK2HHyzEnbxDS1P7BLERGXQ1Dqy23JAXfEmKfOQHvneoTr4d75ueE6Mlq9cOsltemBI4xelX5JjYk/cPvdYx4nLZ4RMA+BfOsNjwWG4HPHzleZS3fPvAZzRVIUwH33zLQd+ylqtFfMtB35R58XggS1dkhrZD1jpZ0FnvBrxwtYMXCr5tfnQjYpJBp/3RK9eGXZMMmrUV2eM+ouUH4GjF5My6y1on4OFDo+8jJYkFEcp9b4Irl7h4bpHzmy7vWngG+z0fGPhMjozU7RyYrOBWL6SctL+9+gKUykPJPyCdXTfOoGk1dkVu84J+cMbWRm4YxI2aoanMlQzJxC0ZHKsOlijSe05gTtuBNz3Cyy+dYdONeGz5RZTvfv+Q707Y6rGD3sM69Om49jlbMvidZ5f5zaev0g0i3nv6Cyhv+86B69Pxh3YR3C7igMiqXhxgG5oi+9hhNAKWyaC/caVNxdK4a+IayJNqyJ76pASyg0kHHXeDnH5FCpQMEb2BPp+Fk28ARcF77mm+fK6BiuDR9VdRHhlUqUsFhOyDRS1uxO4oB532QcO3HPRNmhtGsu4bBTJK3iZYkLW6oxNEgi+e28LWVR6cHSRlJZZArqlg//Llkdcm5odCtvzENdRRjGKA+6f60Ok7j40mLaUZtB+hPPpuUBQ+/eUXMKKAd3mXcL7rfQOf6fe4FiAMD6znMulvFUIgXn0e7n9wZKuLk2TQiQOP+QQ7mRdlyhuNjQHFthu1R+blofwD90/s2AKZ3LMQAvX7f4S/qL6JQtDl7W+YQ7nrvoHrUwW5RJClvXdZ1HonoGJp/PN3z9P2Qr50rsH7uqd4g7+C8va/M3B9grL4xXjttRoD14zD+iiIKvdYuTqULAlSaQxgoxfwjctt3jpXTIWftls2sN1t2aTlRbIbRAg4//oAtyP3/UlwVqnByQfY+NLn+Pzrq7x1/XWm3vowSmaWdWKJFjsHjGzdiO27g37uuef42Z/9WT784Q/zx3/8x/v9czuaqipEMdRx0D2It5p1/Yj/9TOv8hend8ecTuu+q8uynWIHBz1TkmSwpy42efhQUdaaRphkcQtJ9FD7BLSdzA0jDE1FbMZ9kbXBTZrY24+WeN89Nf75u+dTWG2YFY1Mz/TkDBvv+yBf0o/ynuVnqf/jn057orOWQtzJIIcDgtO6QSQDjI1VWF9F2VYrz1ohIVzdfT8oCuLMK9f8/gQ9MYjkv7Fy8xk0wIcenuaX33ecH7x/5++r2hpeKOgGEVtH7uMrc2/lPbMazo//zNDr+5rjsQNq7a6/fje22Qup2hr3Tjr8xt89yS+fbPMzX/ttlB/8h0OzQCteJIETO+hdinnsxl642ub3nltJR67uZH2IW0EsX95x/044OqoCXzy7xZYb7hjYphD3dZRN3GS9bq3L9TSkRTIxJ27ZBFB/8IP8mXWSTV/hR1afRvkHHxr6GU1RiCIBB9z+eCO2rw46iiI++clP8gu/8Av86q/+Kk8++SQLCwv7+ZM7mpbNoG8zRZn9ticvNvjC66v8u69dZb17bdgtqfsmRC5lcjiLF/JZ63tP7iwlaSUtNLYDR+9GnPrmNe8lhbiTvsghUXRihqbyT799jncfH80oBkmeMVSFjfhZ/OldjxOpOn//H30A5YG3DP1MnyQWH8ztvcuOWl5I27s2uSnbAsWl8wADrT5ZSzOSQhEOH0e8/Nw1fyOBRy03Puz2KIM2NHVH9nZiCaFsvRvw+TObBAK+/533j5wdnki89hWo1odedyO21QvSGu2EAff82e+gzB1B+e7BEgj0gwUv0ZPeIwcdCcHH/3qRP/jmGp95/drdD1mIm+UrAyMms2bG5YdXVrrYusIjO5SoTE24nIYKAAAgAElEQVRBIeZuHDoKa8uIa5QUvEDI+7gsh67sxCGp2no6VrJzz0P8yX3v51GjyRt/7iO5sZ5ZUxNdfaf4rRp01k6fPs3c3Byzs7Pous473/lOnnnmmf38yR1NVRRCJYG4v5VBZy3pI1QV+K+v7WaDx32wSe/sDnXImq3z04/O8MEHJ3fc3CCnH3mhkK1T970Jzr5+zag3VbXaWAOniGINV6u6HlMUhQlHZ6Mb0HJDPntqk3efqHDo0NTIz6TTsgpxhrG1e+GPncwNIj78Z+f48J+fo+Pv7KTTzEhXEQvn5F/GhJphlsDFAMpj3wGnXpZM+F38RqKWpuxBDfp6LHHQq+2Az57a5KG5Akcqw2uikHkvCcS9hw56sxf2GfNf+SIsLaL+yIdGEiZTlrMl98H2QSw3aittP9Um+PSr64TXyKJTiBsheQSZISrDLOFrfN+9E6kG+zBTFaXfiZGUG86d2vleoghTVTNT0XYgeTo6bT+iF0Ryml4AP/74gyg7oGaGqsjWwHJlTxGLcdi+Sn2ur68zOdl/cJOTk5w6lX9ZTzzxBE888QQAH//4x5maGn0A3ojpup5+p2lcxLDlRi5oKqU9/q3b2bb8Je6ZLjJbMvni+Sb/83ffj74DFI2+SsE0KAYuLWDq5L07OsYP7fJZH5r0gVWMUpXq4z/I+uf/hOIr36Dwvr838jNCWaBsG5idFsHUzJ6toZnKIq1Q4cuLLr0g4qfeeZKpKXlQZddVYtM9A1jAikU7SlGAswf38tXzGymq8dSVgB97ZDRasdWNxxxWy5irV/FnDjF9dDj5B2Cy0qB7scXU1BThD/4oa5/5Q/RP/Sdq//LfjMxkiy25LqqKdAi1oycwdvh3DntWN2N3qwXgEn+10GW1E/Bz333Pjt8fWS5wFqtUQanUsHsdKnt0P03vFHMTJaamplj/6pcQJ+6h/p7vH/nsZqIWcBErRpxKIqSQuZcbfVaXetLx/NCb5/iTl65yvqvz7cdHB052Q77DSVsDISgdPpq7j+32z95T4+ETa7zn3ukdHTRA0TwDusXko+9gRVFwLl+g9F3vHXl9KM5SKTrYq5v07AJTd98z8vmdmImAFbpagT9//SzvurvO2+4bTVAFKBdWWe6EOLOH6J1+Zc99zH7avjroYSzW7Q/+8ccf5/HHH0//vLq6uqf3MDU1lX6niEK6ng+aTmd9nd4e/9btbAsbHY5MFPk7xxyePLfBZ1+4wNuPjq41NTs9dCWifXkBnCJrzRY0b54dqwYS2Th/eZnjE9Nw7CTN//zvaT/42Mhe27brUzHBXb4CpcqeraGyLji11ub15RbfNl+kpnRZjWU0s+sqsW5L/r81P+I40Fy8SHsP7uWlSxK6ny8b/NlLl3n82OhsMZlD7Pc6uJcvweTMjs9DDTy6fsjV5RUp6PH3fgLv9z/Byh/8R9T3/MDQz2xsNgHorsnZwJtBgLLDbwx7VjdjRhChKvCF11epOzoPVMSO39/qyeBmY6uJqNToLl3G2+H611a7/O9fXuAnH5nhu+8eXZIRQtByQ7TQY+X1V4he/ybKf/dPWFtbG/mZdlOW1tZ7PigqrSuX6WTu5Uaf1anL0kE/ftzhi6c0/vBvL3KyOBptWd2U5ZfeVUnCbOtG7j6G2WPTGs3NdZrXuBdTg41Wh/VOF+6+n/ZTX6T33tEBdtcPCX2X7pVFqNV3fH5GKPfYb/71aTa7AT/xbUeu+bxE4NH1fHqGjWhusXL16kiE46Bsfn54iWFfIe7Jycncw15bW2NiYrxwWNZUhZQsMC5N3tvFVts+s2WLb5svUXf0a5LFvECKC4jN9T1ps0ksbelwQxRFQf0H/wOsryCe+PToewkjWWdsN1FKO9eWr8dO1GxWOwENN+RH3jQaQksshVI1Ayxn19KZ17KrTZ+iofL++yY4t+FyYXM0f8INMgzr9RWU+s7ZwkQMF290AxYbHv/WfJhPvv1/pPNHv4e4OHxcYDLzWkvKRM7OZYu9NktXuXdS8hr+/hvrI3vZE0tIiV4YyYlqG6MdAMBnT23QcEP+wzeWdyRceaFAxPcjzrwGMJKfkFgCcfsCqFQlMWoPbDUegTpXNvjuuyp8baEpNedH3XvSJtmO9/keEf0gERORwYHy2HfCwnnE4sWR1/th1OeQ7MAfAZgvy/a7r15q8cZph4fmr73fzYR4mpxTtxHMva8O+uTJk1y5coXl5WWCIOCpp57i0Ucf3c+f3NFURSESQLGMaF8rDrz9TQjBH7y0ypMXdiYrhZGg7UfUHB1NVXh8KuJvF1ss/fVfjvyMG4q4D3avHXRf8rHthXxWPcq5R96L+Mx/GVmvS0lRnRYURwtcXK+941gZU1N417Eyb5wZ3RqWWEJG8gIB1dqeOej1bsBkQec7jldQFfir86PfZ0L+MZVoV7XFyYJ83gsNj48+cZFnFlt8xr6Pf/vGnyD8xL8eKhQTxU5Lc+Oe0hHtOftp/8u7DvHht8/xgfuuvfbSNqtIoNRnYHVpxx71S1tyutJmL+SlpdF9s27Q14Dn7GtywMMO9X5AEiuTz07OINZXdrx+oeHyqZfX0vc6yrbckKKhYmoqj99dJYjgi196Vg6yGWKJXKueMNr3cA9XbZ3NXuKg3wWahnjqCyOv95KzZHMNpVbf8buni/0e+Z94685rOzEznu2uVGMy4y4lhG8F21cHrWkaP/mTP8kv/dIv8XM/93O84x3v4OjR0QSA/TZNUQiEkIf4bcbmuxE7tdbj955f5Zf/5jJrMfQ5zLpBMg1KR/ge7/nM/w0InvirFxDPPz30M0EUO8VmY8/6YKGfQW/0An75rxf5zWeW+Be193LanEJ87lMj70VXkP2thdGw/PXa8ZrFv//he/j5d49muGbNTOZNhwIqE4hrZEevrnT5vedW8K9x+LZizeSao/OmmQJPL4wOLpMM2uq2QIhrOujpomyB+7WnLrPZDfil9x7jQ4/M8LfVe3jRdRBP/9XAZ5KsUnW7YJhDNdX322ZLJo+frF0zewbZn64qsl+eucMykGsNf4ZCCC43PB4/WcXWFb5yafSz7sXP2tZVxKWzcOSua0KnaQYdCSlnew398996Zon/8I0VPvXyzmup40fp7PWjz3+J+7Yu8IVLXaI//I9Dr0+CC7OVZNB7t4cnHZ31jszelcoEPPQY4qkvIPzBMyiMBJEAQ0WS93YgeyX2se85xr/5vuO8aRdBM0gH7SUDeGDPAudx2L73QT/yyCP82q/9Gr/+67/OD//wD+/3z+1ohqYQhAKKZTnH9r9xS8YOAvzlDllXJzOuUXzjq8ysnuet5YgvHH47/h/9p6HZRhAJKVbQbcuSwR5ZzdYoGiq/8/Vlnrva4UffPEnJ1Ph/Hvqg3OTB4CaPIoEahbIfu7i3cGvJ1EaKMmw3MwOlKtOzO6qgCSH4138j22I+e2rnckIi5ADwmLrOxS2PxSefGnptmkG3ZWZ0LYj7SMVEVWCjF/I9J6vcO+nw/ffVqNoanzv5HsTffH7gMynE3escSPZ8I2aoCl4oUJJ+36XhTPWmG9L2I47XLB4+VOSZxdbIbLuXtJtpKqxc3bFVKbE0iAsETM1KOdtoeK04jAQvL8s9/MSZzR2z/o4fUjBicZq/+BSPhxe5VJzjta99A7E2mKX7CYu7tQlOYehwmRu1uqOz0QsIIsETZzZ5/q3vlyp1z31t4NpUMjhw5Rjga0DcADVHT0scuzFTVwkiCGPnvxNqEQnBp19d59TardHlc0cpiSV0e6VY2tWc0tvdLjc9CoYcCPHs4uh/b9K6U7J0ePk5KJZ5/C1HWTPKvNLR4Pxgm0QYCSnM0dlbB60oCvdO2gjgrXMF/tFDU7z//gle0mdY9lU4PSikEQrQw9hxF/cug75es7RMBj1zCDZGa4lv9kJW4yzji2d3rom13FAGT70uj37utwF45otfQQzJvnIZNFyztqipCh96eIaH5gr8k4elprapqbzjaJm/Ld+Fe/7cQDkoih2F1uvs6bvfT0uzqFgGNpW33GbJUJearfPQXJG1TsDV1nD0Kc1ClUiKwkyNZtcnZiRtVlEkNczDYGTb15WWRxAJHph2WG4HLDS8kd/b8SMKpgpLi7BylXc/eAxThSenH0Q8ORhk9VvlGnvOIagXdCIBn3hmiV//6lX+t3M2zx17dGiwlwYKQbxPSjvrJNyIpahFeQIMM51hPsyeXWzzyWeX+ZdPXLomsjUOu6MctK7FDeu3eQbd8UP+7LV1GjuQQAAuNzwOV0wemS/y8ko3HRE5+H3y7wumJpWk7n0jD8+XUIGXJu4ZCnOHAjQRyQPG2bu6L8BPPTrLB+6r8XPvmkdRFL7rhCSCfG36QcQ3vzFwfRAJ1DizHqXhOw5LRSjCqD8feUQWvdCQB9KDswXObrhs7iAO0/JCyqYKL3+DufVLHDYCXqzejfjyfx24Ns1IerGDLl07YPmhB+p87HuOpeUFgMcOl3DReL18BF55Pnd9cm6p3fbYCWI3ao6hyXU+NSsnryU9t9usmRl9+OYZmaW9+OpwglOyn+xOQ5YTRozczJqiKDJRCEU/4x4RLKy25Zr43nskNPv81dFluY4nIW5x6mUACm94M2+YKfDi7JuGZq5+JFAVULt7H2Qdqchs/HOnN3nH0TKzJYP/cvL74LUX5TjJjKWBgi//fvtwkb2wBLXwI2DmEGIHB/3yiuQc9IKIF3fgH4zL7igHnWwMivHYuQMSqr9Z+9TL6/z215f5jWd2rl8l5KI3zRSIBJxeG64/njjoooZUFZo/TtHUODlp89LsmxCvvTjwmTAS6Ak0t8cb/FjV4mcem0vHE86WTGZLBq8cevPQe4mEQA/i7GIfNvhuTY0PXy97+I7QEl+JD9/3xYfvCyMOAz8UuKGQWsWvvAC2wwNH67w6cTfRc4OBUypAkWTQxRtjtSfqb6/XTiDO5+VWwySD7rZuG4i7ZKq0vVCqjc0fQyxcGHpdIvZRMjUOf/Mpal6TF5/8+lBN6QStsJsyA1Z2kUGDdBhuKFJCmVg4P/S6hIV936TNXMnghaujHUZag758CUwLZg7x0GyBC0ad5pUlRDNf4oqEkG11e4yAATww7XCkYnK8avHP3jHH956s8bKosKYV4PW8MmC6XmMHvR8IWFJ6ckMhA+cdHPRiw2OuZGBpCs/sgDqOy+48B51k0HDbtlolkfTTC01a7uhex6YXUTY17osP21dXhm/wxEE7zXVZB4rrdPdO2py1Z4jOnR4geASRQIviAGcMWesD0w6vFOYRi+dzNTshBEEEWuKgDzCDhszhGz/DUVDqZnz4PjxfxNKUHF8ga4m8Z9HUEIvn4fBxHpgp0FItFpvegOPwU+iyCZaNYtwYgatsacyXDU5N34+4eCb3/xKVKq3bvo0ctEYrdr7K4ePpfO/t1oz3U9nS4G8+x32tBU4XDyO+8KcD16YQdycuUeyC4AQScvWCCKVcgWodRjjoBG6v2jr3TzkjA2zI1KCXFmHmEIrab0U7V5qHMy/nrk85JJ29R0EMTeX/+sBd/Or7T1AwtFQ98KX6PYizr+auTWBkw4v/bftQMklZ/KFAmTkk50iPYLcvNDxOTFi8aabAN5cPvg59RzloPabbp3WOW6wfzg8Fzy620kN2mAkhuLDpcdeERRD1IZlh17Vcyf4te20Ou+u8+uTTQ3Vxkxq0tSYjy4RIc9eETQ+NZaM8QKoJBWhhzNQcQx3ynrrNFiabmDlIMGlTVVMHfbCQa3r4ForywL4yHB5t9EIMVaFoqJys2yMP3162lefyJZTDx9OA61T5KOJM/sBLGNZau3nT2chdEzaXCjOwrR86eeZat41ym0DcRVOllWiZHzkOW+sDWSWQXlMIXTjzKnfPVbniTNF57tkBklYf4o7LZeXd1U9tQ+2Xmw4fl4HXENvshWiKvPeT62dY6wasff3rQ6/t+PHAieUraXCYjIQ8V54fyNLDSKCrwD69Q01VUob98ZpF0VT55qEHERfywV6aQScte/uSQWdKT7PzciTtCKLYRjdgumBw35TNpS13ZFlwXHZHOeiUJJb02l1DsGDc9v+9uMq/+vICv/f8aJZhy5M6tO8+XkFXlZTlud3cUOBHMTT65Oe5a/MiF7Uq4sufGbg2CQi0ldjxxRv8RE1u8POl+QGhgTASaAkxawxO8WhV3stCYRZx6Vz/PhK4NQ4W2AMd7psxS49FEQAOHUFcHl7r3HIDKraGoiicvPxNzi5tEbz60sB1Sb+q6XYkb2L+OIfLJroKC6VDcCnvPNPn0Wnsqv68k82XTZYUh6DTRmRIlWHaZtU58Oe9WyuaWgpfK0mv8hDHmDjo4tJFEIKT8xMIReF8MEguSt6z1d6Ude0hE86GWSl7L0dOwOWLQ8ttW72Aiq2j+B4nn5STAE//xecHsr9kQIqlAqt9NnnV1pl0dM5Pnhx00CIe7rLHXRjDTFMVTtZtzpcPDwR7SUCpex1Q1F0/w+uxLMSdDuIYwkHwQ0HHjyhbcjpZJPozCg7K7iwHnWTQsYMWm7eWg356QR6CXzq7NVLsfiOGRmeKBvfU7ZHQaBaqEy88wzHDZ8mZpPPsVweuTaJYfWtdHjRxFJs4xcXi7MBhFoqMgx5DFnUkFidYKOR7RxPCUnove9guciMmHUEs0jB/DK4uDIXTtnohNVtDLF7k7tNfw9NMLn3mzweuS4InPZ6MpUzPoqkK82WThfrxAbWvIAm22o2bzkbmKyYRCst2HVb7UHoaBHi9A3/euzUJcccZ9OHjAIghMHfHj7B1FXVRBoF3n5Ss77OlecS2boa0nNDakvOUd9mOV9x+L0EwlKsg2+tUePUFTmzKez0XOVIUJWOJkzMCV84hz7TWHa6aXC7Nwraae5B0YXTH0yp3tGqxoFYQW+u5roAU8el1oFgcObf8ZsyKSWK9IIJ56aCHBc7JO6lYGve0JGL4+mc+t+f3cz12ZzloVSGIon6taEwOeqHh8vOfPc9XLo5mjoeR4FLDZbZksOWGI+UcE7bvhKNxYsLiwmZvaH9ksthKugIXznAsHvKwsNEdUORKsjRtaw0qtfSgcQyViqWxXJsfYD6GkcjUffffQU86Oo6uslg7mpsxO5BBH7DDKGeh1ENHwe0NRWqabkjZ1BAvfZ0jbTmyc3F5C7FN5ahP+orXTrx2j1YtFgrTcDmPbATx89CbWzcte5rIKl4uTOefecLiDvwDf967tZIpp6S5QSRVs0rloXVoPxSyXW51CUyT+swUBUOVTm67g072TXNTTkrapRUNlbafyaAZHizIKW0q4twpnMhn0la5XJhBvPrC0PswPBmsZ4WD5koGS3pZqqdlAsVICDQFyT4fw/49VjXpobJi1WA5u3/lf/VeZ9/4I2Uzme0eohTL8v1fHiw9JTX/iqVRfuKPqHlNFpYbIyVvx2F3loPWFIIIhK5DqQIbezd2bif701c3OLXW43eeHS0xuNYJiAR8Zzyn+NURmXEyn3jC1jl26hnavmD1L780cF0qPtLeAM/l2Lw82C8W5wZgJj+ULRfK5uqA5N9syWC5OAXbxA6CaLywsqIozJQMVkvTuf7flLAU+mCau85i9stKlkbTjQ/fFE4bPAzcQMjh9hfPMh+jeouFaTiVJ/P48aGaZNAJ+iPh5wJhs4Fw+8Fc8jz03s0zrGdLkmC2YtUQmXaxUAhUQEVIecvbwJJg41efuszHvrzA1tH7h7KnvVDOJhbrK1CfRlVVDpUNrtaODDjRFJ5tbuy6/gwS1UoQLg4dBVUdyHAhkdNVJBw7Ncvhms3l6mHEtgw6zeRjB51VBZstmTQw6KLlFLSCCDTis2gMCFiKxhVmECv9YD8tl/Ta++agS3H7YFJWYP5Yf7RlxhquPM9KuoBXnmdedVksziCefXJf7ms3dmc56Bg+CSMBtUnExs1N2PHDiP/zqct8+tWdHf3rsbNd7QQjM+PlWOz+zbMFarY2ErpONG6r+Bx9Xjrm809+ZcDxp/2wLbkpZ+en0VWZDQ3AopFsuYg2NwYk/2aKBstGdYBUEQmBlrCpx5RFTRV01uwaZDd4EoGHvmwvOWArmxrNeKPvBKe58YAPcfkSzuwck47G5dLc6MO3tQWaJgNLpERnhMKGWYa1vvMMIjkURnF7N/08KpYmVcZKU7nfCCNBikTeJhn0XRMyiPzKpRbPXm7zR3PvlLXfbeUHP3GKaytQl8ItcyWTq1Z9oAadBLZacxPlOhz0VEGn4YaSnKnrMHt4KFHMCyJMXZXzueePcbhsctmqDwQKqa52QrTalkEDLNkTsLac/n0YCfTEQe9D3Xe7zcSSsqt2LYfG9GvQvX0L9JMMOgmKlENH4fKlgTMzLQu21sHtcqReYLE0hziVbw0bp91ZDjojms/U7DV1cHeS1gM5UeVL5xp88tnldMzfdouEYKHh8Y54dONLy8NZ14mDnikanChpXFwazjBPdLOdMy9xrClJXRdDawCuSwgs5paEV7WpWaaLBsuVQWKRH0YYmkK0tT6gqz1bMlhRbKLGFsL30n9TlKh36ca+1I2G2WRBZ00twOZ6erCmEXjgg3HwDnq6aND0Il642uaMa8rMaki07oYCSwOWFlHmj3K4YrFYmR9w5inE3dqA6kT6rKeLskd81arlxFDCONjCc8G8uQNPUxVqts5GoY5o9OVIJcEo/sNt4qDnKyY//tAU//gt0zx2uMTT2qwsP2ScFkiFL0NTYW0ZZVLqmB8qmyyrBYKN9Vy7YRLYSqLV7rO/uZJ8Zv/wP5/ip//4DJtH7hsKt3vZNTJ3mMMVk7ZisNXsIDKzBPqtdfHfZdTjEse4bNcRWQcthERAYOQY1720uqOjKrBaObStXBLvX8/dtwDb1BRMTUkhbOaPgduF9XyClmirO+tyPx2ZLNHQHBoLl0fKse633VEOWk8k30KBMnsIVq6MfPC/8fRV/qdPn91xyMQrmSz32cXhKj+r7QAvFLz1UIGqrXF2fXgGnURvFV1w5JWnWGj6hF8f1Ft2gwhDVVAvnaUcupR1WLInB9ptUgm9zVUZpVcnmC1KuHqgdzYSGKpCtLXRF5SPre7oBKi0DCdd0CkxKwrGCnFOFgw2MfCFkirB5SHug3fQh2MVpV/8wiV+/rPnuXD0waFwmhdEmL4LvgdzR5ivmFyxBmtjKUmsuSF7ZmObymQkIkPgCpLaYhTtybuZcHTW7RrkHLToO+jbBOIG+NEHp/iRN0/ylrkCS4HBqlUdID/6ocBUkS2YMdlqtmQQorBhlHJBfbJvcHvXlYU+MNO/dqUT8Ln6W2SNuJcP3r0wwhShJJFNznAohumvOlO5ddJ30C0wLZTMvSTjRLfM0ugMegz7RlMVJmyd1dJUbohMioB5vX0LFBRFYaZo8MpKl99/YZXLE3HpadteS/vaVyVhb/6QfP+Xjeo1k7n9sjvKQecy6Jl5ufDXB2Huphvy2VObLLX8HQcZXNp0uXfSpu7oI8fSJazrqYLBiarJudXh4igNN0RVoHDmmxxZv4CnmSz/zeAkoV4QYesK4vIFmDnEdNlipTQF517PXZcOTdhYhvoMiqoyUzJY1is5Ri7IDW4kh3o5z/xN1Lw2jXJKqkuJWcF4neJUPBpxw6qk9bQgvRfvlsjmHpqTJYpDZQMBfHHmYbgyCKe5ocBK5A0nppguGLQUk97mZu6gTglAnWYKb0P/Waw49dxM4TCZ7AV7AhnWHZ0Ns5Rz0FEkSERB93LIwrgs6SM/Wzo8UId2Q4FJHIHGKmz12MmtW/m9E4RxBh2G1/WspwoGH/ueo/za+09w/5TD3yox63p7G1cgUo1qpTqRvvN1q5LjYfhZ3sE2qL1mx9PhCvV8kBXFUr0wvhJV0ZAQ92a2Fp7pCNjHs+Ro1eS11S7/74ur/B/nLQQgtjnoBK2ylhdgYorZCVmbX7VrcGW44NB+2x3loPMZ9GgpxpczMPQ3rozWv73U8DhataTi1sbwfrlErq9iqZw49TUubfYIXhrUk5Z6yxqcepEjPekIF5c2Ulg5sV4gsHQVrizAoSMxiWt6YLElMoR6Yz0lFs0UDbYUE7fTQ3TzTsBQhhNGqvEG3zJLqbBLuqnCYKxOcSIOFjbMcnrYJCVELfBuiWyuYGj81g+d5N/9wN08OFvgJX1GqjVlCDphJOS4Ti9+B7UJpmLIes2q5bO0THaUzYwKhkbBUFkrzcDWtoN3jx30uupsy6BvP4g7a0fjlr1LMycHyFl+GGEkDjpmNycOesOsIDKDLWQGHf/Bur467kNzRU5M2Dw0W+BMT8dXtIEszQsjrGSIRLXOVCFGTaxaLhtOURa3O0AMNDSVkqmyVaznhJkCIfoksTEF2VMFnVW9NBBQAuheF6z9u48P3D/BfNng3cfLXGwGXJy5d4C8mWTQxvpVmJxJ9+SqVUNcHa5nsN92RznoZJJMmkEDYmlQl/XiltwUP/SGCc6s9+j6g32sQSTY7AbMFHVO2BGXGy699qAz34pJXZXVBY5cfhVfNVj+yy8OXNeMVb/EhbPM1ORmXzYqsE0H2Q1knyYbqyj1aUni0soDbVBJBm11Gml9bDLe4DITyDsBPXbQyjaorpaByBLlpSjKZK1jzKDLMRuzaRTTdqQ0WPBvDYgb5HxgTVV4YNrhQmDiqXquDp3WlRMHnT187SqsrWaujZGQIbrXVVuj4VRzrVl+NoPeg+dRtTWaGESumw46CKPM4X4bOuiCoTFV0FmYODY0izJFTCaKn/dkJnPNTp6Sc8gTotWNBUN3TVhEwEJxZmA6mRuKvgRmrU7RVLE0hbXSdI60mTD9Da87FGqv2TobdjXXXhlFop9BjymwrTk6DcWSoydD+YzT/et2b5ozsZM9OFvkN/7uSf77t0pewcuHHxrge7ihLN3oWxso1QkKhhx9u1KegaXhmvr7bXeUg7b1WFEmiGRWaVpyPNs2W2r5VLmLN18AACAASURBVG0tHTKROOysbfUCBHLxH3vmM0QoXPyjPxq8Lqktn3uJ2Z7c3EuXrg5kxk0vlDN/Fy9QPzSDpsCKPTEIwQURpiqg14X6FDMlA0/R2PKinABAn1y0iRLPSE7qUZtmOReBB5HoZw3bMoE+xJ3JoBOpxzHXfZNpS029kGZ0fbjdveWcxbGqRYTCojOdOwzS4KnbBk2HYjl1AqtWLTevtp9BN8DOO+iKpdOwygPZuZYEW3uQkZRMDYFCR7czz5yUYHSrPfPd2mzJYMWsyTGRGfNDgSFiFn6MJpUtDV2F9dJ0LvvzQ4GREK1uEK04Hqv1XZg4kQuaU3WwJIirTKAoClNFg7XSdI7wla4RtzuwRkA6xq0M6gRxm1XqoMezhyuWRhudAAWa+f2ru92x3MdM0aBma5ypHhs4+90wkujkVh91nCoarBanb7rj50btjnLQBVP+c9teJPtlZwYFOACW2j4zRYNjbfn/zn3+iYFrNrrS8U4EHY6cegaAy2cvDAyVaPQCLE3BXjjLbLz+lszqQC9yyw0pGQpsraNNzzJZMFgtTMLVvAZ2LxTYcYRPbTJlaa7Y9VyU58XRoJw4JDPoiaQeZZYRmUNdHkrxZt0WgZdMFVVBQmQt6aDDg86grXIK66Za3L43Fjbq9dix+PC9VD+We49J+cHsNqFaQ1HVtL645tRhI5sdZQ5fJ/9uqrZGQy9AIwNd5sg/N5+RlOI909IdaPWJeX149PZ00NMFg1XVkVPtMjV/LxSY6RAY6aBVRRKc1opTOYg796yvE+JOLOk1X544jFjtO92+RnUbSuV06MlkQWfVnsjpEvTXSGcAAQNZh97UCjmIOxQCLTlHxtT9kAbYRiENKlPRGxGN5SxRFIUjVYsFrQqdNqLXJ/p6QUwQ7HVTPYipgi5LCkO4SuOwO8pBF+OCUTIcgpnho8dWYwc99Re/jx26XLi4NAA/JdOIaquXmOnJxbaklgZk+LbckKqtIS6epT43ha7Akl1HXMhD1x0/oihi516fYaaos1KekT2QGXODCDuKZx/Xp6k7fdg6e4+yzzZmmG7LoDfMSi7r8iOBQfxMtsGoqqJQtTQ2CxOpI8g56DFmUAVDRVOgUailk8jSPkrfveWcRdKDulw7kovAU9i600yZ2YamUjZVNktT2yDuuNdWRAPZUdXS2FItaG6m3QjhHtcWU5EH3YF4hGXuN26B1rYbsamiwVok2dlZwSI/jDBSCdv+8645Og27nIO4/RzydGPPwdBUJhydlVJewjY3RCJDDqzZOlu6A5myRiLvqvfaQyHuiqXRVExoNvrrJAdxj+cdVuO11DCKabCX7l8Rju0+jlZMFoQtV3BG5c8NIyw1Xtexg55wdDZ1ZwBpGZfdUQ66YMgFkoxXVGYPwerVtB6SWNOLKBsK6msvcDhqS3GPF57JXZM46OrVs1iqYMJSWXLqiPN5NnWjF8rIceUK+vxRposGV0szg5lxEGH7sVTf1AzTRUPK4l0ZvC4ljkxMUnPkv2nTKOWkS2U0GBcj4wy6HAtPbJam8g46zMx2HrLBS5ZG2ywhWrIGnTKn/fFm0IqiSKUuu5JO5UqDBX//+ihv1CxdSqWuFiZzB3vao97LT5yq2rqsKW/2D4MgS0QaqEHrNIQhe8Jj/kMYCfTk4N0DklgpkUk0HEl2Q2Y9fYj7xsZZHrRNF3VCFFnu2cgHROYQjfmyqdHUi9vUuAT6iNLQ9dhMUWfFrObWSBrEuXkJzKql0cCU2V+M1qUZdK81FOIuGhodNCIhoJ3sGzIZ9HjeYY5DkrRJJmeJCMcWYB8qm3QiVQadGbTKDfoMfiUOnGu2TgOTqNvNEWvHZXeWg85A3IAkioVhjnARCUHbCyl1G+B5zNZLLBen4fQrue9KvqO4eBoOn2CmbLFUnoNt49RaXkhJQ/5OdZLZksFSaXZgTnAviPr1pknpoNcVm3BzAxH0YXM3iLDC2EGXa1StmMTl1PKZQBTXqiHNoFVFCk9sFiYGiEWGGO2gi4ZGxyhAKyGJyb/XAw9lzFlrxdJomqX+QZPUw333lszmJERWzdUuvSCpQbdQModvxdJkrTAzBtELI8w4zlKc7TVojRBFHjQpogDaTWZ1WUsdtF5Ig6JIjJ9gtNfWJ+XVckNzvFBghK6crJQJcMqWRlO10v57SEpD8b65iWBoumiwrBag205lW3MZdCaIq9gaXTTJ+o7ruGkNutcZEWCrRCj0NLMfZAmBHskujHEJDVWyGXR7W4A9JogbyPA9qoj1PLJlJe8zbler2ckesw8ki76zHLShoqsKF7dc/vy1Ddr1Q/J/ZGq3XT8iElDsyMU/Uy+xbFYJt9WM236IAjgbSzA5I9udnPoAJN0NIpwYulaqNSYLhmwTyvxmJITUZnZjFnhtkrqjE6GwZRTy2VcgZAZtmiiWhaEplBJoNLOA3EBgJmQhJxOB2xqbdnUggzZi2HxYJlA0VTqaJRWT6MNS6gFkrWVTo2UU0nvpZ9D720d5ozZdNOLWkj4MnWbQnWYaPEFSU3bSgxdih5EyhQdZ3JAceJn68B5Cl7kadKf/zNMg4BYMinZjOcJkvBeEkCNaTd8Fx8k5LgkTG+B7qRMNIiGhWbhhFjdI4tJqZCKAKA7kUtGMXis3bz0NyDO96WkGHfnDHXQaZPXfYRDFUr1jLFFVY8Jpdr0GcVugwo0T7a7Xcu1qGQftZhj8FEu5e5aB83B1x/20O8pBq4rCbMngiTNbfOLrS/zWklz4ItMLnU6Baq6CbjA7XSVQNDY2mjkySduLKBgq6uYaSq3OXMlgVSsSLF/NiVJ0/QgnihnblQlZ01AswvXVlMnthQIB2J6MlhVNS9nTW0Ypt4hSKHxbXWrTGcwE+oILGajO0mhnSBoAQRTX3UwTRdcHnlvR1Gir+egbZAY9bhZvydJoafZgBB6OV9VstzZV0FkVFogoPVDdlMXdyMOXts6WYkKr2W9DyTCFt0PcRSNTH273a/IpxL0nJLH4N8xi5v1nRS5uT4g7DW7sanrwpo7Odwf0AMqWRkdoBIoK8eCSIIqzULgpiLtmS2ZzW3cI45poOmu608ytkUo2KGtsy6CjcCQCBnkegdTSD8Ya1CZrqWlXc/s36ToYWz92ojlQO7QtqYmwonx5I9WByHSxjNPuKAcNcuxZYl9b8vDtYo4olkLXm0swd5i5slw0y049Vw/u+CEFQ5HzVGuTTBZkxruJmSMedIMIJ4GkqxNpZtw0imlm3Itr4navnTrerEBIQjCKhJAKVN524kgMjW6rYaXRYCaDLpsJVNdXNPNDgRH6KEPqVxCPx1N0yXiNwj7z8gAy6IKu0lWNgWBBE9Et2fJTLxh0hIqrGun78RIWd+jlD19LoylkbTQpJ3hZItK295OWbHQ7hZ9zWd0evBtLVzE1hZZTSWH0MIG4FVW2id2GlhCWtkqT/WedODq/O9RBQ8xAjglOEnlKIO4bf9ZZJxDFQXZag+4102wue98No5jqo6eBhQiGO+hknRjZDBqZQY8xqDViTeyuXe5n0KKvSjeus2TCjnXBy7O5bhbJ4Pfluo6fY9pmapYGxvSOw+44B/1P3zbHR955iH/xHYfxQsHpIw/lWq3SDHrjCszMp21MS3Y9p2Hd9iKKSY23Vs8wpMupOpkQgq4fYSdj4Ko1JmJS14bVJ6f0kppkr5nOle0vjHKaQadSdL32ALloUxuERs2knzOTQZdMjZZigNtNa9t+JB20OmI8YdHUaIu4oaTb7av/BP7Ys1bHUOmiy3pdJlgYZw3reqyWHr7FlMSXThqL/NzhW7N1BIp0Apn6opky7POHb9qVoNt9iDvJjDR9KBpyI1YwVDpmKT3cU5GLW2C8542aoak4usqWU0sFeFL9eq8LhfxeSCci6Vl4VqBHMfKkatyoZZ1AtLE9iMuvkcqQjC5lcUfh0CA7RUF0Jx2yEUYiRp3GHGAbKm2rmCN56mPOoBNd8HWnlsuKJb/HA6eQljeGKSmO0+44B12xdb7rrir3TUn47/zk3bkMOnHQxY0llInJdCjBulXJTWFp+xEFpANUavW8HGDGoUYCHK8tF5/l5FqdkusSB+10m4MZdGGif7CnjryNks2gnRga9bxU7ckLI+kAIJ9BWxqtxNnGm8QPhSR8jRjcXjRUQhSZBXbb25iX493gjqHSSWLubvdAWKDXYwkxJqvElgZaoZ8jiSVZWsvo9zb7YZSpc26DuOODt6PZOZKYHoV7Kpto6yo900F0M9mXCG9beDuxqq3RsCrpwdtnTg9m0IljbBqFtJvBTyDum4C3IRPEmeVMBp1x0FmUJaknW32ipB87ORWxYwbd0p0+d0MI1DFL9UIS7GU5E4xdchTk+2xsg63dMNY+zwREaf3eqeXIm+OyO85BJ1Z3dBxdZbE4DRsrad24FUPcpc4WTExh6zLS3ihN5x20F1JMHGBtMp9Bx5lxN+t4q1IJqJ67bi13ndXeSh1vwVAxVIWt4mS6iNJMu9vIQ9xxfcxXtBSuc4O4XUTXc46rbEln29WsPlQXCYzAHWAJJ1bMROB02n15PhGNnSRUMFQCVPlv7bRyLNBbTagEssSYUubdZDLozOGbZMRt3UnhtFQ4Q1EGmMKFJIO2y/ma3h7XFh1DpafbubKCGoW3LUEssaqtxT252yBut42yzUFns9BsD68R+DfdzpbyTcpTRBt5lMWK8kFcIbmPTMnBC6O+vKszzEHHgZxRyEHcBzFDvWBodPUMh+QANMEhbleLCZnJ2e+FkRxgk3n3uqpg6wrtQuVbGfQ4TVEUDldMFvUqeF4a0aUQd9BN5d4mHJ2NUn5MY8ePKIR9ndyaraMAG+XpFJJONLztbiMdop468mKfdZ0oS9ntjdTxKooia8tOX0M3va7bhFIf4s450MzBLuGaYg6G7Pe1FqAtHVwkJDFmtIPuOw66nQysfDAZNEBXt6DX7bdZ3aIOI611OrUBRyAh7v5h0H+PfWfoRwIjCsAuDMDJjqGiEB/WOdg13FNdY1tX6WmWFL0h02Z1m2fQFUtnS3PS95JC3L32ACGvkF137X4NWg+9m3bQZUtDQar1RY3+/oXBIE5XFSxNoWOXU5hYSo4OVwLM3rt06nGZQogDGdFaSDpCXFn2y/eSjzODjnXBPS9d124gMP1eLoMGuS9bVjlFTsZpd6yDBjhSMVmM4s0V90K3vQgVgR26KBNyDFzd0diwq4MZtNeWm9N20FWFiq1JR76Rd9BOezNVpjE1laKhslHOXBdnVLbfTWvQENeWM/T+NIMOvVwGnbbCGNnDJsLYBtdAtpZWgHYzo8TVG+mgC9laZ7fVZ3EfAKycis1oNrjdbX2UtyDEnbBuS/UUIvNCmTXoIoJCNtBKnrOTKz8YkT80M1IVRUL+ZjEVUZC1RX/vIW7NSA+yMAI1HG+Lzn5Y2Ur4GD2E5/Yz6F47lflMLAkMO1ZJEkNJMmjvumZBDzNNVShbGltWhWgbymJtq0GDzKLbZjEHcadM/yH3oioyC+yZhXybVTh+DknBUGVHSFc6aNkWuHfStLu1qq2xJWKORnMrnTBneZ2B8kYped7fyqDHa7Nlg7Ugbp2Is96WF1JSIxSAiUlA1ng3NdmPLIIAIYTMoN0WVOtpZlN3dDbsWursU4i7uY5SmUh/t2xptOxqCnGnLO5tjrevtSwJQ6mDjvwcSSxHAsk4AXNIu0gpw0YV7Va/RcProTrDa9BOPGSkp5mITid1iuoBwMrJvSQZdA5uvwUhbidmQW85E2kE7gYRlpK0wGUg7uQ9WqW+g44JfMMUoiCp6RWkfjDJwbu3ELetq3SVjIMWAk2Mn2C011Y0VdrEh3Sr0a9Bx8hT1gpZB93rIIQ80PU90qMvmSpts5grbUCcQW+7l6KhxnB1zDsIRzP9E5M8ggKi20YIiZppgY8y9hKVRjfpCBGiP7RDUWU5bkxWtTR6QpWT5hqbOWEYZVtAVDLVHDo5TrujHfRUQcadkrAlnWrLCymS1JYzEDem7GXdWKUXyAVe6GylThzifmSz1K9BJxl0awOqtfS6sqXRNPuygYnjtUM3R/4qmRotNR7PFoXpIrJDL7eIEqfb0vtqX24oMP3uIFyTQHWahOrSFg2vOzKDtpIpYJoJ3U4/647G39rkZO/f7aXDMiRp6dbL6BRFZkcNq5RCo+lIQ03PHe5pDdrp94lKJMQbgFz7n9Hk4ZE4aBHXFvdQ9MExFHqKnsKSYQRaePuTxEqGRldITgbNRh/ijoLBucqqgq5CN86gg0RNz3dvmiQGcaeE7qQZdBIsGFEwwCgvmqpEWbIkMRGCqo7cA7Ye8wjcXr8sNOZhNxAHlOjyLPW8/tAO0xprR0BONKW51a/5u+3BgMjUaMcqclmNi3HYHe2gJ+N68FqhnsmgI0qhC6UKSrzY67ZOT6jSKayv0o6HbRTbG6lmK8TEA1XWD4XbnyPthC5kMuiKpdHQpOC9iMKMg/ZTiTmIRTnQQQhoNfMQd5ZclEDcZiEH15hud4Dskjo4Q27wfgY92kEnn+lpJniZDX4ANeg0k9FsRK93IFKB12slU6OTISO5QdyjXsjzA0xNQVcV2pn6ohdKAt8oGDWt6fWyELe39zVoRZddAlHYF7m4BQOi67Fk30jSUqMPcUf+QEeDoigUDI12nIWmQWrgotyEilj/XjRamkWUyaANIlRFGQgAioZGW7PyPAUhRUpGOTlJ9JNBbV/c52Ag7q6Q0qP0On3t+AOQDAbZriaaW33iptcdKG+UTFWWQqIoZcGPy+5sB52M+KsfSWHplhtS8jv5zDjDvBZry3RipnehuZZm2QBlW6OR1DU21voQd+iiVPMQd1M15QtvNVLHaw6pLXeSxdzc6jvyyBsKcbeKdWg10qzY9DoDGbQT13C7TgU6/Qxaj8JrZtA93YIBp3gwGXQvgbhv8TYriIVedDuHblgiyAVZIJ1A0VRpZ3qO/UjEBL7R5YeeauYgbj3w97T0YOsqPREfFZ7bZ4rfgqS867EsKU+0W32IOwoGsiiInYtRiImSmSlqezKURKWVtEp6riyDEErJ0W1Ot2CqdBQj1QKQPIXhIiWJ2boqETA305o45mE3IJ+hSHTB4xLVQQT6yZnZifdltvVx+76UOhBxa2eryTjtjnbQiSbrWnUuJWy1vJCS24Ja30HnWqPWl2knvdJuCybyGXRa19hcG5lBl2PFKAA2N+gFAotIthtsg7gFilxEjc2Uxb09g05r0IUqotlIhzFINuq2DFrPt+b4CZQmgpFOwI57OHpmKb/BD5DFnZDEksEdt3IGnZVKFUEge9RDbyBShzg7Mgs5kpjp90ZC3Jau4qp66qDDSEjocg9JYo6u4qNKrkZPIihaGKQzim9XK2Ta2mhlyj1RMPTdOIYaEyUzZR6vtzcQt6Fl6uHNvi70iOlUbSW+ttPOMf1HmZUo8PV6fXj+AFAQO+WzSNQnFImi2Xj3btqZYleg1ejPaI/8IRl0XApR1NywlHHYHe2gi6aKrSusFSYzLO6QYncLJVdbjtW/anMxxB1n0EEPqv3rKrGQfVMvIDb7GbQdemmblbxOoxcpspd3a0NOsiKuSWai4KzIvWhsboO4B3v1WlYZ2o3+MIbQG8igDU3BUBW6sZpP9lAapSRmaXEN2nRiiEz+/UH0QdvJvcRwXRBJgQYFbtmMLoXIADry8LVCf6jTlfXFuEwihIQ6/d7I7MjW4/pwr0sUhoSCPSMupb9hZDgIMUSq3qLa59djufbBbRD3sHdTMPrlhGTfyGBobzLodhQP8ew0+/3vo9ZIktF1WnG71/BBGYk5ukIvJvpF0cEF2HbKZzFkm2Qq9jI+Bjdk9MmLUoDES/vOvVzfOfS7ZCQK9i0HPTZTFIXJgiHHAW6uEwYBbT+i1N3KZdBJ7/JWZVZC3ImDDnsoGYg7N05tY52uH2ESSUeWcdBpq5NRRGyu0fPjiVflyrae5aR9Sko/phKRpoGi5aUFi6ac2UyruSMDFGKoLm65CMK+gx4FcWuq1NDtxQ76IIasJ2bF2bxrOnEfdEbo4BbN6LZDZF4QYQbDYeuUkNJppZmO4fV2ZOe6sbJaGLOs98ppZH8DEmJe/MxD/5YNiHZr6SHtVGQGncCcIyFuja5q5iHuKLipSVaJlUw51rCnmfEejkbu36Kh4QtFInXtVn/YzTUg7oTo58ew00GUqJL9m5RlgigWvRk3xG3FTrdQRbSySc1gBp2sk5ZeQLTH2wt9Uw76K1/5Ch/5yEf44Ac/yJkz+TnIn/rUp/jwhz/Mz/7sz/Lcc8/d1E3up9UdnQ2tAFFEd3VNjpr0u1CfSq8pWxqqApulSVhboROTxAqBm6tBJw66WaqnELeDrDVm4cCsbCBbG/TCeIpKBt6GTAZtFqEpYRhLBKhD4LeSqaV90H7aLuIPtAxArGcdC+f3M+jRNWhIWKAOwu2lELd6ABtcVxVUBTzTSfugNcRY59perxVNlW6kxFyCRl9ScCjEnfSJdvBirXRjRCYFErrsxds4jHtL96PNCmJY0nVjFndwywZEu7U0gy5OQKYGbQyBOSHOoBWZ+fVLQ+GesbihP5nMS5QAh2XyZqbM02nHw268HSFuW1fpoUEUEfpyXR1kBu1pBiIOdPQxT9VK7kNVshB3poV1oAad0YG4nTLoo0eP8vM///M88MADub9fWFjgqaee4ld+5Vf46Ec/yic/+UmipFh4i1k9aaECWisS5i4FnRzErSoKVUuTalDrK2kNupBRGwNJEgNoVGdTiNuJvFSkJL0u3oyN8pR00H6EHbijHXRpMiWJDSMXyWtV2pocmtCXkhyeCThGzEjv9FncughGanFDvMGNPAtUH/M8WZCoh6mpuIbTr4dy69afYRuXoN3ISAqOgC/jWqTfkkSxUVOKQELcXkwk9Nvd+Pq91eK2tBi1UI3/tjLohCjkVBBtiTypCDRNTTs4spY6OSEIejFaEYV7BnFDrGXQbuCGEVY4XN0vWztPylRG4KHsBHEbfaJf2JXT9Q6iRJWUyxKSWBrsjXn/qooiRVPM0iBJrDii80XPTwEcy33ezIePHDnC/Pz8wN8/88wzvPOd78QwDGZmZpibm+P06dM381P7ZnVHZz2QtZ/WmuxLLgbdHMQNsViJUQTfo9PqohJhOXZuI6ej4EqTksXtRziBm4O3IZNpV6YRW+t0A4Ht93I90JCP8EXioKNgoK4sr9VkdB9FuB3ZcrN9WlJiaS2t0871W44aNwlxrVPbJq+paQeStVq6gmvYiCSDFuKWbvnpa2zbiJYMoMygNxpGjQ9Srx076B3KD1amphfGRDGZGe0dxG0mWY+qx73nCSx56z7z3VghkUq1y+khbYhoJFnS0hXc+MgMutJB6yLcszYriAdatFuyBj2i/z0nOxpn0PoOrXgggwsPSXRKSyHR+IWG0vWqmtDryHGT4d52HezWZFnQyWXQsqywrfNFTzpfquks8HHZvki3rK+vc++996Z/rtfrrK+vD732iSee4IknngDg4x//OFNTU0Ovu1HTdX3H7zw67eK/sk5LdwjiyLIUdJm85/4clDxdvsqWJ/8c+gEFEWBMzTCZ+e5aJFA4TacyjXphg0DRcIIe9swc1cx1wnaB83SqMxhbLxGiYPtd7PlZKpnrykEInKFbrmNsXgDNwI48rFqd2rZ/U720xgVVHpimIjeBGflMzB9B33ZttbDEsmZBGODEG8OIAoxyhaltQUJiJWcRz7DRAh/TdlAQaLa15+9rN1YwzxEYNkYnxLAsdASa44z1Xq61rrJ2aEsBrtLWHYoixA9l+aE0fZTCtu+YrHToiXVCFJx4hKEZ+VRm57CG/N5U1QdWcFWTsmEALloUUp6axtmj5zHtGsAlfNWgZOgy6xERxVqN4i5+43qe1bitaJ7GjSpovS6aaWESopUqQ+93otLGFesIwIlVr/QopDIz/N1cjx0OLeASbbuCEwaEuorp93DqU5S3ffdcTwcW6WoWRSJCoWD4LoX6JKUR9zFZdYFVeqpJMQ6sNBFSmZ6+6Xu/HmupHeA8rm5RUBWEomJEAXalmjv7dms3s7aqziV6fhG6HfQYSbA0helDh3LXdbSuvOfSBKbvDZy9+2nXdNAf+9jH2NzcHPj7H/uxH+Oxxx4b+pnrUVt5/PHHefzxx9M/r66u7vqzu7Gpqakdv9OKpFNenzzK2vIq6EcoqhHrnS50uul1BS3iXCChvo2NBoXAJShVBr67ZKpsRA7RxhqNTo+q28atFHLXBXHWummW8VeXaXY95r02Pd3A2/Z9pqawpRfw11dptHtYfg/PNAZ+V4t8WqG8v/WlZfnZ0GfD81G2XauLkHacpa2vyP9nRAGRabE24lnpIqSLTtht02y10YRA6IP3MQ7TFUFXNfBbDdqdHqoICTV9rPdyrXWVtSgWEWnbFdrLV+kFd2NFPq1Q0Nn2HcKX2U1Ps1i/ugTYGFFAwwsG3iNA4Hbi602C5WWgii5CWq5He4+eR7cl94GnGWytriKooomIthfQ3cVvXM+zGrc5ukJDtQgbmzRaHYwoIDStofcbeT0ECp5qsLGyAijoIqTR7Q19N9djQccDoFuaoLu6TGfCwww9uui4277ba8s10jUd2qsruOFJjCigE0FvxH0k68TVTDbjPa+JaE/u/Xqs25b1b9cq0llfw7cC1MCnF4mBs283djNry1JFqluxHn+HNeRs7XXlWOGOVcRdv7gva3kYEg27cNC/+Iu/eN0/Njk5ydraWvrn9fV16vX6Dp84OEt7nCeP0Oz0oALl4iBUVLN1Nn0QQKfn4fjddJhG1sqWTtMvStJZ7HizMp8gh8XbukJTK0Njg54fytapyszA9xVNjXZUTGvQdtCDiREQd0xE8jpdwJGEhyEQmWP02zT8uJamKzvDxJau0oz7KCOBnEBzQHVfS1Px0hqWuGVlPhNLld5Ksix35wAAIABJREFUdaJmA9+SWfGwmn+23uV1eyQOehQBKGW1aya4mdriHtagTa0PcYc9+RvqLSwMcz1WMLSUjyGZ08N7oCGjB6CZMUzsyE6GmxyWAf0ySKdQRbSu4JYSFnd14Np0jThVyfbXry1Ukn2HkecClrz3Me+blM9gSf34wNz74S67taKpcjnuJ3fjkoXhDN5Hqv9vl2HpNiKJjbJHH32Up556Ct/3WV5e5sqVK9xzzz378VM3ben4x+os7TiKLVYGHWDN1vAj6BRqdNxATrKanB64Tsp4ypfc8QIpUlIbDE7KpiZZ3EEga9Whi7KtVg0yI2/GWss9P4jZv8PrygJ5eLjxIWqaOoqqDVzrGJJVDODHh7phGDtq4Vq6gqdomd7j8etwZ+/FVY1+m1V0a5PEkjaNTqGK1475AeHoFjiQDF0/ZmVLFvcIkliGdBPE732v29/M+FD1VJMoCehEBPrtzeKGhDBpghD4nh/3QI9y0P1+cL8nzwp9j0hiyZznji1Hh3phFI+LHXzvfQddRnTaeFHc7jVijUDGMWoGgSfvXT0AcZ+0Bm04/QD7AFjcEAu+RPK5u10XUwSoGYXGxGxdQQG6VnHsQiU3VYN++umn+d3f/V0ajQYf//jHOXHiBB/96Ec5evQo73jHO/jIRz6Cqqr81E/9FOot2gKTZtClaTpLm2hRiDN3aOC6tBd6+hhtN6AeulAfdNBVW2OpIw+uTijFTJRthDOI1cQ8hxAFTyiSTFYe5qA12j25eF3Xl6InQxZRMSNd58UHtTEiwykYKp5QCBQV3/UAG8Pc+bA1NQUPDcKAIAhj/dyDy6Cbqg6eG0/DGX+7yPVYSvZzKrhbi1CXggjXIgAl6MZOGbSdId3YSQa9x/OgUwdtOQReP0s/CGLPXlvBUGnEIjKeF2CG3mhCXhIMqSaB1wOqcu3tQZuVHmsNdOxEyyBGWXYI4rpWCb+zDCXZsbETi7ufQfcd9EGMizU16ex6poNwuwShOLCzRIrDxGvb8zEjBUqDZ6uiKHEfuTP2NqubctBve9vbeNvb/v/2zj1Gjure899z6tmPmZ7xjMdvG2zs62tY84h9wQ4vLwYlbHIDXkywtAGyYWHFI7mgJEQ3gJAMEotwiC5KFHRtI3CiXAjCIso/kQgJCEgU1oQgiKxgx2FtrrE9Ho8f09OPeuwfp6q6x9PVVT3T3ae65/f5y/aUZ86crnO+5/c4v98/1fzapk2bsGnTpul8+7ZgqBwZnWMkMxsl9VP0lMfAzlk86bk+r/vJaP88jLtMCO+sZZOe6zUU/NXmKDMFJShI2QWgpitcwZmSJjKjMbnamE9W5xj2NpBiyZpU5tMnuHqhpQOB1s3ai6/S/MKoCHTIsz66wlHyks9sy5Zy+vYxVIZhpnpXvhxPkJLrbk152cJ5I4tSXohumCs1cKfp6eA6jF7HfVldJz0zwcXdTIH2Nnc9BbtUAhTPxd3h96AB8dkc8bbBUskSncNy0Ra0VayyoJuQxQ14YSqk4Zw5hbJbu6sWIKxhzoRFZ53yPRpW3YOCrvpeEA22N3YZ16wYY8EtDJwZn9DNqt1kdAUFG7AZR7FUhm6zmnUjAM/TwkR5Ydcqg7XJe5RMs7bNzEqpGNF7cFpLo7c8BnbO8knP+OU+R3NDyCumuAM9b9Gk53KmilMlR/TohVcOtJaL21Bw2lXEfUB49bp7JsebMrqCM168uGC7MJ0SWD0LOjsLpZJIatDD3KJVlaHK3rNqRAxIV8R9WwCwLUu6BR1Uz7IdKK7d9r62jcAZQ9rr91v0NscwF3fgvkzngvCDqoVfZ/PjokUzW2UZNddlGFjQmglH4ubeCtIaR94Rc1u2rJq9oH2CKliqAasokp1UNM/Vn9E48koKZf9gFvKOBBadlkK5UBUGqXNNshKm0CqFSiRU8AK8+vGqGdyDViWNI1NVwrNYsmHYxZreScATaNUbYxutaBJoeMVKbI7TQ4vRkzaAhedMesa3oE/2DCGvmkiHWLx9pgLbBY4NLgEgklBYDWumR1dw2kLFgkbt03JWVzAm6qKg6HJhQecm/9wgdpntR6lchuraUNK1F2yqWqC9Z1mEm05XhFscEAKtSChS4mN4dzoBwLZtr9BBci1owO9olULJEzjh4g6PL+ZTvSiXxEaq17FUAwvazMD2nled5iaJaVUCbZWrBDrhcx6HtMYx7tVQKpWsulXbAgs6lRWeBABqRO5Go2MZU3QUvbwRwwkv35lSOcY1E2U/nOXYETHoSgWvSiUxR4oXxFA4SqoOtzAOy5UXLglyQ7KzUCqXvQY2IRa0yjHOvPe9jXFoEmh4FnTewqme2ehdsqTmgvPLfR4bXAKLq8gsXVbzOb8R+GfzVwIAUr21T2TCxe0gnxFia6ZqNyzP6Bx5CygzBWWmiEo3vf2Tn/Nd3OkcimVbxK9C7jQHLu5UD8plWyzuiExUXWGwwUShA8uzWiVZ0HpVwQjbtqVZAo2Q0UUP3yIXG6KuKjUT+NJ+O1CzByVPcOvlBwSioaUDC7rZhUo4Ew1WSqoRHAK4pM292aR9NycYSpYdarUCVXNt9sAqe56nJs5B2is2VPLfkZBCQ4Cf3GZ6ISrEyOL2Dll6uiLQCpdSaEgUPaokHDY7JBOXwILuGUCxaHlVxOpY0KzSbaxdkEBDJICdKFg4VbSDKl9no3CGHkPB/yuKr+cuWVPzuZznCv9s6FwAQGbhwprP9RqixcNwv7j/FibkfrnPE1kRxzbccs1EhnRV2cKS5YiNJkygfQs6k0PZsrxWk9ECDYhrGlYgipIsaIWj4PjWvOP1Jk62NZfROMaYHmy+hln7QBG4uPUMyp4IxBHogp6qiAYDmNrcGkS6wlBWDTjl7nNxA0BBTaHsNagIi0MGLm4jg7IncqrRvHnOaBxnXKUi0K4delhIaRzjXIflbeGiHGw9F7dnQRupiqdFqb3XtRpD5SgyvSoWLsnFHXS06kfRsoVXq55Ae2G1dlYTI4GGsKAtBzhVtAOBrUWfqeKTUeFSyqVqL0y/3OfhwXMAAJnLrqj5XI/33NE+T6AHalen8QX6uCfkplbb8gruURpZLxu1jkD7m5LZg7LliFZ1qdqbkk91Fqgj2Wo1FHHf22K8oyzoPFSUFG/zTdW2GPxs3nE9jbIlYht6Oty60BQGhYlrK4FlpDZ/49UVhpKiB5u7EOhkH4riEISGevtRcpiwRGscgIEqC9rIwPYOQ4ravDnIeFnFvpfF0MPd5ymVY5yrKHt7gRphhQZJYno6OMjxJh/i4uL3MLeDrlqSY9DpPpRcJjLhwzwWauVqqksWdHsZSFde1KFMuLXSZyo47lWV8WPSk58R/354zGtJWaPoCVBpmHFs3grx3Pn/peZz/kt03ItpmyGWl64wqBzI6xmUwMV9zhCBDpLEUj0o23Zog/qzvz8AlLkKy5ZrtWrVCS+23RHx0LTGMebyyuZbR3RFtzETZa9rmhbh3TBUjpJmVgl08zdeXeUifml5wpTw4jBxCWL+2QGU4Al0pv66KejpwLuhhqzHqZDWFIxZqBzi6tysEBadirLndtV0tW4s3F+/Rc2EZfnueUkWtMJQZCos71aIvCSxitexyDVh1PRPvhILeM1G/H5PFINuL+f0VTbLoWy4QPdXiXIuxBXeYyhgAP7ztHDf+Cf0Ws8BwLGeOQCA1LLJmeMAkPUW0XD/AvH9QlzhjDGkNQV5NYWSoonTYE+EBa1nUI5IjPHRzxJFGS3iKmOpWPN+PLwTLOgxm1Vc3NnwA1FKFfFFv8OOFpLs52MoDEVVr7i4W2BBa5xNSDCS0Wq0FQQx/3QOZS7WTZgFHYicnoJli8OTGnE9sREyOkfJdjGmiv1IryP+KY1j3FVQ5p5Aa/UPZUGSmG7CCSxoOTkEflcwm4m5VyTdCAks6OwsFBUdpl0MF2iVY9xyRcY+CXR7mddTeVGXzQq3bPqq3Nq5EAvaj1WfKtpgQGhMO3Bxe7Vp/bjw2fgv0bDvCg8RcsDPAjVQ4qpIMKlxbQuoEmgjA8uKa0H7BTE02JZcq9WPBZYUDZbjdEQ8NKOLBV7QhTWsh4gA4Hcb02ExDtWxwEPcbj6GKkqfWp5LXI3YrKeCoTLvio73M7olSayqxGaZq14v6NrzzRjzDkMGbMsBc12oEQfbRvBjoqO5uQAAIyQMAlRcroFAR6xFhYtQSElNVd4TXY6LWxQ94rAC93zz7pI3gql69Qmy/SgoBky7FNrRL6WJw5Od7W1rkpicTyhhMMbwrXXzMFayg5hvLRb2VhZBKsQyBkSi2KmijR5DgcJru50CgT4jBNoMEeis99zxVD+AM0ifvzr054qMbwNFrot71YNzaz5neNV8xrUUyrzg9YKuLeY+E1zcli16Dku3oFU4TodY0JpICjypCIE25y8IfVZkjIqEMnF4isoPYChyHbZn1SktODiJQjVq4OLmDDVzIToNfx2fSeXgMC4qXdVJnhIVpQwotiOEpYkC7R8WTng1+Y3+8P4FKY1j3AYsT6BVI/oz1xWOsmbA8cMUkg5YhspRckXrS8DzxkjI4g7qE6RyKCh5pLLhn2WQvNkzgGwbLWgSaI//urS+QAHA8gHxEq2aXT8m2J9ScfBkqW7CWUbjohqQ5SCj81Ah9w8Mx3xLu87BIKMpyLsmCoqOvtLpUFddpXSdiTK3vDuUERa0b7WaWdi2DdN1AL3+/2kVE9ztjuvdo0y2uzXIJVh6IeAAZoQn5DjXPIuudv/vakTSjQbLu6ceZ7NuFE1h4kDkxTkVSRnAzcYXxVGjB3AALSKmbKgcRegwPO8GMk0UaO8dGUmJa5Tm0ORSwj4pjcNyRS0DANBi3HvXVSaqoHnd9FpxkIuDoTAUXQQubhVu2ypznU1GU3CSG7B4CeaadaHPBTdfsv3IUpJYMjmn38R3L5+P+y6bXKu7mgU94sWvl3DGGAsSxcLc4IB4mRUGHMuLU289gU7roipSMdsHc+HiukkjpsZFoRLfHR5ppXlWq5mBbXuiKMEtJcbiCbSqe7W4k90sA6i4L4eHzhEJfTUarfikNAXjUFDyBLpWE5VqDIWJrFjfZdiCuTA8t6Rv9bQiU1wGFYEWB3RTqV90xFSZqMXNlKZb0H6+ych8cXgzL7gw9FlfME5p4pAcdiugGkPx8ggCF7dEC9phlQx0ie9SRucY8ffWXO2cHaCy745mBnC0CJTt+C2Vp0PiLWjXdVEoFOA4zpQq9hw5cgRFr2RiM7h4tgrAQt77UF3XBeccpmkG41vqxbHDMr19ek0FJ4t2INS1YIwhq4vngPBYNeBlgZYLKJtZpBaGxzj971NwdJS4in6nXLMcaTWVhglprwNNc4thNEKQ8GJk4bheycImtPxrJYEFnbfqfoaA+GzyjthMDacMDNTuFetjqBwnq5JumplZ7KMrHEWmdJ1A+6GlE5kBYBwwBsMPToBnQZdVWFzx3rsWWNDMBFBAuid8DfuCcTIlDm9GSPJoNbrCRSjE8UIhElo8inEwOKhUUVQVeXZiRlcC72RYmBGo7Lt/yK3A7uzV+MHhESxbWDuhrJkkXqALhQI0TYM6xasjqqq23B1nWRYKhQJS3nWYK8/pxd9GCrhxVX3RG8poniu8/u+WqRLoei9RRuPIlx04rhskUoUhYlgmSlyDbluhV7J8JjRMcF1p1X+AKne7kYYF34KWM5a4+Fc6juct9NYJfQBe+UnLFZ+NUwYGJvcJr0bEh0WlOSC6rvpU0BSGcnXcUNId2mbDGUNK5RhVTQB5mJdeXvd5UxV14CsWdPMOhr41P5K3wFA5FNciEGhDrFutb3J1wbPRvTBFkD0tsVQvIFqqAq25FhiXjMax1zO26gq0P9+DC4EjDozx0wBIoOE4zpTFuV2oqjrBSjdVjv/9T7UTtKrxXeBz61ztAkRHK8Bzd4fEqgEvSazsBGOoR0plKEAPMlejvBPVpQItxsXmJEmgNe6PJQUH3Gv5l3QXtxfDshzMiYi3+Rmj4/OXwrDsmrXcqzFUhqLLKlmxLbCgDYWjBAbH39wTviYbIa1xjI57B+CI+L2pcgwzBTZXoDk2WMid6akQHOLGLZFhXGdN+hbdyawQCWN2/UMc4B3kuAqbcXDXBpO0ZnwPWN67TibbxW05wl1t1jFqAoFWUgDGYC4IT/JsJomPQTerEH2rmco4V88V7rFFufoLxS+kUi9WDVTudAIxBFrjGHc5SmYWxopVkWMNsrh1s2I9SBLooOm7noLFFKnWfFzSevzPJoiLmrlYG6+hcBRdDosp4K4DpYlxUR/RzYxVubi7R6BTGsdIQVhRRsRnY6ossKAV144MDTU0jqqfXU8sgMpaPzVHFDDSl/9j5PfXVdHT3WaK11BF1voVv1teE94HWbFwoJIbAsRzcY/670mb3PKJF+huZt2iHvyf65bguvPqZ5APepZ2X0h5UR8/zglEi4CpcoxbDkqqAX1B7Xrh1QQubs2Ezbz4m8QYFuC527lvQSdboDNVyX1mnUQ/oOq0XrAiQxWAZ0E7gMUVrz9x8+PxmsJQcioCzVtw11oWaY3jtBdCippvUxXdryzuHVKbKNAKZ8FBLs4BGwBOuSoUFk/kDIWhxLhnQTe341kj+OI2Zoq4eSvu7celes+se0PG+1z8hLJ64YdmQgItEcYYVs5ORVrfvitciXiuumpZnBh0oeygZDuB+NajkjltwGa+KMpJzDr7sKB2QF1ohbNg041MEvM+x9OleJ+NoXAUHXFHXXWji85MBV1hsFxUCmNIuhbTCiaum+iDbdFyYekpcc0qInejUXq84iHRISr/EGfHekcAv2Us9w4XMisBeha04Qm0xCuSs1KV97iehzK4o17w6uOTQCeH999/Hxs3bkShUEA+n8eGDRuwd+/etv18P0Y9mKl/0mzExW2qHGdKDhw33stWqUSkV6wH2Ra0asJhHAqvH69LCv5pPa77Eog+aPnPOC5Q5DpUxwbLNc+q89E8EShwsZl2lQVdFX4wIq9ZcRQsB9Y5K6AurN2adjpkjMYs6LGyE1ssRJhChEJUxwYL6dzUavxDUGBBZ+TUUwCAwXR0dUhA7H++F8xQWNv2m45aZc5//Dvcgwca+z+MwXXD76yxReeC3/K/6n6Piy66CNdeey2efPJJFAoFbNq0CStXrmxoHNPh4nkZ/I8LB3H1ufVd4dXumrAa4D4pjaPsJUfEX+AcJW4IqxWutEpS/njHVXFAUNp0mp0uGY3jOOpvBMBECzuWBe1veGqq6W7X4GecNeetKIYii0YtaMcFxpkGI9V8+ybrWdD13K1nf72h9euySg5JRO2DVhHEoHWRK6FG1JpvJdWNkqIORRmdY6zsRL4jzaSjBFom999/P66//nqYpomtW7e29WdrCsfmC2q3o6ymOuEh6g52oyIAeEkmTBMJMrH+R2tgTLRkzDMTcOXeo2wEf55nReQSTBCMGJtvENPL9IkYdEjB/+ngdxDz767KKhPZClIT5jtCoDUxD2dKdhCXbCa+Bd0XcRVP5QwaZyg7LvSYgqGrooKXxVUh0LIsaD+Lm3mhuzp16VvNYJ1iUmeT0RVgzIq1JptFRwl0lKVbC1VVg/Zq02F0dBT5fB6WZaFYLCIt8dQXRk9VDKVemVFg4mkx9gmcM5RUEzZXoDrlqQ2ySegKQ56bQBmJv4bn41sOUQI90TqKY0F71u2CpVCLFlgL4vH+OMa9qzGyykS2gnQD1qi/bk4VbSzONX+jHkiLeY06YAOeF6xox16/huI1fGBcHOQiSsi2isCC7hkAyoA2LzpJtVVkdQX/vLIfS/qiw3V+2eVWHMzC6AzTIwF897vfxXe+8x3ceOONePzxx2UPpybVAt1rxBcBLa5AqxwFf4O25Qq0pvCKWLi21LHEZfMFg1jSZ2DVUP3kugkCHScG7VvQNoPWosSfIKzgxaBbUQxFFr5AKwx16wwAFYEeKzmx100j5LzDW1SIqvqZ+AItchUKii4s6BbkKsRBr/L4AIC65Fwp4/D5xufmYOOy+uV0gUo9iqxOLu5E8Ytf/AKqquLGG2+Ebdv4yle+grfeeguXX16/6pAMNpzbi1NFO3LzqHZxx73TpysMedUAUIT2j+FdtdqBoTDkXU8s7Ol7SNrBxfMyuPi/RW9GjX42/gY9VnIwmGnN5qGdHfevU4ay0/AtoziJP+YUQkON8IWVQ3hr/zDWL4me31Qg0PFd3AAwPncJVMsBk+R5CizossiBUSMORUkhI8GCJoGOwebNm7F582YAoovPr371K8kjCudf1tev2+wz1SSTvFckXpUs0LrCMO6aACyoF62VOpZmU23FxTmtB0liZRtzeWtiw4GL2yvPqPY093qRTPxrjH5FqXpMJTTUCEsHM/i3GIc4oHKQa2T9AkA+0x951a+VBOPwe4t3iEBXXNztmztycc9QqgU67onQUFhQSlSV3G5QV0RDCQBQzw1v3djpRIUqgIpFYjmt2+x07/sWAgu6ewR6ntd97h8Go+/1V197a9dd2DD8NRx3/QZhirINVeLYVc6gclT2kg4R6NneNdd2dbICyIKesVRbAnFjKoZaEWjZidN69WGhQxb4VOiJKO8KTHSDt0ygffdo3xC444DPW9ySnyOD2RkN/7JuHlZG9HkHpnb7oVX4azju+g1iv2UHMVIbWoqu8I5bvysHRWLwRfPad2+bBHqGUn3qjn8C58iXkuGW0lVedVjojAU+FaKy8YGJVl2rPhe/Qcl4pg88XwZrQb1vmWxYWr/GgI/RYhd3I/gWdLYBDxgA5EuO9PUrvHHiz52yfM8bMLHzxmUYSLfviiG5uGco1fcs45/AGYp2MhI7DIUFMUOtU1Z4A9y1dg7Om2ViTkSnM6BNFrQfg7bkb+4yqbagW5HF3Qh+/aW4Au3fl3YBqS5uoHLQUXn7qnI1g3aKM0AW9IyFVy0KLaarrtp6iKoL3mqqrZdutKCvX9GP61dE9/gFJl7FarWLu1B2pG/uMjGmcPuhVfilf6Pu1ftMWDOS168/dxJz1ToCEugZzL9euQBjnps4DtULXLYVVR3/m8F6AWCiULTKm+AniRVtt62lDpNGtdXczvuwtfjvqwYwlNGwfnG8K2/V61e218k/8HXj4bqZkEDPYC5d1Nhd1mohSEKSmI/sw4JsFM6gcuHyb5V1q0347Gf2fPu08z5sLQyVxyqwETxfHQqR7eL2fr7sRLukQ7NDxKYdrtS4dLuLu1H8RLFWWbcTDkQ03QDix36TQqJc3GqlMxQRDgl0DJ588kls3749+PsTTzyBHTt2SByRHNqRjBQXPUFjSQL+Z2O2aMPz2436fybku7gbpbqphmwL2l+/sjPhk05Hubi3/98jOHCi0ND/YRHtJs/tN3HHmjl1v8eWLVtwxx134I477oDjOPjlL3+Z6GpirSJJVmu1NU9rvDIHZowazlNFUzhsy5H+2cvm6nN78bsDpzAUI8M+SSQpBt1qj0+30FECLYtFixahv78fH374IY4dO4bzzz8fs2bJKTQvk+rFJNtqTVI8LQn4R9ConrbTQVcYChYdiO67bB7+5yVDHRc/NZTkHGoNsqBjMS2B3rVrF/bs2QNVVTFnzhzcfffdyGRElZXdu3fj9ddfB+ccX//613HRRRdNe7BRlm4tmtVucsuWLXjppZdw9OhR3HLLLdP+fp1I9QKXHTuaGBOlRe6fl1ot0IB874lsVM6Qi9EOMmmonIEhGfegfQ+Y7KtqSWdas7N69Wps27YNTz31FObNm4fdu3cDAA4dOoR33nkHP/jBD/D9738fO3bsgOPEv86TRL74xS/it7/9Lf785z/j6quvlj0cKUy4AyrZNZUkd3sS8D+Pdgi0bO8JMTUYY/DPsjqXu34DC5oyDusyrU/pwgsvhOI1TVixYgVGRkYAAO+++y7Wr18PTdMwNDSEuXPnYt++fdMfrUR0Xcf69evx5S9/OfidZxrVoihfoJNTcjEJ+KKZaXEMGphY5IboLPyGXakWvidxMD1hFjY9EUbT/DSvv/461q9fDwAYGRnB8uWVDkOzZs0KxPtsXnvtNbz22msARHb04ODghK8fOXIE6jT7lk73/wOA4zj405/+hO3bt9f8foZhTBp7p6Gqat3fYaisAzgIAJg/NIhsjE5LrWLwJAPwnwCABXNmw9Tae2iKmqt2s37paRzY8ynOXzIHg33RTR+mQto4BKCIlKE19Lsnba6STKvnyndxD/b3Sv1MFs+2AQzD5dP7fbv93YrcYbdu3YrR0dFJ/37LLbdg7VrRh/eVV16Boii44oorAKBu1vTZbNy4ERs3bgz+Pjw8POHrxWJxWhZrM2LQf/3rX3HbbbfhC1/4AhYvXlzz+xWLxUlj7zQGBwfr/g6FM5UM+jMnT6Ag0dVZyI8Ffz49OoIzbbbqouaq3dy4PIvL5p0L0xrD8PBY9H+YAtwVjVIc22rod0/aXCWZVs+VwkVbUrswJvUzYeU8AGCsML19s1verfnz59f890iBfvjhh+t+/Xe/+x327NmDRx55JCh6PjAwgOPHjwfPjIyMdHTW84oVK/D73/9e9jCkU936UHYcstqt3UnF9luFpjAszhkt/hnCLSr7ig4xdUR4wm1prkIcVgykkFI5br5gQOo4ks60PqX3338fr776Kh588EEYRmVzWLNmDd555x2Uy2UcPXoUhw8fxnnnnTftwRJyidObuF1Q3Ln9+HMuO/+AmDp+BbGU5M+wL6XiP766Aqvntq+3cicyrSDijh07YFkWtm7dCgBYvnw57rzzTixatAjr1q3DAw88AM45vvGNb4BLzhokpk+S7n3S9Yz2Ewg0HY46FlPjGLcc9MToM07IZ1oC/cwzz4R+bdOmTdi0adN0vj2RQHoNBUv7W+tKjUOmw8osdgNkQXc+/3rlAvx63yjmZXXZQyFi0Hm37Qmp/PsNy9BADmDL6JWYQT75D6dHAAAIRklEQVRT0Tg1OOh0VgymsGKwNVn+RPOhXY5oCNnJJT6awnD9ij4s6ZNvzc8UyIImiPZCAk10LHetnSt7CDMKv2IbZXETRHsggY7BCy+8gF27dgEATp8+jYULF+Lll1+WPCqCaC89Xv/jsXJnl+0liE6howT6w/fyODVqN/R/otpN9vYpuOCSdN3vceutt+LWW29FuVzGzTffjDvvvLOhMRBEN+C3CCQDmiDaQ0cJtGweeeQRfP7zn8d1110neygE0XauWZbDJ6NFbFpFxSUIoh10lEBHWbq1aFa7yRdffBGHDh3C448/Pu3vRRCdSFpTcO9l82QPgyBmDB0l0LL44IMP8Oyzz+KVV16hgisEQRBEWyCBjsFzzz2H0dFRbN68GYBos/nUU09JHhVBEATRzZBAx+Dpp5+WPQSCIAhihkH+WoIgCIJIICTQBEEQBJFASKAJgiAIIoEkXqDrFRlJEp0yToIgCKIzSLxAc86bco+5lViWRdevCIIgiKaS+Cxu0zRRKBRQLBbBWOM1Bg3DQLFYbMHIBK7rgnMO0zRb9jMIgiCImUfiBZoxhlRq6v1LBwcHMTw83MQREQRBEETrIb8sQRAEQSQQEmiCIAiCSCAk0ARBEASRQJhL94MIgiAIInF0vQX9ve99T/YQOgaaq/jQXMWH5io+NFeN0e3z1fUCTRAEQRCdCAk0QRAEQSQQ5dFHH31U9iBazdKlS2UPoWOguYoPzVV8aK7iQ3PVGN08X5QkRhAEQRAJhFzcBEEQBJFAEl/qc6q8//77eO655+A4Dq655hrccMMNsoeUWO655x6YpgnOORRFwRNPPCF7SInixz/+Md577z3kcjls27YNAHDmzBk8/fTTOHbsGGbPno37778f2WxW8kjlU2uuXnrpJfzmN79Bb28vAGDLli245JJLZA4zEQwPD+NHP/oRRkdHwRjDxo0bcf3119O7VYOwuer6d8vtQmzbdu+99173s88+c8vlsvvtb3/bPXjwoOxhJZa7777bPXnypOxhJJaPPvrI3b9/v/vAAw8E/7Zr1y539+7druu67u7du91du3bJGl6iqDVXL774ovvqq69KHFUyGRkZcffv3++6ruvm83n3m9/8pnvw4EF6t2oQNlfd/m51pYt73759mDt3LubMmQNVVbF+/Xq8++67sodFdCirVq2aZMG8++67uOqqqwAAV111Fb1fHrXmiqhNf39/kOCUSqWwYMECjIyM0LtVg7C56na60sU9MjKCgYGB4O8DAwP4+OOPJY4o+Tz++OMAgGuvvRYbN26UPJrkc/LkSfT39wMQm8epU6ckjyjZ/PrXv8abb76JpUuX4tZbbyURP4ujR4/iwIEDOO+88+jdiqB6rvbu3dvV71ZXCrRbIzF9Kr2kZwpbt27FrFmzcPLkSTz22GOYP38+Vq1aJXtYRJdw3XXX4aabbgIAvPjii3jhhRdw9913Sx5VcigUCti2bRtuv/12pNNp2cNJNGfPVbe/W13p4h4YGMDx48eDvx8/fjw4kRKTmTVrFgAgl8th7dq12Ldvn+QRJZ9cLocTJ04AAE6cOBEkqRCT6evrA+ccnHNcc8012L9/v+whJQbLsrBt2zZcccUVuPTSSwHQuxVGrbnq9nerKwV62bJlOHz4MI4ePQrLsvDOO+9gzZo1soeVSAqFAsbHx4M/f/DBB1i8eLHkUSWfNWvW4I033gAAvPHGG1i7dq3kESUXX2wA4I9//CMWLVokcTTJwXVd/OQnP8GCBQvwpS99Kfh3ercmEzZX3f5udW2hkvfeew/PP/88HMfBhg0bsGnTJtlDSiRHjhzBU089BQCwbRuXX345zdVZ/PCHP8Rf/vIXnD59GrlcDjfffDPWrl2Lp59+GsPDwxgcHMQDDzzQVbGvqVJrrj766CP8/e9/B2MMs2fPxp133kkeLQB79+7FI488gsWLFwchuC1btmD58uX0bp1F2Fy9/fbbXf1uda1AEwRBEEQn05UuboIgCILodEigCYIgCCKBkEATBEEQRAIhgSYIgiCIBEICTRAEQRAJhASaILqc4eFhfO1rX4PjOLKHQhBEA9A1K4LoQu655x7cddddWL16teyhEAQxRciCJgiCIIgEQhY0QXQZzzzzDN566y2oqgrOOW666Sb87Gc/w89//nMoioJHH30UK1euxIcffohPPvkE559/Pu655x4899xz2LNnD+bPn4/7778fQ0NDAIBPP/0UO3fuxN/+9jf09vbiq1/9KtavXy/5tySI7ocsaILoMu677z4MDg7iwQcfxK5du7Bu3bpJz7z99tu499578eyzz+LIkSN46KGHcPXVV2Pnzp1YsGABXn75ZQCiPvtjjz2Gyy+/HNu3b8e3vvUt7NixAwcPHmz3r0UQMw4SaIKYgWzYsAFz585FOp3GxRdfjDlz5mD16tVQFAWXXXYZDhw4AEDUtJ89ezY2bNgARVGwdOlSXHrppfjDH/4g+TcgiO6nK/tBEwRRn1wuF/xZ1/VJfy8UCgCAY8eO4eOPP8btt98efN22bVx55ZVtGytBzFRIoAmCCGVgYACrVq3Cww8/LHsoBDHjIBc3QXQhfX19OHr06LS/z+c+9zkcPnwYb775JizLgmVZ2LdvHw4dOtSEURIEUQ+yoAmiC7nhhhuwc+dO/PSnP51Wf+9UKoWHHnoIzz//PJ5//nm4roslS5bgtttua+JoCYKoBV2zIgiCIIgEQi5ugiAIgkggJNAEQRAEkUBIoAmCIAgigZBAEwRBEEQCIYEmCIIgiARCAk0QBEEQCYQEmiAIgiASCAk0QRAEQSQQEmiCIAiCSCD/H6ZjPkJaBokHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax = plt.subplots(1,1,figsize=(8,6))\n", "ax.plot(timevals,xvals,label='x')\n", "ax.plot(timevals,yvals,label='y')\n", "ax.plot(timevals,zvals,label='z')\n", "ax.set(title='x, y, z for trajectory',xlabel='time')\n", "out=ax.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "**Figure xyz-vs-t**: A plot of the solution to the Lorenz equations versus time.\n", "Parameters: $\\sigma=10$, $\\beta=\\frac{8}{3}$, $\\rho=28$; initial values:\n", "$(x,y,z)=(5,5,5)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "As you saw in the movie, the behaviour of the solution, even though it\n", "seems to be confined to a specific surface, is anything but regular. The\n", "solution seems to loop around and around forever, oscillating around one\n", "of the wings, and then jump over to the other one, with no apparent\n", "pattern to the number of revolutions. This example is computed for just\n", "one choice of parameter values, and you will see in the problems later\n", "on in this lab, that there are many other types of solution behaviour.\n", "In fact, there are several very important characteristics of the\n", "solution to the Lorenz equations which parallel what happens in much\n", "more complicated systems such as the atmosphere:\n", "\n", "1. The solution remains within a bounded region (that is, none of the\n", " values of the solution “blow up”), which means that the solution\n", " will always be physically reasonable.\n", "\n", "2. The solution flips back and forth between the two wings of the\n", " butterfly diagram, with no apparent pattern. This “strange” way that\n", " the solution is attracted towards the wings gives rise to the name\n", " *strange attractor*.\n", "\n", "3. The resulting solution depends very heavily on the given initial\n", " conditions. Even a very tiny change in one of the initial values can\n", " lead to a solution which follows a totally different trajectory, if\n", " the system is integrated over a long enough time interval.\n", "\n", "4. The solution is irregular or *chaotic*, meaning that it\n", " is impossible, based on parameter values and initial conditions\n", " (which may contain small measurement errors), to predict the\n", " solution at any future time.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "
\n", "## The Lorenz Equations \n", "\n", "\n", "As mentioned in the previous section, the equations we will be\n", "considering in this lab model an idealized hydrodynamical system:\n", "two-dimensional convection in a tank of water which is heated at the\n", "bottom (as pictured in [Figure Convection](#fig_convection) below).\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAADNCAMAAACinRoOAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAk1BMVEX///8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAAAAAAAAAAAAAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP//AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAD/AAAAAP//AAD///8iddjgAAAALnRSTlMAEUQiM2bdzIiq7rt3mVWIRLuPwcdOz8CCgHBptMhQpiIRM4juqkRmzLt3mVXdMDSzywAAAAFiS0dEAIgFHUgAAAAJcEhZcwAAAEgAAABIAEbJaz4AAAAHdElNRQffChgRMi7c4/NyAAAMCElEQVR42u2dibqrKBaFxSFBo96q7uq5q8sh86Dv/3a9N0bjSTRxQNj3FKu+uodE0OUvbiAxYFlGRkZGRkZGRkZG08Rsx7Kczk0Om7RHV3rGbyBvteZ87a86Ntl+YU/ZY7AZljEcmvE7KCq86k/XRnsSaGszlF/x5wHNi7BKbLpihwEtSywI7qkYw6Vr34PmPdEB2rUc2/mSgMysesO9lwbQ9/cee3wpj1kEaGY/l/+Gitt1ivme7W9YK1GDdlcbi8UFt7x1wdcBRJsmYbm+xwPPCteFFxQ16GhdBO5jR015G3L5q8CpNkV4dG9jx/BGVd4N8Ij2yplwLqTFi+jxYs0R0rqVaGq0CAYAytoUrsXWAXskVnBB1gFusVkdhgCyg/dKs6OmPIc9MrEj+F/U6IBX+aryHHZrxVw3lwVAP86pouoVcZPoBG3hfeA1iXjFOQdI1Rut3GF7Ry3QmPAtt8BKK2o0XrDNfc8Qy+DKR9+uQgOER+jgAotd8CbRB9qBVJ3g9Q6eQX/Z0RPoTfW3agwd7j1AwwbH8nVjkS+nCJp0jSVsEn2grbpGQ4LXO3gFHT921AGa3UF7PhOb7+Xh2nmebiwLKKq7d4y5IozYhdMk+kDjpjrhiSws7gDd2tELaE903yHhYvkWaCsK/GnDUdqC9izGv27ELB/bNQ4xskk0oCNo9bwGdNRKQAcRYjnWyifQmKnZUVO+Bs0C2MSKtQgsbtAC7bTb528kxgMYgm849uqidcyxDtYJ1y/8qmsL3a6VW/hYbyMeib5EnYBNxcaFkXwR1m2YF0AD2d5RU95dFR7zipUNPb5gw+Edti5Wnl9Ej/KbSYOkn0GPQQWznxON4A0m+FrV8KJJQPnXToLzssd7+fZhneqTLMzRHqn8aUaLb9UEiE0xaz/9ikPd50hCC4OOV9H6OzaFo8WDgttfEnLlrtbf9/MOIyMjIyMjIyMjo2+jH0Yq9IsBrUS//tB9Q/1J9MOAViMDWpEMaEUyoBXJgFYkA1qRDGhFMqAVyYBWJANakQxoRTKgFcmAViQDWpEMaEUyoBXJgFYkA1qRDGhFMqAVST5oZtsh5z4XijgPbZv8jyYVeJYJ2uYb7oPNLy6rc4ANPKb4fL0yz5JAOx6PIu/tE/RODGfkEXrIXq1nCaDtEKrEwEtv88hf4ncS9D3PBe1FfjjyirtQxtMZRrR4ngXa4f7E31LHUaQpiOjyPAO05/MZTTOesPpqrc/zVNDTK8ZDMVdbrbV6ngZ6XsV4iIV+qKpaa/Y8BbS9kTjLhe3H8nZG2PN40IxzuZUw9BcfORLwPBq050uPq8yXjIGi55Gg3fnNSZfsJSfOoOF5FGjpd+BDfKnpuqh4HgM6ln8HPuREi8xAR8bzCNDRwtOI2AvMJEXH83DQfPGZy9yNbNKEPA8FzTYKBnGO3PuclOeBoNmSoa51GJloaHkeBlr+Td3nWt7NTszzINCuwgkPI0mkqXkeAtpTOt9hKKWbR87zANCx4nklPQmk6Xn+DNpRPvPv/C/oCHr+DFpVmyLzkAQ9fwSt4zvruRWSoudPoPXMgT/vqCQ9fwCtPthVmlMnaXr+AHr5Lz96NCPK0vT8HjRX8n1el9zJ1ZKo57egbY2LlHgTP+Ck6vktaK1LDUwcclD1/A60o3XVnWkrd5D1/A605lV3JlVpsp7fgGaa187gEz5Opuv5DWhP83PMzgRodD2/Aa197YxofLtG13M/aFv72hnje2qEPfeDnlCfZGv0oIWw517QUyKkbHkjB3mUPfeBtkMCP+kZ28Oj4bnbRB/o1V90G0aNDNIkljXlq8741QPa3fxVt2HUyCBNIHLgwn+dw8Me0NxZWQQ0csxCYl3T3/7Web17QPvO3/U34NBSjGoN9X7OUesfcWffpxu0G8b/1L0aq4PLEiI6Z0C1xsxWbA/LvKjcf/G4C103aO5w/V0lNOALMwMzY0Y5v7yaIe74nW1FN2gf/tPe+UcD3BoYeTGzPzTzkvLBcxe6TtBuCLlj3bEDDXBhRnbmBdWLrhM03H+cQGcpEuwGBoNRmZdTL7pO0L4wTSF28MHBYFTm5dSLrgs03n/cIhE7+OBgMCrzYupH1wUa7z+s/ARiBx8eDCLMTiByiAb8FV0XaNGnYiRiRzQ8GESMMwqRo6qjL+g6QDtY7/E7IVt35z/+Nx8eDGLP+4/uyIHoxCDrFV3fp3cuieHsf70RwSByf9MdOVB2d9PW+8G/9gCN+v1/I4JBxEh8EBaO+zyaBugNHxEMYv67br+oHnC0QfNgTDAI/tDtV3jufrsX9JTHV6TLH9W6hTQ8d7/dC5pCazh2yETZ85vHDXRbnvBkKGHP/aCnPc0pU+O/MSHs+c0jYdqrx4QBNV3Pb0DrblqmPBlK1/Mb0Lq/zJryZChdz28fRNf7odKkJ0PJen4HWu+zmdOOTtbz+x8L6TQ9sW5S9fwW9NSfoMnQ1MEHVc/vf9CpazZtnBBparAl6vk96OmnO1fTcRH1/OG34K6m7lI4Y4hH0/OnaSTmnPF0zWNF0vPHiVF0hDw2cwYZip4/gtYR8uaCouj585xK6qcLmN9DI+h5wHRsy8+k+lUyGjN6nodMMChrcsVhiqV8XEHO86ApM1VOiyjrWNQ8D5sEVp1rLi26EvM8cFpjVVPXyrzjaXkeOlG3EtcskjrxFCnPg6eeVzC9uPRDUPI8fI5/tuRaKShX/oCOkOcxy4Mst6KJ2Psi30KR8TxqwZuF1uhBLba2EBXPI5dwWmDVKZTjLzhmpuF57KJki6yItPD6byQ8j19mT/q9qGBFQwKepywcGcq8F1m08Bp7RDxPWgqVSVi8tZIdqZp6UbfnqYv7yljBlYVqF1LW6nn6ctVz1yTWsTS4Rs+zFmCfXkX0rAqu0/Ms0OLg4+dAc0Nt69zr8zwT9N0CjwdeamZzP9I/PZ0Gz/NBCy8xj6LwwxV3PMjkUfhxqw7PckAL2TzyI85t+8kXs+2Q843Pbd0/4tfpWSLotkMO7it1ngctKfEsG7RRjwxoRTKgFcmAViQDWpEMaEUyoBXJgFYkA1qRDGhFMqAVyYBWJANakQxoRTKgFcmAViQDWpEMaEUyoBXJgFYkA1qRAPQPIwX61YBWpF9031NGRkZGRkZGRkZGRkZGRkZGRkaSlKRjcmfSM/6cyrflbp/kZZnvLetw3B4+Fdjvyv3w3R+2p2EZz0Mz/rTKyzP8eypFhco/cgbSY0Bbp6H8yu8OOi2P8O+hzPHFaUBUMKAnaicqc7mFf5ILvpHu94J3ZmWwJYHX+Gef3PPfQWf7rqCatYuiAPT9vdcSWbNXyCJAfz30N5OozNdtCVEjv+Lr0/66TazzsTxsy/2p3O9O5fV8Om7vpy5Ap7sDvJ9a++0tS/MyT6wMrle2O+QQ5auiNejLscSidYnsdrLSKxxzD7l2NziS2HRB0F8OnW3xQPtbohuQNG2hMu+u5Q6oiJfA/Zhj2N6nZwjhcLZHrPS3vAUaM1gnCDqXbWqlWCSFu+EG1fG4rYtWoAFygkdoSohgghcXd51i4oTFEfTzoeGo11w3Hnm6lNfkCDCT6qQOmZUeT3i2+Cov63/qaIugq/BxKK9QkeFOON6g27C3rrc8zwHSvWgFGkudy+ujRAs0Jnawi8SqYvTXQ6dbuHaXRDceeYLKfD5gBLlUwSHJD59Ai3oOKayBJys5IlzIVrdnz6Ah46PEE+hT9bdqDL8cGjYk1k43HZm6lXDPp+XtKF4ddqmAMQT0GStpckmOl/0Z++S9oK+PEh2g0zvor4e2kjI/DOhv/jzKMT5DBBGRI0Min0BnIu8e73m4wS84LkmROcJMrx2gk0eJF9AHjD6YeDo0NgC7UaNQ6spK7G1cqzEL3t3Z9gNoa4ftXi56gxeAl5aYTLfbK4wc0xfQl7xVApvPQxt0uhU31PH50FilL7rZyFUVMyqQ6bG8HXbl5XArz9BpO5bndA/J9IoU8arsyh20WZfjNa86BJlAWfWtt2V5yqyqaKXDFhpIzNiUgEy3rNxds1t5SA/lDe6P2/YEd9X166GFpTFjo59A1f1Zs8GT+zxcSBsGSatslrxkTLLnEvv6iI2gWNJ1aFWjxf8Du/w9quaO4IUAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTUtMTAtMjRUMTc6NTA6NDYtMDc6MDBppeQBAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDE1LTEwLTI0VDE3OjUwOjQ2LTA3OjAwGPhcvQAAACB0RVh0cGRmOkhpUmVzQm91bmRpbmdCb3gAMzYweDIwNSswKzDl90CVAAAAFHRFWHRwZGY6VmVyc2lvbgBQREYtMS4zIFMGrL8AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image(filename=\"images/convection.png\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Figure Convection** Lorenz studied the flow of fluid in a tank heated at the bottom, which\n", "results in “convection rolls”, where the warm fluid rises, and the cold\n", "fluid is drops to the bottom.\n", "\n", "Lorenz wrote the equations in the form\n", "\n", "\n", "\n", "
\n", "$$\n", "\\begin{aligned}\n", " \\frac{dx}{dt} &=& \\sigma(y-x) \\\\\n", " \\frac{dy}{dt} &=& \\rho x-y-xz \\\\\n", " \\frac{dz}{dt} &=& xy-\\beta z \n", "\\end{aligned}\n", "$$\n", "where $\\sigma$, $\\rho$\n", "and $\\beta$ are real, positive parameters. The variables in the problem can\n", "be interpreted as follows:\n", "\n", "- $x$ is proportional to the intensity of the convective motion (positive\n", " for clockwise motion, and a larger magnitude indicating more\n", " vigorous circulation),\n", "\n", "- $y$ is proportional to the temperature difference between the ascending\n", " and descending currents (it’s positive if the warm water is on the\n", " bottom),\n", "\n", "- $z$ is proportional to the distortion of the vertical temperature\n", " profile from linearity (a value of 0 corresponds to a linear\n", " gradient in temperature, while a positive value indicates that the\n", " temperature is more uniformly mixed in the middle of the tank and\n", " the strongest gradients occur near the boundaries),\n", "\n", "- $t$ is the dimensionless time,\n", "\n", "- $\\sigma$ is called the Prandtl number (it involves the viscosity and thermal\n", " conductivity of the fluid),\n", "\n", "- $\\rho$ is a control parameter, representing the temperature difference\n", " between the top and bottom of the tank, and\n", "\n", "- $\\beta$ measures the width-to-height ratio of the convection layer." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that these equations are *non-linear* in $x$, $y$\n", "and $z$, which is a result of the non-linearity of the fluid flow\n", "equations from which this simplified system is obtained.\n", "\n", "**Mathematical Note**: This system of equations is derived by Saltzman (1962) for the\n", "thermal convection problem. However, the same\n", "equations ([eq:lorenz](#eq_lorenz)) arise in other physical\n", "systems as well. One example is the whose advantage over the original\n", "derivation by Saltzman (which is also used in Lorenz’ 1963 paper ) is\n", "that the system of ODEs is obtained *directly from the\n", "physics*, rather than as an approximation to a partial\n", "differential equation.\n", "\n", "Remember from Section [lab6:sec:intro] that the Lorenz equations exhibit\n", "nonperiodic solutions which behave in a chaotic manner. Using analytical\n", "techniques, it is actually possible to make some qualitative predictions\n", "about the behaviour of the solution before doing any computations.\n", "However, before we move on to a discussion of the stability of the\n", "problem in Section [lab6:sec:stability], you should do the following\n", "exercise, which will give you a hands-on introduction to the behaviour\n", "of solutions to the Lorenz equations.\n", "\n", "
\n", "\n", "[Problem Experiment](#prob_experiment) Lorenz’ results are based on the following values\n", "of the physical parameters taken from Saltzman’s paper (Saltzman, 1962):\n", "$$\\sigma=10 \\quad \\mathrm{and} \\quad b=\\frac{8}{3}.$$ As you will see\n", "in [Section stability](#sec_stability), there is a *critical value of the\n", "parameter $\\rho$*, $\\rho^\\ast=470/19\\approx 24.74$ (for these values of\n", "$\\sigma$ and $\\beta$); it is *critical* in the sense that for\n", "any value of $\\rho>\\rho^\\ast$, the flow is unstable.\n", "\n", "To allow you to investigate the behaviour of the solution to the Lorenz\n", "equations, you can try out various parameter values in the following\n", "interactive example. *Initially, leave $\\sigma$ and $\\beta$ alone, and\n", "modify only $\\rho$ and the initial conditions.* If you have time,\n", "you can try varying the other two parameters, and see what happens. Here\n", "are some suggestions:\n", "\n", "- Fix the initial conditions at $(5,5,5)$ and vary $\\rho$ between $0$ and\n", " $100$.\n", "\n", "- Fix $\\rho=28$, and vary the initial conditions; for example, try\n", " $(0,0,0)$, $(0.1,0.1,0.1)$, $(0,0,20)$, $(100,100,100)$,\n", " $(8.5,8.5,27)$, etc.\n", "\n", "- Anything else you can think of …\n", "\n", "1. Describe the different types of behaviour you see and compare them\n", " to what you saw in [Figure fixed-plot](#fig_fixed-plot). Also, discuss the\n", " results in terms of what you read in [Section Introduction](#sec_introduction)\n", " regarding the four properties of the solution.\n", "\n", "2. One question you should be sure to ask yourself is: *Does\n", " changing the initial condition affect where the solution ends\n", " up?* The answer to this question will indicate whether there\n", " really is an attractor which solutions approach as\n", " $t\\rightarrow\\infty$.\n", "\n", "3. Finally, for the different types of solution behaviour, can you\n", " interpret the results physically in terms of the thermal convection\n", " problem?\n", " \n", "Now, we’re ready to find out why the solution behaves as it does. In\n", "[Section Intro](#sec_introduction), you were told about four properties of\n", "solutions to the Lorenz equations that are also exhibited by the\n", "atmosphere, and in the problem you just worked though, you saw that\n", "these were also exhibited by solutions to the Lorenz equations. In the\n", "remainder of this section, you will see mathematical reasons for two of\n", "those characteristics, namely the boundedness and stability (or\n", "instability) of solutions.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "## Boundedness of the Solution\n", "\n", "\n", "The easiest way to see that the solution is bounded in time is by\n", "looking at the motion of the solution in phase space, $(x,y,z)$, as the\n", "flow of a fluid, with velocity $(\\dot{x}, \\dot{y}, \\dot{z})$ (the “dot”\n", "is used to represent a time derivative, in order to simplify notation in\n", "what follows). The *divergence of this flow* is given by\n", "$$\\frac{\\partial \\dot{x}}{\\partial x} +\n", " \\frac{\\partial \\dot{y}}{\\partial y} +\n", " \\frac{\\partial \\dot{z}}{\\partial z},$$ and measures how the volume of\n", "a fluid particle or parcel changes – a positive divergence means that\n", "the fluid volume is increasing locally, and a negative volume means that\n", "the fluid volume is shrinking locally (zero divergence signifies an\n", "*incompressible fluid*, which you will see more of in and\n", "). If you look back to the Lorenz\n", "equations ([eq:lorenz](#eq_lorenz)), and take partial derivatives,\n", "it is clear that the divergence of this flow is given by\n", "$$\n", "\\frac{\\partial \\dot{x}}{\\partial x} +\n", "\\frac{\\partial \\dot{y}}{\\partial y} +\n", "\\frac{\\partial \\dot{z}}{\\partial z} = -(\\sigma + b + 1).\n", "$$\n", "Since\n", "$\\sigma$ and $b$ are both positive, real constants, the divergence is a\n", "negative number, which is always less than $-1$. Therefore, each small\n", "volume shrinks to zero as the time $t\\rightarrow\\infty$, at a rate which\n", "is independent of $x$, $y$ and $z$. The consequence for the solution,\n", "$(x,y,z)$, is that every trajectory in phase space is eventually\n", "confined to a region of zero volume. As you saw in\n", "[Problem experiment](#prob_experiment), this region, or\n", "*attractor*, need not be a point – in fact, the two wings\n", "of the “butterfly diagram” are a surface with zero volume.\n", "\n", "The most important consequence of the solution being bounded is that\n", "none of the physical variables, $x$, $y$, or $z$ “blows up.”\n", "Consequently, we can expect that the solution will remain with\n", "physically reasonable limits.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "
\n", "\n", "## Steady States \n", "\n", "\n", "A *steady state* of a system is a point in phase space from\n", "which the system will not change in time, once that state has been\n", "reached. In other words, it is a point, $(x,y,z)$, such that the\n", "solution does not change, or where\n", "$$\\frac{dx}{dt} = 0 \\quad\\ \\mathrm{and}\\ \\quad \\frac{dy}{dt} = 0 \\quad\n", " \\ \\mathrm{and}\\ \\quad \\frac{dz}{dt} = 0.$$ This point is usually\n", "referred to as a *stationary point* of the system.\n", "\n", "
\n", "**[Problem steady-states](#prob_steady-states)** Set the time derivatives equal to zero in the\n", "Lorenz equations ([eq:lorenz](#eq_lorenz)), and solve the\n", "resulting system to show that there are three possible steady states,\n", "namely the points\n", "\n", "- $(0,0,0)$,\n", "\n", "- $(\\sqrt{\\beta(\\rho-1)},\\sqrt{\\beta(\\rho -1)},\\rho -1)$, and\n", "\n", "- $(-\\sqrt{\\beta (\\rho -1)},-\\sqrt{\\beta(\\rho-1)},\\rho-1)$.\n", "\n", "Remember that $\\rho$ is a positive real number, so that that there is\n", "*only one* stationary point when $0\\leq \\rho \\leq 1$, but all\n", "three stationary points are present when $\\rho >1$.\n", "\n", "While working through [Problem experiment](#prob_experiment), did you notice the\n", "change in behaviour of the solution as $\\rho$ passes through the value 1?\n", "If not, then go back to the interactive example and try out some values\n", "of $\\rho$ both less than and greater than 1 to see how the solution\n", "changes.\n", "\n", "A steady state tells us the behaviour of the solution only at a single\n", "point. *But what happens to the solution if it is perturbed\n", "slightly away from a stationary point? Will it return to the stationary\n", "point; or will it tend to move away from the point; or will it oscillate\n", "about the steady state; or something else … ?* All of these\n", "questions are related to the long-term, *asymptotic*\n", "behaviour or *stability* of the solution near a given\n", "point. You already should have seen some examples of different\n", "asymptotic solution behaviour in the Lorenz equations for different\n", "parameter values. The next section describes a general method for\n", "determining the stability of a solution near a given stationary point.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "
\n", "\n", "## Linearization about the Steady States \n", "\n", "\n", "The difficult part of doing any theoretical analysis of the Lorenz\n", "equations is that they are *non-linear*. *So, why not\n", "approximate the non-linear problem by a linear one?*\n", "\n", "This idea should remind you of what you read about Taylor series in\n", "Lab \\#2. There, we were approximating a function, $f(x)$, around a point\n", "by expanding the function in a Taylor series, and the first order Taylor\n", "approximation was simply a linear function in $x$. The approach we will\n", "take here is similar, but will get into Taylor series of functions of\n", "more than one variable: $f(x,y,z,\\dots)$.\n", "\n", "The basic idea is to replace the right hand side functions in\n", "([eq:lorenz](#eq_lorenz)) with a linear approximation about a\n", "stationary point, and then solve the resulting system of *linear\n", "ODE’s*. Hopefully, we can then say something about the non-linear\n", "system at values of the solution *close to the stationary\n", "point* (remember that the Taylor series is only accurate close to\n", "the point we’re expanding about).\n", "\n", "So, let us first consider the stationary point $(0,0,0)$. If we\n", "linearize a function $f(x,y,z)$ about $(0,0,0)$ we obtain the\n", "approximation: \n", "\n", "$$f(x,y,z) \\approx f(0,0,0) + f_x(0,0,0) \\cdot (x-0) + \n", "f_y(0,0,0) \\cdot (y-0) + f_z(0,0,0) \\cdot (z-0).$$ \n", "\n", "If we apply this\n", "formula to the right hand side function for each of the ODE’s in\n", "([eq: lorenz](#eq_lorenz)), then we obtain the following linearized\n", "system about $(0,0,0)$: \n", "\n", "\n", "\n", "
\n", "\n", "\\begin{aligned}\n", "\\label{eq:lorenz_linear}\n", " \\frac{dx}{dt} &= -\\sigma x + \\sigma y \\\\\n", " \\frac{dy}{dt} &= \\rho x-y \\\\\n", " \\frac{dz}{dt} &= -\\beta z \n", "\\end{aligned}\n", "\n", "\n", "(note that each right\n", "hand side is now a linear function of $x$, $y$ and $z$). It is helpful\n", "to write this system in matrix form as\n", "\n", "\n", "\n", "
\n", "\n", "\\begin{aligned}\n", "\\label{eq:lorenz_linear_matrix}\n", " \\frac{d}{dt} \\left(\n", " \\begin{array}{c} x \\\\ y \\\\ z \\end{array} \\right) = \n", " \\left( \\begin{array}{ccc}\n", " -\\sigma & \\sigma & 0 \\\\\n", " \\rho & -1 & 0 \\\\\n", " 0 & 0 & -\\beta \n", " \\end{array} \\right) \\;\n", " \\left(\\begin{array}{c} x \\\\ y \\\\ z \\end{array} \\right)\n", "\\end{aligned}\n", "\n", "\n", "the reason for\n", "this being that the *eigenvalues* of the matrix give us\n", "valuable information about the solution to the linear system. In fact,\n", "it is a well-known result from the study of dynamical systems is that if\n", "the matrix in (\\ref{eq:lorenz_linear_matrix}) has\n", "*distinct* eigenvalues $\\lambda_1$, $\\lambda_2$ and\n", "$\\lambda_3$, then the solution to this equation is given by\n", "\n", "\n", "\n", "$$\n", "x(t) = c_1 e^{\\lambda_1 t} + c_2 e^{\\lambda_2 t} + c_3 e^{\\lambda_3 t},\n", "$$\n", "and similarly for the other two solution\n", "components, $y(t)$ and $z(t)$ (the $c_i$’s are constants that are\n", "determined by the initial conditions of the problem). This should not\n", "seem too surprising, if you think that the solution to the scalar\n", "equation $dx/dt=\\lambda x$ is $x(t) = e^{\\lambda t}$.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "**Problem eigenvalues:** Remember from Lab \\#3 that the eigenvalues of a\n", "matrix, $A$, are given by the roots of the characteristic equation,\n", "$det(A-\\lambda I)=0$. Determine the characteristic equation of the\n", "matrix in (\\ref{eq:lorenz_linear_matrix}), and show that\n", "the eigenvalues of the linearized problem are\n", "\n", "\n", "
\n", "\\begin{equation}\n", "\\label{eq:eig0}\n", "\\lambda_1 = -\\beta, \\quad \\mathrm{and} \\quad \\lambda_2, \\lambda_3 =\n", "\\frac{1}{2} \\left( -\\sigma - 1 \\pm \\sqrt{(\\sigma-1)^2 + 4 \\sigma \\rho}\n", "\\right). \n", "\\end{equation}\n", "\n", "\n", "When $\\rho>1$, the same linearization process can be applied at the\n", "remaining two stationary points, which have eigenvalues that satisfy\n", "another characteristic equation:\n", "\n", "\n", "\\begin{equation}\n", "\\label{eq:eig12}\n", "\\lambda^3+(\\sigma+\\beta +1)\\lambda^2+(\\rho+\\sigma)\\beta \\lambda+2\\sigma \\beta(\\rho-1)=0.\n", "\\end{equation}\n", "\n", "A reminder that we talked about odes and eigenvalues in the [Week6 section here](https://phaustin.github.io/numeric/week_notes.html)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "### Stability of the Linearized Problem\n", "\n", "\n", "Now that we know the eigenvalues of the system around each stationary\n", "point, we can write down the solution to the linearized problem.\n", "However, it is not the exact form of the linearized solution that we’re\n", "interested in, but rather its *stability*. In fact, the\n", "eigenvalues give us all the information we need to know about how the\n", "linearized solution behaves in time, and so we’ll only talk about the\n", "eigenvalues from now on.\n", "\n", "It is possible that two of the eigenvalues in\n", "the characteristic equations above can\n", "be complex numbers – *what does this mean for the solution?* The details are a bit\n", "involved, but the important thing to realize is that if\n", "$\\lambda_2,\\lambda_3=a\\pm i\\beta$ are complex (remember that complex roots\n", "always occur in conjugate pairs) then the solutions can be rearranged so\n", "that they are of the form\n", "\n", "\n", "$$\n", "x(t) = c_1 e^{\\lambda_1 t} + c_2 e^{a t} \\cos(bt) + c_3 e^{a t}\n", " \\sin(bt). \n", " $$ \n", "In terms of the asymptotic\n", "stability of the problem, we need to look at the asymptotic behaviour of\n", "the solution as $t\\rightarrow \\infty$, from\n", "which several conclusions can be drawn:\n", "\n", "1. If the eigenvalues are *real and negative*, then the\n", " solution will go to zero as $t \\rightarrow\\infty$. In this case the\n", " linearized solution is *stable*.\n", "\n", "2. If the eigenvalues are real, and *at least one* is\n", " positive, then the solution will blow up as $t \\rightarrow\\infty$.\n", " In this case the linearized solution is *unstable*.\n", "\n", "3. If there is a complex conjugate pair of eigenvalues, $a\\pm ib$, then\n", " the solution exhibits oscillatory behaviour (with the appearance of\n", " the terms $\\sin{bt}$ and $\\cos{bt}$). If the real part, $a$, of all\n", " eigenvalues is negative, the oscillations will decay in time and the\n", " solution is *stable*; if the real part is positive,\n", " then the oscillations will grow, and the solution is\n", " *unstable*. If the complex eigenvalues have zero real\n", " part, then the oscillations will neither decay nor increase in time\n", " – the resulting linearized problem is periodic, and we say the\n", " solution is *marginally stable*.\n", "\n", "Now, an important question:\n", "\n", "*Does the stability of the non-linear system parallel that of the linearized systems near the stationary points?*\n", "\n", "The answer is “almost always”. We won’t go into why, or why not, but\n", "just remember that you can usually expect the non-linear system to\n", "behave just as the linearized system near the stationary states.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The discussion of stability of the stationary points for the Lorenz\n", "equations will be divided up based on values of the parameter $\\rho$\n", "(assuming $\\sigma=10$ and $\\beta=\\frac{8}{3}$). You’ve already seen that the\n", "behaviour of the solution changes significantly, by the appearance of\n", "two additional stationary points, when $r$ passes through the value 1.\n", "You’ll also see an explanation for the rest of the behaviour you\n", "observed:\n", "\n", "$0<\\rho<1$:\n", "\n", "- there is only one stationary state, namely the point $(0,0,0)$. You\n", " can see from (\\ref{eq:eig0}) that for these values of\n", " $\\rho$, there are three, real, negative roots. The origin is a\n", " *stable* stationary point; that is, it attracts nearby\n", " solutions to itself.\n", "\n", "$\\rho>1$:\n", "\n", "- The origin has one positive, and two negative, real eigenvalues.\n", " Hence, the origin is *unstable*. Now, we need only look\n", " at the other two stationary points, whose behaviour is governed by\n", " the roots of (\\ref{eq:eig12})\n", "\n", "$1<\\rho<\\frac{470}{19}$:\n", "\n", "- The other two stationary points have eigenvalues that have negative\n", " real parts. So these two points are *stable*.\n", "\n", " It’s also possible to show that two of these eigenvalues are real\n", " when $\\rho<1.346$, and they are complex otherwise (see Sparrow 1982\n", " for a more complete discussion). Therefore, the solution begins to\n", " exhibit oscillatory behaviour beyond a value of $\\rho$ greater than\n", " 1.346.\n", "\n", "$\\rho>\\frac{470}{19}$:\n", "\n", "- The other two stationary points have one real, negative eigenvalue,\n", " and two complex eigenvalues with positive real part. Therefore,\n", " these two points are *unstable*. In fact, all three\n", " stationary points are unstable for these values of $\\rho$.\n", "\n", "The stability of the stationary points is summarized in table below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "| | (0,0,0) | $(\\pm\\sqrt{\\beta(\\rho-1)},\\pm\\sqrt{\\beta(\\rho-1)},\\beta-1)$ |\n", "|-----------------------:|----------|-------------------------------------------------------------|\n", "| $0<\\rho<1$ | stable | $-$ |\n", "| $1<\\rho<\\frac{470}{19}$| unstable| stable |\n", "| $\\rho>\\frac{470}{19}$| unstable| unstable |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "- Summary of the stability of the stationary points for the Lorenz\n", " equations; parameters $\\sigma=10$, $\\beta=\\frac{8}{3}$\n", "\n", "\n", "This “critical value” of $\\rho^\\ast= \\frac{470}{19}$ is actually found\n", "using the formula $$\\rho^\\ast= \\frac{\\sigma(\\sigma+\\beta+3)}{\\sigma-\\beta-1}.$$ See\n", "Sparrow (1982) for more details.\n", "\n", "A qualitative change in behaviour of in the solution when a parameter is\n", "varied is called a *bifurcation*. Bifurcations occur at:\n", "\n", "- $\\rho=1$, when the origin switches from stable to unstable, and two\n", " more stationary points appear.\n", "\n", "- $\\rho=\\rho^\\ast$, where the remaining two stationary points switch from\n", " being stable to unstable.\n", "\n", "Remember that the linear results apply only near the stationary points,\n", "and do not apply to all of the phase space. Nevertheless, the behaviour\n", "of the orbits near these points can still say quite a lot about the\n", "behaviour of the solutions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "**Problem Stability** Based on the analytical results from this section,\n", "you can now go back to your results from [Problem Experiment](#prob_experiment)\n", "and look at them in a new light. Write a short summary of your results\n", "(including a few plots or sketches), describing how the solution changes\n", "with $\\rho$ in terms of the existence and stability of the stationary\n", "points.\n", "\n", "There have already been hints at problems with the linear stability\n", "analysis. One difficulty that hasn’t been mentioned yet is that for\n", "values of $\\rho>\\rho^\\ast$, the problem has oscillatory solutions, which are\n", "unstable. *Linear theory does not reveal what happens when these\n", "oscillations become large!* In order to study more closely the\n", "long-time behaviour of the solution, we must turn to numerical\n", "integration (in fact, all of the plots you produced in\n", "Problem [lab6:prob:experiment] were generated using a numerical code).\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "## Numerical Integration \n", "\n", "In Lorenz’ original paper, he discusses the application of the forward\n", "Euler and leap frog time-stepping schemes, but his actual computations\n", "are done using the second order *Heun’s method* (you were\n", "introduced to this method in Lab \\#4. Since we already have a lot of\n", "experience with Runge-Kutta methods for systems of ODE’s from earlier\n", "labs, you’ll be using this approach to solve the Lorenz equations as\n", "well. You already have a code from that solves the Daisy World\n", "equations, so you can jump right into the programming for the Lorenz\n", "equations with the following exercises …\n", "\n", "
\n", "\n", "**Problem Adaptive:** You saw in that adaptive time-stepping saved a\n", "considerable amount of computing time for the Daisy World problem. In\n", "this problem, you will be investigating whether or not an adaptive\n", "Runge-Kutta code is the best choice for the Lorenz equations.\n", "\n", "Use the Integrator61 object to compute in both adaptive and\n", "fixed timeloop solutions for an extended integration. \n", "Compare the number of time steps taken (plot the\n", "time step vs. the integration time for both methods). Which method is\n", "more efficient? Which is fastest? A simple way to time a portion of\n", "a script is to use the ```time``` module to calculate the elapsed time:\n", "\n", "```\n", "import time\n", "tic = time.time()\n", "##program here\n", "elapsed = time.time() - tic\n", "```\n", "\n", "To answer this last question, you will have to consider the cost of the\n", "adaptive scheme, compared to the non-adaptive one. The adaptive scheme\n", "is obviously more expensive, but by how much? You should think in terms\n", "of the number of multiplicative operations that are required in every\n", "time step for each method. You don’t have to give an exact operation\n", "count, round figures will do.\n", "\n", "Finally, we mentioned that the code that produced the animation uses\n", "a C module called odeint. It is called [here](https://github.com/phaustin/numeric/blob/lab6/lab6/lorenz_ode.py#L22-L23) using derivatives defined in \n", "[lorenz_deriv](https://github.com/phaustin/numeric/blob/lab6/lab6/lorenz_ode.py#L11-L14).\n", "Use odeint to solve the same problem you did for the fixed and adaptive\n", "timeloops. What is the speed increase you see by using the compiled module?\n", "\n", "\n", "\n", "
\n", "\n", "**Problem Sensitivity**: One property of chaotic systems such as the\n", "Lorenz equations is their *sensitivity to initial\n", "conditions* – a consequence of the “butterfly effect.” Modify\n", "your code from [Problem adaptive](#prob_adaptive) to compute two trajectories\n", "(in the chaotic regime $r>r^\\ast$) with different initial conditions\n", "*simultaneously*. Use two initial conditions that are very\n", "close to each other, say $(1,1,20)$ and $(1,1,20.001)$. Use your “method\n", "of choice” (adaptive/non-adaptive), and plot the distance between the\n", "two trajectories as a function of time. What do you see?\n", "\n", "One important limitation of numerical methods is immediately evident\n", "when approximating non-periodic dynamical systems such as the Lorenz\n", "equations: namely, *every computed solution is periodic*.\n", "That is, when we’re working in floating point arithmetic, there are only\n", "finitely many numbers that can be represented, and the solution must\n", "eventually repeat itself. When using single precision arithmetic, a\n", "typical computer can represent many more floating point numbers than we\n", "could ever perform integration steps in a numerical scheme. However, it\n", "is still possible that round-off error might introduce a periodic orbit\n", "in the numerical solution where one does not really exist. In our\n", "computations, this will not be a factor, but it is something to keep in\n", "mind.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "## Other Chaotic Systems\n", "\n", "\n", "There are many other ODE systems that exhibit chaos. An example is one\n", "studied by Rössler, which obeys a similar-looking system of three ODE’s:\n", "\n", "\n", "\n", "$$\n", "\\begin{aligned}\n", " \\dot{x}&=&-y-z \\\\ \n", " \\dot{y}&=&x+ay \\\\\n", " \\dot{z}&=&b+z(x-c) \n", " \\end{aligned}\n", " $$ \n", "\n", "Suppose that $b=2$, $c=4$,\n", "and consider the behaviour of the attractor as $a$ is varied. When $a$\n", "is small, the attractor is a simple closed curve. As $a$ is increased,\n", "however, this splits into a double loop, then a quadruple loop, and so\n", "on. Thus, a type of *period-doubling* takes place, and when\n", "$a$ reaches about 0.375, there is a fractal attractor in the form of a\n", "band, that looks something like what is known in mathematical circles as\n", "a *Möbius strip*.\n", "\n", "If you’re really keen on this topic, you might be interested in using\n", "your code to investigate the behaviour of this system of equations,\n", "*though you are not required to hand anything in for this!*\n", "\n", "First, you could perform a stability analysis for\n", "([lab6:eq:rossler]), like you saw above for the Lorenz\n", "equations. Then, modify your code to study the Rössler attractor. Use\n", "the code to compare your analytical stability results to what you\n", "actually see in the computations.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
\n", "\n", "## Summary \n", "\n", "In this lab, you have had the chance to investigate the solutions to the\n", "Lorenz equations and their stability in quite some detail. You saw that\n", "for certain parameter values, the solution exhibits non-periodic,\n", "chaotic behaviour. The question to ask ourselves now is: *What\n", "does this system tell us about the dynamics of flows in the\n", "atmosphere?* In fact, this system has been simplified so much\n", "that it is no longer an accurate model of the physics in the atmosphere.\n", "However, we have seen that the four characteristics of flows in the\n", "atmosphere (mentioned in [the Introduction](#sec_intro) are also present in\n", "the Lorenz equations.\n", "\n", "Each state in Lorenz’ idealized “climate” is represented by a single\n", "point in phase space. For a given set of initial conditions, the\n", "evolution of a trajectory describes how the weather varies in time. The\n", "butterfly attractor embodies all possible weather conditions that can be\n", "attained in the Lorenzian climate. By changing the value of the\n", "parameter $\\rho$ (and, for that matter, $\\sigma$ or $\\beta$), the shape of the\n", "attractor changes. Physically, we can interpret this as a change in some\n", "global property of the weather system resulting in a modification of the\n", "possible weather states.\n", "\n", "The same methods of analysis can be applied to more complicated models\n", "of the weather. One can imagine a model where the depletion of ozone and\n", "the increased concentration of greenhouse gases in the atmosphere might\n", "be represented by certain parameters. Changes in these parameters result\n", "in changes in the shape of the global climate attractor for the system.\n", "By studying the attractor, we could determine whether any new, and\n", "possibly devastating, weather states are present in this new\n", "ozone-deficient atmosphere.\n", "\n", "We began by saying in the Introduction that the butterfly effect made\n", "accurate long-term forecasting impossible. Nevertheless, it is still\n", "possible to derive meaningful qualitative information from such a\n", "chaotic dynamical system.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", "
\n", "\n", "## A. Mathematical Notes\n", "\n", "\n", "\n", "
\n", "\n", "### A.1 The Lorenzian Water Wheel Model\n", "\n", "\n", "*This derivation is adapted from Sparrow \n", "[Appendix B].*\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAAFNCAYAAAANaKqtAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAABIAAAASABGyWs+AAAsH0lEQVR42u2de5QkV33fP3cf0q52Z3dbq5VWWrGSWw/eEtCxEA+HYEbBkHPA4mRGjkwSG8OsY8VBQMhsMLFPwE5mgiEIQ3RmohAMSDYzNkacAzlo+4CUBAQ6aVsSBiQhWmj1WK2Qtnd3Zmdfs7r5496arq6pflfdW9X9+5zTZ7eq79y6VV31rd/93d/9XaW1RjAoxSiA1pSlHqln2FEiDnWUogCgNTWpR+oZdkQcBEGIZY3vBmQJpSgpRUnqkXoEEQdBEJog3QpBEGIRy0EQhFhEHEIoxWgwrCX1SD3DjnQrQmRtaEzqyVc9g4aIgyAIsUi3IoRSFJWiKPVIPYKIQ5Si/Ug9Us/QI90KQRBiEctBEIRYRBxCZC0cV+rJVz2DxjrfDcgYSQ1lST3DWc9AIT4HQRBikW5FCKUoBAExUo/UM+yIODRSsh+pR+oZeqRbESJr4bhST77qGTREHARBiEW6FSGyNjQm9eSrnkFDxEEQhFikWyEIQixiOQiCEIuIQ4isZRaSevJVz6Ah3YoQWRsak3ryVc+gIZaDRSmKWlPTmppN/tFTxJzUM5z1DCIiDnUmQxmBJqQeqWfYkVmZjQTZgAp9mphSz3DWM1CI5VCnEvq3nxtE6hnOegYOsRzqlDFmZYH6DSP1SD1Di4iDRWuqSnEFcAHwQalH6hl2pFvRyEng7AT6nVLPcNYzUIg4NHI3sF/qkXoECYJqwI5xF7SmKvVIPcOOiIMgCLFIt0IQhFhEHARBiEXEQRCEWEQcBEGIRcRBEIRYRBwEQYhFxEEQhFhEHARBiEXEQRCEWEQcBEGIRcRBEIRYRBwEQYhFxEEQhFhEHARBiEXEQRCEWEQcBEGIRcRBEIRYRBwEQYhFxEEQhFhEHARBiEXEQRCEWEQcBEGIRcRBEIRYRBwEQYhFxEEQhFhkle28olQJs2x89tG67LsJQveI5ZBfJn03YMDaKUQQyyG/1HLxRlZqwncThN4QyyG/VFFq1HcjWqJUEWTl6rwi4pBfykDJdyPaUAIqvhsh9IaIQ17RugIUfTejDSWMiAk5RMQh39R8N6ANBbTOehuFJog45B2lsjycmeW2CW0Qccg3VbLqdzBxGOKMzDEiDvmmAmR1xEL8DTlHxCHPZNspWURGKnKNiEP+yarDT5yROUfEIf/UMuqUzGKbhC6Q8OmccxdvPTrO/H1HFM+t/vbMWljYVN9e2Gz2BRzbDJsW42uOfrf2DIyEtjecNJ/VjLCw6c95V+V63xdH6AsRh5zzj/nWX77AmY8Cl6/+di2wLbS9La6KrS2qb/VdU5Y45/QxNv8X39dG6A+ltfbdBqFDlBkeHMWY7MGnupuH//V+rtzUV+UJspVnTx3hgjsxQ5kFjF+krPMwUUxYQcQhw4TEIBiRqAKV6EN2hfrZwUe57Hzf7Q24hP3P/Vzv3hE5j+BTsOchYpFxpFuRIZSZxThKPXYheIimW/3di9h/IEvicAHPLMLulW1thlxXhjUD0VNKjUXOU4Y+M4SIg2eUmXYdPCSB+T3ewd8VMRZF6Xp+YxHe7PtUVtjFN08p9dpRoKq1XhUl2UIsgtwPFa31rO/zGHakW+EB+2BPYB7uMjCv28QEWBEJ+xuqwUdDdQsLDyywebPvc1vHmdP/lrd9fIp9D1HvRgTtrWit5zu4PhPUw8JnxaLwg4iDI5SJRQhu+irmpq+2KB/2NxQwb9qmpvdlqlqrUtzm+zwLHF48pLeNxJxP0GUKHvq2Tspur5mQLCIOKRN5C843exjswzNGo/Ox4374S9Qjzz3Mldt9n2/UGdniuoTFIrAs5pudrxXL4Pp0ZG0J/SE+hxSwb7xJ7I2std7Tolz4zTjfqwl9EU89mQVxiDojm2EtgBW/QsjvMEmMlRD2U1hH5pRSCmBarIl0EHFIkJAvAVq/BaPWxHQn9bfiddz79e/w5qt9X4Or+OEDcE3Xfxd5+EvAhL2eq6wE67eYt99Pikikg3QrEiC4Se1m7E0aGZVI3huvVGELC/t9OiXXceb0n/Khf/p+/emvJ3daaoz60G45zqEZsdRmJX4iGUQc+qCdKERu2grmxk2tn3yp2v+Lx9l9nq/r0cwZmQT2Wo5Rt7jaXW8RiT4RceiBkHMMYjzovm5S35GSF/PUwSf0rp1pH6dLURaR6BHxOXSBvemmMMNw01ErIHTT1vAw7OY7UvJ8nj0Cu1I/jr2ue0I+hxohH4/9XfYGDl/r49krPonuEHHoEHuDjWJEoRL5rq3PwQWv4Me3+3RKvpSfVODVzo4XEokCRiQmCVkKViSmA1G3IjItQ6AdorWWT4sPpo87B0zEfFcEZuyn6LutGgojLCyA1q4/6zh9+tO8/x2ef6vAspsDRmO+HwX2AWPef6scfMTn0IRQvxUib5tI9yJTUXu+nJLbObT0nD43E9PGIz6HVd0JpdQURkhk+LMF0q2IoU0XYhJjTWSyD7uBE8rHcTezuATn+j59YJXPYVV3Qmu9N+yv0Frv9d3mLCI5JEMopYpKqTmgoLUeDwuDUqpkv6vZ7zInDGAiJX0cdzvPH/J97lG01jVtolPLwExoijha62rwnVJqn8r6osQeEHGwBCG5wB4dilhUShWsGTpmv8v0VOJX8OPbfRzXOCOzidY6mAZfUkrNWath5TtgHBizv7NgSdfnYOIBpsj4+gV/A28CuF7r1zU2v3n3IstsUYsLLiMl17G8/CH+6+iU/vA9vs+9HeHh5mh3IvR775ERjfR9DlWgQkb7dPZGmfksfPUmOBLZP4UJc26beCVrjHD09ALuoqg3c2w5D8IADcOfo0qpfRjhN0OfUHsOlu+Ev31Aqe9fDY/7bm8TTF7OlJ+rdMVB66yuqRB0I8aA8ZvMm+Tbkf25fXu8nIc+dxmPtQyGOs26LetZPppEmZ08cx+80/dpd4UVhLJSakopNWqtiOp5sP93tL4x6GJk0llpLJz0fV4Oxt7nfI/Xxox3TwFT0Tau2p/TD+i25+CyTNY/mJeBcUTDTOz+DLQzdL86ueYuHJJV63vwjh2N2IeZ3bfyRngOluP255hOnKYuy2QabWZ67gXmHgnFf4f3D+NohgtxKJOBZeLtZKkZYFyHJuJcpdRvfdPE/DbszzNatzc5XZbJA9oMbV73I9j+eqVuje7HjGZM9HGIJHHSVU9fHMwD53UlaPujjmmtr9ONkY5Tb4C3/gv4Q51T/0L8+dL2JnZZJk9cD5/6bViyQ54rD6E2MRFFGwTnD2PBOBHkgY9zCLIuhbsLNqBpH1C+1XikczNMKaRO5X1wmpjuhL2HakqpGY/tK+HofnUlDl5GLKzKF3Uoh6Oqx14E3YgCGY127P58mVCKotbGD6AUUz7L5BJzLxSbdSe0CYKreBSIIo66v67EoYpjh4798WoRi2EUk+NxPNSNyORQa49UsSnVlKKEmRjms0zusS+WUoxAzEa7HoOGK3Go4NApaYWhIU9jyO9Qj18wwU4DYTUAaG2cv/YtPopxBnsrk2OqNIZY74GV2ZzBvgowjel6DKRAuBEHR05JOw9iDjONOioMJb06Rbyz/ptjZoGi1i3PzWWZvLHqZWbvp2q4O2EFYi9m5mf6TneHzkgYIIekVe85IvMgQpFucWtHDKI4dGLeuyyTR2ItXSsQQVRlwe4LBGJGpR/PU8KhhTYw4oCJYdgbEYYZzGKuzQJ1ioPijAxRBv6E1m8Yl2Xyh7knCvFfmTUzCHUnbDd1HJOvMs0uRhGXEwAdhnxO6pjUXQmFv85gug3BdsHuG2vTpsyFdidzPfRx0KWslMnlJxRG3eSeK2FSzhVC+4rRfQm3yWmoukvLIZVIyZDzMayoUxi/w3yLPxwoZ2SEWzrwAbgsk0dqrcL+7f02julOBBZEFRsfkXhrPDg93eaQVGqGJutG9ladCublh52PMzRZGSnyx2OYaa+D5GUXksI4/4q0Se4TiZuphfaN6STn6XTYniRx7XNIzIFlRyAKEWEIcjDMd1DFIDojhYTYxPHfpoMRtpBDMjrMWU04UGoUx/er+wSzShXocx5D3NCk3dfK+Ril73YIg8sSG5bOpXZTTXFD+9IaOLFBqed/A7Yfqu9b2KzUoRvg3L7vs/M5uOOgPt/pjGHX4lClz+EYa7IVY4QhLo6hFQMZuNIPNoK0pnOUEi9FvlJj23uh05RaG+yHLfV9K8uGbu23MWs5c9j1BXAtDhVMAo2exCFI36ZNzHuwb5RuhcEIzKA6I/vBhkOrMeriWcBcqxrm96vqwRv+XYXWlEfU4rFFNmdiLY5LeOJpuNDpMd2Kg9YV+pvyOoPxEAMNjp9unZxOg0nyQisHmgocYjCqGkd6OvXx5I616APA5b7bAfAm7r4HrnF6TB+L2vTU/7LOxumIR3iKkFh0QRETyCJ0iI4Z1bFDeGPBeh4Yy6I8KJbFKdY/SAbEYSMnTryGB5xn3PIjDl06JYPFSCI3aMPwUZeIMzIB7LWftZ+VWa9WNGoYocithXacDV8C3uW7HSMsnBrXt9/v+rg+xKErp6Q1Ycd0KEV81IroAXFGpoAVgjLUf7eQ/2I2b0KhNV/bohaPL7B5o892rGX5BR/H9TG3oox1fHXIDBAemYizIjrHdEfEG58y2iRLmbb+oCDF2r4M5WHsiLM5ueC7DcYZ6R734tBiUkuUGD9DYEX0M94r4uAYbdasnA1GmfIkEhs4+VPfbfgH/L9v+DhuZmdlNrEQGqyIHnGWZktYTUgkakqpmfD05yzyJBfd5vP4Iywu/grfvcPHsX2JQ40WyTHiLIQE/AwBmb0Rhwmt9bxuXAE7qyJx5zkcP+nr4Ns4/IIPZyR4Eoe/55UP0XqG5hRJ+hmEzKLrK2CXgcmsiYTW1LZRW/J1/LWc8eKMBE/iUKLyUYWeUwod9wE9BvpQaHsO9GSz8t18buHmzHalhhkrEnsxIjHnIKtSx5zNycO+jr2Tg16ckeBJHE6x/ps+jruZpaOv53tenDtCZ1jrcBwzDJqJdPc7OfgdX8f+Vcp/7evYvt6in97E0inXBz2Lk2t+Wf/ga57OWegQO7qxF5Ov0bsVcS/X/okPv8MIi4vrWPN5X+ftNtlLiJ3q2ecOcv52l8e8kAOHn9YXZqY/K7TH+h+CXKDeFjk+Tz1fe57t21we8yKerj2lLzrX1zl7639fzJP3uT7mi3jisK/zFXrDWhHjmFWm9vmyIkZYcO6UXMsL3pyR4Cd8GoBdPPOR59j/y2t44eQLLG0CWMM5xwA0p87SnNywhpGjSR5zCwv3+jpfoT+01vNKqTJmjYiq1nra5fF38fRDP+fSixwf8yBc7PKQDXgThzv12+8HdgRmY2TuxBywJ4GYhgiX+jpdIQHs/bBHKTWhlJrpYap+z7yR737sDOt2Jl3vSZ65+Cx2HFCsPQNwiufPX8vGY2s559ibuOf3XE/TDuPN5wCgFKPwkpvh4T8Ksg9Fk8aaMivLr7Wop/8yQn7oMftX5ogmow0WZwonNPKF5zH/1y7DgZ+GhKGA+cHDc9crtJ8LkVQZISfo+mK2My6CppSioFTr6NpeyoTuffvy0jW44BtK7bzZxXVshWdxuO/X4OjHQjumMJl8V9CamtatE8QkVUbIF/bBmsXNYrYl2q+70muZaczq75Zn/h745ymfT1u8iYOZP7FrK+hCfZtaNIuQUhSVap0iPKkyQv4IpYZPWyBSs2CtL6UcmqlaAb7ke+aqT8thEqa+S31tgElsRqEIRdqvH5BUGSGH6MbFbFMRiLQtWNtNGquXeebTwbY3fKxDCBThmnvq2196N+y4I2YdxonQ/0dBF9MqI5/8fzAzbucIrZuaXN261MG6oX2VwXQtJoIywbav6+nLcpiE2cX65h0fgV98NKZcOGPUmNax6eSTKiPkHGue78HEQmRm4lYX7Z8ldK/abW/n4Vwc1Eoeh6t/qBTvUOqWd9gLEffAVk2ZlhcoqTLCAGAFYhwz/TuRLoZSTGlNRWsqSjER57tKqgx8cARUISgDL388GMlwjQ/LYQLjna0Ar4DPvhf+8J4mZW0ZNtM8pX1SZYQBwQrENKH1K/skLDKlJpZnQmU+9Az1kYsS/OhWGkYy3OFUHCJLlZfh6Stg93q4ttm01DJwCfBimmerTqqMMEBYJ2VF9beIUkBNKd4dBNKlW+aig/APNyj1bz5sz6OGWZTXufXg2nKYxC4mYzy2f/B6+MSibhK1aL265wOvS7uMMHjYPnsxgQerDJwHLNN8GcUEy3z+Xvibt4fKROIg3OBaHIq6IRrysQ3wmnZrApwAdjgqIwwY2oRX9+V/sC+UlwKvhaYvoATLXHYpXAW8+6g9h8B6cDoU70wcbEBH+IJMwlu+ArRL/f0th2WEwWQcM8TZDyPA1Vq3DHJKsMz/eA5uf1Vo3yyOrQeXszKjk2SKWv+Htutcas0XXJURBhOtdU0pNd3nTE6FebAdldm5EYyFrU1Oi8G0HKImne0DyiQowRna5Kas9hGS/KfA1x2XmafRWigHmdhd4GTKtvUYV+wPhFJqBtirZTFbwTH23psNfF9ZRyk1p22uE/uSnerD+ukKVz6Hko6sOSHCIHhiL2bULC+sdCd0fVlIJ3lQUxcHe2LV0PYE0qUQPOEzbqBHoo7IMo4mZLmwHCZonG0ZTeYiCE7RJutSLqwHGzBYDG3P42i+hQtxKAbzJrK0zJkw9Mz7zpfQBasckS5GLlIVB2u6hX0NE9gISUHwSTADMicvrHkaZxav5H5Ik7QthzEaxWCVY1IQPDJLDroXUUekHWlJvWuRercidGINjklB8I19URVyYj1EHZHVtNudmjgEOSFDu6JWhCBkgSSndqdGjCOyQspdizQth6i/oZiXwBNheAg5y/OWX7RMyl2LVMVB/AtCTthLDqwHoBYJiMpntyKMzecn/gYhk/iaEt0DZRpHLVJtcyriECMG0S6GIGQN51Oiu8Va4mFxiG4nSlqWg/gbhFwRjUTMA1YsUvM7pCUOxYi/IQ9DRYKwEomY4bkXVVdp911MvJLcDULmsX33CnUzPaviEI2WrKXld0hcHMTfIOQR262YgmwPa9ruebh9qfkd0rAcopZCQfwNQk6YB35Bxh2TYdL0O6QhDgXxNwh5xE7GuhKzvkmWqUX8DqkkTkpFHIL/yHwKIYfMAtuAC3w3pAUVGl+6+fA5xDRaxEHIDdbqPQRc67stLaiyOhgqcQs9DXEIi4FERgp55MPAS3w3ohnWhxcWgyop+B3WkeB47ufg1TfD9qDO34VX3QqVhI5RQZLSCg6wa0S8M5XKE3refgt2BXV9FrY+CjegVJItra0hwf7KERi5HB4Jto/ChQlVPYajvHmCAKC1bre2RK8kklzmlFkxHoDr4KcnQtsJMaU0jGHmiveNUmoKsyZAMA22nxWGwhXP4ChXvyCkSkL3sn3WpkPJlFbWt0igjUVgYg3JvpFXkslapBsgCOlQo/HZTfJZKwGVRLsVNK5PId0AQVhNNTEfXHoTxVbEIUnFKUb+33/YtMzNEAaLpCIao+JQS/CFXEDrqhGHBGLJ7ThrdBgzCeEpIeIgDAqr50b0WI2usXqORaKxDmtIbuLGKtVKaE5FCZmbIQhxRGOI+rccjPVRAyMOSfZdwg9xUnWKU1MYNGqkk1Y+iTpLWHfAGpJNVJnsg2wuoIiDMGgkFdG4UkeCyZyDvBYr4dNJKU70AiRRp4RfC4NGOKlMP6TxbBSCSORAHKr07+lMw0ySkQph8EjIKclqqzoJa2TlOQ7EIZHhlYhpk0RDi+KMFAaURLrLkdmY/dUZyeK2zv6blJkTJgmTR/wNDrBJVUcx17umtZ723aYhwDgl+59MuOJApP9nLlyXtRyScUpGLYV+VUyckSmjlCoppeYw2bv2aK33AhWl1L4gC7OQGkk4JZO2qleckZBsPoekGyrBT+kzCeyx6dEA0zXUWl8HjOVk9em8kkR8UfIvz5AlExaHJJySSSLOyBSxlkFZNzdrZ0loerEQg5mgmDXxbWhPWBzS8Dv0Q5HGGZ5CsoyGLYYosgiyE7IjDmYOU8PzVhcHczNkNl+/kDjiz/FPNYl5TQmxqhu/rseK0kWyVrugppQabWYh2Mzh2XmzDSaVF/PIFx9RvKG3P9cAoexwGqV66wqew9LJJTa+TIf2pb4cXo+IMzJl7HBlqxtpEpAhzXSpXMWDiSZ+7JUNnDitdbNuhaGfRBRJOjNFHNwwq5SaCy8aq5QqKqVmgIoWn0+6aF19F1897bsZACMsnIjui3YrKkQCIbogyYdZnJEO0FrPK6XKwGRIIAqY3IRy/R3wz7jj2Ru5/Rlgp892bOf5p2B3w75GcdC6THLBL1kaFhWaYIcy9/puxxBTXcfyG5c9u//ewPduh1c37EvU5xBJU9WbJSHOSGG4qGzh6EmfDdjKkaU/46bbovvjxKHXIa6k8kL02q0RhDxSvogDL/hswEZOLGm9+rmPE4denZJRS6FXoRBnpDA8aF3bxZOnfDZhA8djjx8nDklFSvYa3JHETDVByA3/ki8e9Hn8XTz9UNz+VeKg0LXNHPuAUuhuPqD3gd4X2h7ttg6l0Jfxs2RW7RGEnPBLPPaTdbxw1NfxL+XnfxW3f5U4aE11E8dOtK8yHc7h+CFfxxYEH1zLvX+9Hj8+ye0cWvqyvvHWuO9iRyvWc9qbOIywcLevYwuCJyo7Objg48CbWVxq9l2sOFzIgYd9NHQdy8s7OPRnPo4tCN7QuraWM+t9HHqEhabdmVhxeDEP/4WPhm5h4cSd+u33+zi2IPhkN/u9WOu/RPXBZt/FisOX9Y23bufQEo7ZRm3Z9TEFIQtcw30/dH3MdSwvX8HP/qrZ900jJFv1RdJiG0ced31MQcgCm1n8hutjnsPxU5/UN9/e7Pum4rCd552PGpj4bkEYPv5Af/zWLSw4fSEXqLU8XtPZHq/goQ9uYukd3RzsDCfOXuBHV2+jdB/AYSrXbOTix87mgl908vef0Td9wuXFEYQscS333nacTRs6KXuIH/zKubz2/wAc49HiGs4+uZEXPdXN8UZY/E50JmYYpbWO/0KZ8Oe4mOtWZZRSc1rrcfv/Udh9MTx+Z7f1CMKwoRTFaMKVuDKgACbsUgIopaaA2WCafaf1tCvTalZmifbTruPKVBv/f+5be6xHEIaNiQ7LNKwvARQj+Tc6raclTS2HXlFKzWit9zTbFgShP6ylUA7yfyqlpgIrIknSyCFZi+R1kCSlgpAshUhi4FQyWDcVB6UoKdXa1G9SJrIo75XHlLrlHT3UIwhDhVIdmPqmTKG+rValOOiinpYkbjlYRQs96Jc9BPPXJH0cQRhO/uduGv16o6SUHGn1lG1FUSkmtKaiNRWlmOqhTKFe5pvT8N0dPdYjCANPcN9rzay1oiealYH3LMBvPh4qU9RaV7qtp1WZgNgp28CoUhTsEGOxhzJVUIWgDGw6q8d6BGEYqCnFqBmmZNWydOEysONq+PKWVmU6qadNGaD1ilcl4ApaJ3ttVia8gnAJXncRfL8K1/ZzLEEYVMpAkPW9qHXsYkK2zFUvBdZpzbRavb5lF/W0LAM09zlUgM3ABTTvzzQto+vrbtoy1z8DHzvex7EEYWDRmgrmeZltXeauEjx2V2h3g7+h83palwloJg5lzGv+ZVo3fWC7KPN7G+F/beqjHkEYBgq0tJ6/eT78+oOhMiv+hu7q6axMrDhYdXkl0OyB7qRM1YZ5BmUKPdYjCMNABfgkLa3nvz0On3xfqEytt3o6KtNyKPMs4Nk2J9SqTOB3CMpUI8FR3R5LEAaZMvCm1tbz408FZay/odJbPR2VaemQnKf9+hFNy2itK0qpiUiZZifUybEEYWCxQ/lNnYPKLFN5H/BTu2uUGL9Bu3o6LQMpzK2InFB0nsXKjE1BEDrHrny+165t6uRZSmNuRZjAegho1bUQBKEFIWFwsp5squKgtZ6lcSr2LPUxVkEQOsC+YMPd7qC7nippWw7BydlkLrqKREEKQreU7Is2oNkQZqK4EIdZGhNLlK1zRRCENgQv1tB2M6d+4qQuDlbhwl2LeZJZqFcQhoFoF2KMDqIbk8BJt4KQIzLkVJEkMILQnlIkscvKM5Q2rsQh6ogsI45JQWiJfaFWQ9tRx2SqOBGHqCNSaz2PJJQVhHZEuxBRx2SquLIcIMYRacdrBUGIp1BPN+++G+5SHKKOyGlg0vUJC0IesF2IsK/BSWxDGGfiEInuIqSIYj0IwmrGbPc7YDTqmEwbl5YDrLYWxHoQhAihCYux265Y138VnaO1riqlUEoVtNY1u10Ltl2fvCBklDGt9XUttp3g2nKA1dbCPGI9CAKQHasBPIhDMKwZmm9RCW8LwpAzGhmuHHM5fBnGh+UAZux2ssW2IAwddt5EObLtxWoAT+IQZKcOWQ8N24IwpExkxWoAf5YDiPUgCCtE16Cw216d9N7EQawHQWhgAhryOka3nePTcoDVuR72gqyXKQwXSqlJYD4UKDgKVH0P7zuNc4hckZIGfhPe9ohSD18Jixr4V7Dlc0p9+Cb4O58XpgHHkWmCI8ysR6+W6iOw+UZ42+3wxxhR4Eb46B/Bp4NtwMs96NNymAJ4D9z2n+G9wc4PwFe+B//EY7uiTPRfhZBRvPu4/iPc/B64Ldj+ANzwcvjfV8Ki73b6sxyghtbltwCjSr3iCxi/w5XAHUqtv8OM9+712D6DpLQbZGo+rULbffj+7Vp/2W4XMCMW74sU9PKC8mk5VKlPumqImrQTToreJ2WtXsVYGCyqDaa7eyZpdDrOYPxudRyloY/Dpzis5Ja0jpdZpVTYGbkX/2ZfCVn5e5Ap4ynpkL3Xp2OckFEhKOFpNTif4tDww1hroRCZ0l1TfpW9iIMU4IInbOi+68Pae7wQmYI92aQb7e0F5U8cjGJGPcXR7oVv60Fmig4+Pn7jhu5EYEU0KVvA05Cm7ziHBnFoYi1MR7obbpBgrOHB4W9tZ1lWI8mOCi0SuXi7D32LQ5XI2pmBtRCJnMTDQjgNmX+FgaWKI7+DzSZd0lqHrYSoUzL8B17vQd/i0MwhNE0oUtIKxpjj0QtnKwsJXqngYJEl+7KbJDQaEbUiYvDqEPctDrEOIWst1CIrdO/BDPW4QpyRw4A7p2R0dCLOiohSxOMLyq84xDsl7Vd6LzAaGr2o4db/IM7I4SHV3zpkIVTs9iorognenJHgWxyCC9CcBmvBmf/B/HgiDsNDLS2nZBMLocGKaIFXp3gWxGGVUzIgzlpw5H8QZ+RwkYpTso2fodLmj73fg1kQh5ZRak2shbT9Dw3puoSBp0w6Tsle/AwB3qNz/YuDTfLSukijtRCyKNISiALNPcjCoGF+60RN+GDR2x78DAFF36kC/IuDoZMfJs7/UElRIAShJ6wwRBe97dTPEOA9CC8r4tCWOGvBXvyKSnJKq7FOxBk5fNRIwI9lo3tLWus9oX2d+RkyRlbEoaOpsyFrIeygnMVM705KILzNghO8sjJLuFesT2EsRhg69TMEf5SJVAFZEYeOfxgrBg0BUtYnUUpoiFPEYTjpSxysMEzRODJRAophseiQTNyD2RCHDpySjcX1NEYMwgKxx+7rd0iqKM7IIcSuxNbLn4acjeORkYmpHrOZeXdGgt80cX2htd6jlJpRSpVCfblpYE4ptTdv/TvBP/+diQsnFLcCRzr/q8Wz4bZfhxu+BpsnlQI4sBVu+zW44WtKdZ1N/ezP8vu7b/J9McixOMCKQMwppaa11hWtdU0pNY4RiPGuU3t7TMkl+OcF1jwJ/G53f7UZ+B2Am+v7LozZ1zkPcNV9vq8FZKVbYeg1n98eYCroTlhBGAdmeuhiZKKvJ/jhDXz3W+s5fcx3O97Mt3/guw0ASmvtuw0AvFQ9cttxNvzq4+z+Wfd/fXodPHQ5vORRWL9c33f/K+HyR6Gw0Ektl/L4y05z1see1BdK7MQwolThPJ6rPs/2bb6aMMLCkaNseUsWZgRnRhyUYhTY57MN61lePs26a7UW62FYuUgdqB3gwm2+jn8Fjx58RF++0/d1gAx1K7SmvIljSz7bUKC2JMIw3FzOo897bsIp39cgIDPiAFDgcEfmf1qcxanjvq+B4Jc38L2HfB7/Yp445PsaBGRKHDZx7IDP46/lzI99XwPBLy/nx3+5lhe8vb2vo/xt39cgIFPisI3aXT6Pv5ETn/F9DQS/vJsvfmMjS6d9HHuExcV/z3+63fc1CMiMQxJAKYqbWPrJMc45y/WxCxxePKS3jfi+BoJ/LlX7f/E4u89zfdwX8eTR/frirb7PPyBTloPWVLdy2Ms4c4FDy77PX8gGu3jsBR/HXWatl+M2I1PiAP6cgts48qzvcxf8o5Sa2MKDXh7SS3jiad/nHyZz4rCLp714izVfOMv7qt6CN5RSBZsrpHAFaz7low1v4u57fF+HMJkTh93sv2U9y04dQhs5ceLveO56TBi265W1BM/YMPsZYFZrPf0ZfdMntnLE6bD6Rk6cAPUV39ei4bpkySEZUFBHjh9m6wZXxzufXxw9qHdshZVFTelxqq2QM4JkLMDe8ES9S9QjC/u5crOrdmzm2MkFvcnZPd8JmZyV+Y+4+yPPc95L0j7OcZ7YtUT16l1s/4KZv2VEQSk1qpTah7lhJGJyALFdyElM+rZw5qYCMPUa3n/3JYw58wFs57mH4J2+L0vjNcqi5eD0ApibYQaY11rPR/ZP2s1uEoMKGcdahwXM71oN7S9hF7bVWleUoqh16yn8Lsu4JnM+B1iZhOWkDOiS1nock0UqnJuyZrsW85jp38klsRW8ELIIy1rrPRFhmAAmgD0ha7GT39xlGadkUhzobIGRRMtYISjb5DErf2eTyIwD2O+cLNcuJIcdiZjD/NbjOpSCTSlVDEYprGCsWIhat19jwmUZ59dt2LsVUVp1J6SrkT+UUpPUHY7VyHex3QvBIOLQhFD/sxxZnCRYm2Ai7jtHjXO10ni/FIC9PlaKDv1GDb6k0HeBb6HcvA4mtGa29XHclXFNJkcrsvCj2H7nuFJqwpqk00Ff1N5QZfvdPswN6PKHLdB9unP3KDXnWhhColDF+A+ilt8MZoTiOt+XJ/NorTP3AT2arTIUMGsSTGH6ptHvJ4A5+28h9WsEkxrattv7B+bc3TP136DJ95P2+2IH98QE6IL9fwH0hM8yvj6ZckgqxZQd0ikrRVGplf69lzIhAQ1GLsqYzNYTke9nrdOyihnZmLJvqbToe3Wm1HGUyTtkvaG1Ho/rAlrLr2q/76RNNWBUKYoYJ2bNcxkvZEocMDd9+EJVPZdpQGtdDsxRpdS+GJEoW5Eok6ZIdLkIkCdSzeQdEYXrWojCKKZ7Md9F9WXb/iB6suy5jBeyJg65+FGspdCpSEzZxXd6Sbvfisy8YZqQ+I2ulCpZwZ0Bai1EYYa6KDSERXeC1tQwXclZoGC3vZXxRabEIW8/SkQkZuzbrBD6vqyN4zBYy3PO3tzJvPXT7br0SyEJZ6SNUZi0VsAYZnLUKksgZEkU7fddi0KEWuRf32Wck8XRimDNwmpGyrQleHtZ62BGKVUlFAdh/522ZYrAhP23jBnp6OWmqJIxMzRCX8IVmhAF5hpNtyg3ZsskOQJRAT4D/HlGyrjHt0c0xns7BvrHoMeyUKZHz/koxjM+RQvvOOamnrGf7toAJW0WavX+myXVtsj1mGhRLghG29eqXJ/3YQG0DkYSfJfx8clcEJRSFIBDwLnNTH2XZfo7F2MlYKyTplaC7YqMUX9T1jABVuU2B5jDhnZnCvM2r9Km/TbQbJS6c7WK6TY0+b1WWROpWk1KMaXbhDW7LOOazIkDZCMIKvlzUmPU53qUW3nPraiMhspXMQ9DJVJwhiwGQ5kIzumoz6GJGJR1i2nxtqsWJOCpaB8RqUNKJsVhkImxEmZ1m5wRMQ9VDag8Am+/Aj6YhOMv4ZOcUcbHEohcwX4CMWhnUYQtrgotrAkhPUQcPGIfgkAoqpgHodzuQbBiUfgUfOhBOPMFeIr6w1ez9VTSfqCs0JUwD3Hwqf5fGHujmepewQw5tjX/rYUQCGC8pSQ4RcQhI0Qsis7eskYkxrAp7Zo9rLZ0IEBhwajQevgsGpsRDmwqEidGkTa1ON+wGAR1lLXMjswMIg4ZJeR3aO2k7MHvEBKRTqh29cA2cUb24m8Q/CLikBMiYlHDvrnvg9ddAx/HQTeiEx5Q6i9eBV+lbsEEsSSBZSBikBNEHHKMUqpwP/y398P+e0BTN9Gx/668vZMa9gv8HXYz+H+wXSvDW0fhw3RrcQiZQ8Qh7wTrbKwOJw4e3PDDDHXLo92DW7DlCtTf/AGBj4AkujlCNsli+LTQHRVsxqPwzpD57i682jgZxVoYEDI18UroAWO6Z2X6dqrTtAW3iDgISVJsFzIt5AcRh8GgiiwCLCSMiMNgkP20cULuEIfkADDHjT99nBd99N8pf8lCfp/PvfpXGD8uS5QPDjKUOQAoRWk9p79/mvVexX4nz9x1QO98q+/rISSDiMOAcK46vFBjm7Ml45twndaZzUwldIn4HAaEszh10ufxR1g8LsIwWIg4DAgbOPGgz+Ofw9KS72sgJIuIw4CwkROf8Xn8bRx+wvc1EJJFxGFA+Im+8msjLB73dfxt1O7yfQ2EZBFxGCB28KwXv8Mmlk79gNfO+D5/IVlEHAaIbRx51sdxt3L4mNYy4WrQEHEYIM7l0Ld8HPcsTnnrzgjpIeIwQJzDyc9v5MQJ18fdxdMP+T53IXlEHAaIO/Xb79/KkUWXx1zH8vJu9t/i+9yF5JEIyQHjlepHP3uaC7e7Ot4Ii6d/rnfv8H3eQvKIOAiCEIt0KwYIpZjIUhkh34g4DBadDCe6LCPkGOlWCIIQi1gOA4RS7RPNuiwj5BsRh8GiEz+AyzJCjpFuxQCg1MqiNQWtqSpFSevGFPEuywiDgVgOg0EBmAzNb5jwXEYYAEQcBgD7oBaUYsL6Amo+ywiDgYjD4DFK+yXwXJYRcoqIw+BQwcQelFrkcnRZRsg5Ig6DQxnzJs9KGSHniDgMCNYXcAMtfAAuywj5R8RhsLiX9j4Al2WEHPP/AUXJFbmcEglrAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDE1LTEwLTI0VDIxOjE5OjUxLTA3OjAw8OB4XwAAACV0RVh0ZGF0ZTptb2RpZnkAMjAxNS0xMC0yNFQyMToxOTo1MS0wNzowMIG9wOMAAAAgdEVYdHBkZjpIaVJlc0JvdW5kaW5nQm94ADI2M3gzMzMrMCswslcvKgAAABR0RVh0cGRmOlZlcnNpb24AUERGLTEuMyBTBqy/AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(filename=\"images/water-wheel.png\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "**Figure: The Lorenzian water wheel.**\n", "\n", "Imagine a wheel which is free to rotate about a horizontal axis, as\n", "depicted in [Figure water-wheel](#fig_water-wheel).\n", "\n", "\n", "\n", "To the circumference of the wheel is attached a series of leaky buckets.\n", "Water flows into the buckets at the top of the wheel, and as the buckets\n", "are filled with water, the wheel becomes unbalanced and begins to\n", "rotate. Depending on the physical parameters in this system, the wheel\n", "may remain motionless, rotate steadily in a clockwise or\n", "counter-clockwise direction, or reverese its motion in irregular\n", "intervals. This should begin to remind you of the type of behaviour\n", "exhibited in the Lorenz system for various parameters.\n", "\n", "The following are the variables and parameters in the system:\n", "\n", "$r$: the radius of the wheel (constant),\n", "\n", "$g$: the acceleration due to gravity (constant),\n", "\n", "$\\theta(t)$: is the angular displacement (not a fixed point on the wheel)\n", " (unknown),\n", "\n", "$m(\\theta,t)$: the mass of the water per unit arc, which we assume is a continuous\n", " function of the angle (unknown),\n", "\n", "$\\Omega(t)$: the angular velocity of the wheel,\n", "\n", "We also make the following assumptions:\n", "\n", "- water is added to the wheel at a constant rate.\n", "\n", "- the points on the circumference of the wheel gain water at a rate\n", " proportional to their height.\n", "\n", "- water leaks out at a rate proportional to $m$.\n", "\n", "- there is frictional damping in the wheel proportional to the angular\n", " velocity, $k \\Omega$,\n", "\n", "- $A$, $B$, $h$ are additional positive constants.\n", "\n", "We’ll pass over some details here, and go right to the equations of\n", "motion. The equation describing the evloution of the angular momentum is\n", "\n", "\n", "$$\n", "\\frac{d\\Omega}{dt} = -k \\Omega - \\left( \\frac{gh}{2\\pi aA} \\right)\n", " m \\cos\\theta.\n", " $$ \n", " \n", " The requirement of conservation\n", " \n", "of mass in the system leads to two equations\n", "$$\\frac{d (m \\sin\\theta)}{dt} = \\Omega m \\cos\\theta - h m \\sin\\theta +\n", " 2\\pi B\n", "$$ \n", "\n", "and\n", "$$\n", "\\frac{d (m \\cos\\theta)}{dt} = -\\Omega m \\sin\\theta - h m \\cos\\theta,\n", "$$ \n", "(where all variables dependent on the angle\n", "have been averaged over $\\theta$).\n", "\n", "Using a suitable change of variables, these three equations\n", "can be written in the same form as the\n", "Lorenz equations (with $\\beta=1$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "## B. References\n", "\n", "\n", "Gleick, J., 1987: *Chaos: Making a New Science*. Penguin\n", "Books.\n", "\n", "Lorenz, E. N., 1963: Deterministic nonperiodic flow. *Journal of\n", "the Atmospheric Sciences*, **20**, 130–141.\n", "\n", "Palmer, T., 1993: A weather eye on unpredictability. in N. Hall, editor,\n", "*Exploring Chaos: A Guide to the New Science of Disorder*,\n", "chapter 6. W. W. Norton & Co.\n", "\n", "Saltzman, B., 1962: Finite amplitude free convection as an initial value\n", "problem – I. *Journal of the Atmospheric\n", "Sciences*, **19**, 329–341.\n", "\n", "Sparrow, C., 1982: *The Lorenz Equations: Bifurcations, Chaos, and\n", "Strange Attractors*. volume 41 of *Applied Mathematical\n", "Sciences*. Springer-Verlag.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "all", "encoding": "# -*- coding: utf-8 -*-", "formats": "ipynb,py:percent", "notebook_metadata_filter": "all,-language_info,-toc,-latex_envs" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "meta-9" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "333.636px", "left": "10px", "top": "150px", "width": "165px" }, "toc_section_display": "block", "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 2 }