{ "cells": [ { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Lab 6: The Lorentz equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List of Problems \n", "\n", "[Problem Experiment: Investigation of the behaviour of solutions](#prob_experiment)\n", "\n", "[Problem Steady-states: Find the stationary points of the Lorenz system](#prob_steady-states)\n", "\n", "[Problem Eigenvalues: Find the eigenvalues of the stationary point (0,0,0)](#prob_eigenvalues)\n", "\n", "[Problem Stability: Discuss the effect of r on the stability of the solution](#prob_stability)\n", "\n", "[Problem Adaptive: Adaptive time-stepping for the Lorenz equations](#prob_adaptive)\n", "\n", "[Problem Sensitivity: Sensitivity to initial conditions](#prob_sensitivity)\n", "\n", "\n", "\n", "
\n", "\n", "## Objectives \n", "\n", "In this lab, you will investigate the transition to chaos in the Lorenz\n", "equations – a system of non-linear ordinary differential equations.\n", "Using interactive examples, and analytical and numerical techniques, you\n", "will determine the stability of the solutions to the system, and\n", "discover a rich variety in their behaviour. You will program both an\n", "adaptive and non-adaptive Runge-Kuttan code for the problem, and\n", "determine the relative merits of each.\n", "\n", "\n", "\n", "## Readings\n", "\n", "There is no required reading for this lab, beyond the contents of the\n", "lab itself. Nevertheless, the original 1963 paper by Lorenz is\n", "worthwhile reading from a historical standpoint.\n", "\n", "If you would like additional background on any of the following topics,\n", "then refer to Appendix B for the following:\n", "\n", "- **Easy Reading:**\n", "\n", " - Gleick (1987) [pp. 9-31], an interesting overview of the\n", " science of chaos (with no mathematical details), and a look at\n", " its history.\n", "\n", " - Palmer (1993) has a short article on Lorenz’ work and\n", " concentrating on its consequences for weather prediction.\n", "\n", "- **Mathematical Details:**\n", "\n", " - Sparrow (1982), an in-depth treatment of the mathematics\n", " behind the Lorenz equations, including some discussion of\n", " numerical methods.\n", " \n", " - The original equations by Saltzman (1962) and the\n", " first Lorentz (1963) paper on the computation.\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "\n", "## Introduction \n", "\n", "\n", "For many people working in the physical sciences, the *butterfly\n", "effect* is a well-known phrase. But even if you are unacquainted\n", "with the term, its consequences are something you are intimately\n", "familiar with. Edward Lorenz investigated the feasibility of performing\n", "accurate, long-term weather forecasts, and came to the conclusion that\n", "*even something as seemingly insignificant as the flap of a\n", "butterfly’s wings can have an influence on the weather on the other side\n", "of the globe*. This implies that global climate modelers must\n", "take into account even the tiniest of variations in weather conditions\n", "in order to have even a hope of being accurate. Some of the models used\n", "today in weather forecasting have up to *a million unknown\n", "variables!*\n", "\n", "With the advent of modern computers, many people believed that accurate\n", "predictions of systems as complicated as the global weather were\n", "possible. Lorenz’ studies (Lorenz, 1963), both analytical and numerical, were\n", "concerned with simplified models for the flow of air in the atmosphere.\n", "He found that even for systems with considerably fewer variables than\n", "the weather, the long-term behaviour of solutions is intrinsically\n", "unpredictable. He found that this type of non-periodic, or\n", "*chaotic* behaviour, appears in systems that are described\n", "by non-linear differential equations.\n", "\n", "The atmosphere is just one of many hydrodynamical systems, which exhibit\n", "a variety of solution behaviour: some flows are steady; others oscillate\n", "between two or more states; and still others vary in an irregular or\n", "haphazard manner. This last class of behaviour in a fluid is known as\n", "*turbulence*, or in more general systems as\n", "*chaos*. Examples of chaotic behaviour in physical systems\n", "include\n", "\n", "- thermal convection in a tank of fluid, driven by a heated plate on\n", " the bottom, which displays an irregular patter of “convection rolls”\n", " for certain ranges of the temperature gradient;\n", "\n", "- a rotating cylinder, filled with fluid, that exhibits\n", " regularly-spaced waves or irregular, nonperiodic flow patterns under\n", " different conditions;\n", "\n", "- the Lorenzian water wheel, a mechanical system, described in\n", " [Appendix A](#sec_water-wheel).\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One of the simplest systems to exhibit chaotic behaviour is a system of\n", "three ordinary differential equations, studied by Lorenz, and which are\n", "now known as the *Lorenz equations* (see\n", "equations ([eq: lorentz](#eq_lorentz)). They are an idealization of\n", "a more complex hydrodynamical system of twelve equations describing\n", "turbulent flow in the atmosphere, but which are still able to capture\n", "many of the important aspects of the behaviour of atmospheric flows. The\n", "Lorenz equations determine the evolution of a system described by three\n", "time-dependent state variables, $x(t)$, $y(t)$ and $z(t)$. The state in\n", "Lorenz’ idealized climate at any time, $t$, can be given by a single\n", "point, $(x,y,z)$, in *phase space*. As time varies, this\n", "point moves around in the phase space, and traces out a curve, which is\n", "also called an *orbit* or *trajectory*. \n", "\n", "The video below shows an animation of the 3-dimensional phase space trajectories\n", "of $x, y, z$ for the Lorenz equations presented below. It is calculated with\n", "the python script by written by Jake VanderPlas: [lorenz_ode.py](https://github.com/phaustin/numeric/blob/lab6/lab6/lorenz_ode.py)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgOCwgICAgICggLCAgIDQoKCAgICAgICAgICAgICAgIChANCAgOCggIDRUNDhERExMTCAwWGBYSGBASExIBBQUFCAcIDwkJDxQUDw8UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/AABEIAWgB4AMBIgACEQEDEQH/xAAcAAEAAgMBAQEAAAAAAAAAAAAABQYCAwQHAQj/xABjEAABAwICBAYMCAcMBwcCBwADAAIEAQUSEwYRIiMUITIzQ1MHJDE0QlJjc4OTo7MVQURRVGJkw2FxcnSEkdMWJVWBgpKUoaSxtOM1ZaLBwtHwRZWytcTU4Rd1CIWlprbk8f/EABoBAQADAQEBAAAAAAAAAAAAAAACAwQFAQb/xAA7EQEAAgEDAgQEAgcFCQAAAAAAAgMSBCIyARMFEUJSFCMzYkNyFSExgqKy8DRBU5LCBiVEUWNxg5Pi/9oADAMBAAIRAxEAPwD9hoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIsEQZrBFxHvEdtcOPE7xW7xVzvhHkO1FF8NkV5EdzW+MR+WlATq90oW/ks/5qnv8Atih3Eoii/g43xyzfzQ/8k+B3fSpP89O/b7TNKLNRHwU+nclGTgEinclO/lMTuXe07iXRRGOY3usG/wDJflp8MMpzzCC/KYvfiY+o7iUWa0gMx1MTHNc36qzWiFnSfFNmiIvQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEWCDNYIuWdPYNuJ7lCc4Q5Dp1qLNdG66jjsqUn1ebYsKAKXaLiGH4ht5x/nvmUjFCxtNQ24WrP8237YI7pOFluO/jkF1N6sf/ADXfEgCZyGNaulQ2kGkcGM3HOlBjjrxUzCZePi6LrlfDTQi87aWWaptdM5Rf9GWecdvXS/3qjf2jfexWL42khK7cy0wm+KGGeaT18g4fcq/BNcUVNpohNd3xpDeHeZbboX+HjrH9wLf4Y0h/71MmAuiKms0Dw83e9IW1+Z1x4T/iAFT9zd5bzOkJ3/VlW63SP8PkpieS5Js17tMSptZ2kYuMkG3TWfPDlmhk9RO3XtkB2Qre2uC4Uk20urkzw8HH/TeZ9qvO30FhJZxVriHiE7xhrRU0pnKpnM8Zu7J+pS43tdRrm1bVteS5q+rHPTR9O1Ds+1y2+ex9NbHfyerXUuGdbWOrjbsG6xq5hz3srhk8nrG82oZzhyM00iwY/XTEs1t6JiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIsEGawRctymNZTi2iO2Gt8dVznhDIYXKe1lGt1YiO5LW9ItEGA6rs+RhcbwW9GFZ2mDVu9LtGd3XeIpFUwplPdJDkKI0n0hiRh0JLJRlHVy2NpTGQ5OpCLpqqEvulZ3FJbrSMcidSm9K+vaVv4vljm/KPjyaLq0a0REF7pRiPl3F9NqafnKcXMgF8hj+RCtqaPrW9y6VrTXaIevXrwik3clPj8jA2a+WJ+JS+j2h1ujuzRRmulO5Uo7uEzSflTJG+cpqXJYxrnle1jW+E5Q3wuYle049XM7mefdi9D0hlXO7FOMMlgUdLvkVnOyAtd4uNcNLC5/HKkHLTVzbX8Hj+wUiC2xR02AhZ+SxUznJPGEXFTSeP4I5b/AMiIaqx/dI74rfcPUh/bqT4cPxsScOb4pP5ip733GcUWLSGnhQ59P0bH/h1n+6eH4ZXM84Iw1I8Ob9Zv8hZ8JFXuvane+4zgRJon0xCK17fqvWUgDXtcx7GvY7utdzajJWj8N+3lNa7rBuyyfrAtFYU0fe8jNb1cj9sru5J5hCXFF10CGKuO0Sz2wnLywUzIBPOwTbr1OStVdL5MbYvsTJZyKXGPvLYTz/TW/wBNuvKqdj34dHNHKY6MSvFTM5snmTqa4q/kuV0LoTRwa4hmvbR7Ktex1MTXNfmDesjha6mGrcTVSJGicmLV0iwva1tXYyW0v+jpXmK/9nn8zu9nmlOaJaTxpNCUHiHJFXCWKalWSYxPKi+9U5w80GygSBriZieDxekGpYElr6NeyutrlsqoiVHcNzjhbia7ljXPwnR1yjwQ4ppFpiSWva17HYmuW5bq7M0xERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREGiYZrWue52y1R9ojOc7hBucdyW9WJaNecVzegE/1hVNrFX82eSnlMVEvt2kSiktdpK5lGPqOZcG8fA/niQ/8AWHuv7ujS68SXkZabY7DLK3GaRTj+C4Tq89+cl6IX91KKwaO2WPGCGLFHgEymqlO7q5O9LxbR10OK5r0dskaMIceKJohNpydXLJs6yld0x64ab1Y3K7aq5MdmbJ1cmnNj8/1C13KcV5HRYddTqcRTdGD8Hn12QIAAMws1YeXVzucIRZp2ZLdsXJCsVKuaaVXhBqdzEztcPmQqSIfVxMa57vqrDA5/KxUH4vWLqYFtKYWtVEPtRlLJoyCu5b8LfFas+Bip4DVvWav+GigwWaLBW+XQEeFte61qLNQwgOV8NnxbH5Kw3re47G36y7Vgo9iPpHC/KfRzCtxUdyhkYot1sOHjhPq8PxxSP9wboFPnC11ONaH1e3lbTPGVE9nJOE2q0XURaVwV2m7Dhu5wfnlEaYaKsPVkqObgtxFTdTBspmeFuT/SI1epXZdbWwlWnE7BIbyTM+P8Buvjrba7pidkHbgkt8HrKdcFaYXJTj7URohpNUj3wZwmxboJlHPDmVwHH9LhV+UR/d9xWwirmm2jrJLBuaV8eYB1TR5I6b2MXuemBxbwXx/qWrQvSAhs6NKFkXGO7LODFXD4WVLD10Y3Er1SRlscJ2axu5dzjer8spQb21pipyUeouDun5HRv5Hk/Irny89PP7EOM00iwWa2piIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIsEBR1+kOa3UznHvwNUhWqiIj8w5H15AthvnfjWW7d8pC6fpd0CM1jGib4KjtMr6yLHfIcxz368oYW01klSjV3EcP1qkrqU2qJa2cMuBZT+OHbXljRqd0Z7n8ul18zzI/wBIWyuEYJ1pbQaxPAJ5JT824yX0kSi+PJ6oX2YPMjp8zV1X6YWtWxI1cJybTidQLrl23ie0QnFrxup3G6+WXqVosMCo2ueatKnftlcs91i6LfBjCCNrGclvrCFW8YXa8b9p3gt8RYAY6rs138ldSrhXluUs0WCir3fBCwsdied9NbI4245BFq8hKqEuGk0NlXMqXGRvRgYaST1EdcLbJMNtTjVEKurtWOSrKbNOnmc6b+LUpWJwUTcqKDU1vghYvJ3VVckN8uLhreZ1eatj6N8aRIDH/uzl9x3rwRW5vpjv+4UgQx/CyWflbxctLkz6eH+Sz/5UPiuvpqV4e61pGa9U7oLc/wDJkmH9wsa3mYzVn22Th1asQCilf5q3/CQ/pof5v/yusJi17mWVv1Xp8V19VRhCXG1qt2kMQtcsRm52rm3buQz0MhS2tQlyBDLhZMAz6uYz75cnApwOOGThIPo8h+89BM/bfMra7q7OL3fHksyKNsl7CbE1mJhR8sJG4ChUkvJwS5OV4XNriZyfCauW5wBma2tK6iM22EbzgSqUXKdjm1xs5PhNWKyGH5F9bhstzxYgHpgki5bf1b4P2dQ+m1iK+orjAoyl1itrUeKnfcbXv7YfyBvZk1VUveYDn0YeO6jZIttjvif5E34F1Wq4MKNr6bPgOb0gy9Sr6ZpSi59GLyKSAMqO52B/gurvGF6UJ6eCcWr/AGV2z4bXscyv8l3Vqn3fDBnNmN2bdcDDDJpxUHFuXHweZ6bmSfkhV6WicPOKpxWaQ5zHNfzjNhy7VFTt2RpvBfuX/tlKrHT7fYhBmiItSYiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWawQcl2kNYMj6+CxarFGwCbr5Ttty59IdqoAU7jy7Xm+PWphZaN1spKec1b7Id1LHiErH77K8cOMyurjlSK5AP2voV26LWYcaOCIPVgCKjMTu69/TF/v8A5ygJ1OEXeODobZG4a/8APp+fHhepBw7+kKz32XQYiG4sTW7LfHL0K2T2xaYI4NM6S53Qxn5dOLnJPx+p/wB6liVxOweC3bctFtjZAGs5VWs4/KFXVEZqa3xuW5YftLpt6IorSW7ZQ8TGY5D3ZIh9cVboQQnNo0hu7mupFisaWW9mKjXV3YB8nON5FarZawx6OI9ziyScbzuZ2wb/ACfIr7Z7c2ONz31zJZXYykpyzl/9usjvLR+GmB8xzPRgEqbpy+nUp47pPtyktpRuc5+J3Jjj3hFsdGO+nG/IH8TRt3nrlV9KNLIcJ2QIZJd0Jt5LOcrTrpp/k4Nn/a5tRLNDrpOpQl7mPYOvyIGxGH6H9tneiU66IVp9KJ2/VljBI3PS/R0daNrIbJJyNwwtx/w+tcP/ANVovyey3J7fyIY/v1Zrdo9ZwUawUcb3N2OQaSRTvCX6tiK7D6tWd47eiq4xeef/AFUj9NY7kxv6ET79dVs020cLWm/dDf8AFnCNCqz0vM/1q9cJf8cR389Q16s9qNRzJUVrcXhODlp3uh29LP0u0Yj4KVEVskDqcl2rb9OsYsmnIE5zSfRz/cqjV0CmxdZtHp7g+HWKTeRieg+f8WUt9m0/iFdwO8jbb7izxiahv8wfrvIqicKrEvhravpb1wuVtBIq120KULkkbsSA/tgJZ7w/HWHKa1kltOLVXdyhdcD9ioBulsWlcDjlM5vIkBjGLXzJtwtl0vAzsaJ0K5NK3bYUcbLIAvXA4QoQ1OPy7HsKZy3RivaKk2fSyY7FHLa5NZgm0zG0dHGMnlQb9SXw5cP4JJ/S4asnKC2FUk0PZrh6N3J8moa4toA9JHFSOd+AvFyJHQmWJ7zJc1zX22U38l4SLinX5jxkBIgT8Lm5L9zmf4dYs1kKZLHe7cA4ZEWQ3GErChe3ySg+x9czOESHKdimwjVhHrx6z9RM9MDKN/KKuHR/TWHl5UgzhlFqC6pglHr6ki5bjdYo7hCuUeQEgJWVaZNWv6Z1XfBZvX54f0lbKb4zQnROM18OFr2uZXkuXNZTOqzC/nGbDlIKLfsH1+CX3qpv2TjJTYlFmsEWoZoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLBedRCYMUvF4LBKbUPo9xvkv8AnLgTTS7cHhz5lNWIEOUennAhVOi4qafchOxhXG243GtKVrOuUp7ePj4LC7QB/h/aqVulMcmIHwWZsl/uALLQW2ZEGDDrTmocULvO0DvkstcUiYbXTVjFGb6Dnvbmqp3dWyCSOzE9rPF23LtXFF43Ef8AXwLtUKPcpYKsWatTyCT397izY0f5q9fL+6/krq00kEyaBDXVIkP4Mz6mdz5vQhz6/wAldL442MDDY3UOjMH5AgK66faqyV45ScsmRXZJSmsr9gTfE8sqtp1pC6M0dut9M27ytbteChMj55Z/1buimrveRAFMu0lu7G3AJrecJ5EPniqt9i2ykpQt7uG3Nluq/i48A/BCLxurFx80vaa+1Ap3S78uCT0G0NBDbWRJfnzyvxkO6mYQhf8A3CtTY5HbRXOY3q2rOIF2txi847kt6kSo930xzXEFDdrjjZtyWvyx/wBO5mPHUPP3I3Tnct8+8RRbqtaUfy8pjKvJ+qPRR37qCcpkMjW+MR4Rf31XlgrtOM0jba9o4vhScHB4OV5E8jfXDz25Vdl20TtmXf7pM8PLhB7VH7Ayh3Jy4xVXdK6P1334/ZXver3rsosGIxmQpJmiY99cl4ai4vL6+JcGhGms24VkR9UaG4TKF3fbuYI6pQJc9mxHuN7ihbyn3CLw0bxdTkZC5bFGis4Q/B8NhK/Oe2J2uSP+g8ytXThLOLNXraZW5VWf53o14lWUNaUlXokg1OVGabhGZ+g29RWkVuhy47YgdHp7yVZjoWrAW6rPTzj5yktCb08gMVph22IGj8D8W6IDz8GP3vIVkZo5NJgJJu0l9dWvDHEKEP8Aa/1qqHWp0emqtjPY8ztGk+kcZw7NcwW5oya2R5Uo5ia+ojn4OD2ytz33Rj2MlXi2iqxmy7g3OemkHWd70BtsgRY8zNcf4iGmGJX+9V7sbsg1HItk+NDFPivphkcGD20LoZH5z1qu7+nlHGRfTO359XNuvZDUYOXXSqFwsQi1YNorcDMF1PPrui3kLmjL+7TU17MeFwrNme4VjtU+A2rXtEBleQ9rY/JL5HiWu3SgAlFDRj+DyO2mNyTbErpw/fKGn8Sq6wwl6PyHSm6XzI+tGDmErxA0yiO+qWPbP/T5K7o/wxtuFdbPKc7YxPh4MHnuDnU7KkW13OgC7zkb/IXG+1WN3cjwKO8ZrAjIqZayjknjNBzJV9Cdsg1ut5qE1Ru155h1eXoO+AKP01kxzx5YJuj9xiGeIrKSGwgycsvQGz7fndLqU7M0Ni1C6sUkoD2sxsyZpiDGUPkta32qBc3DHIiXhzmuZjy5sQMn28fJU4dasl2UsVd7Hd2tcmPFLDuhI0xwmY43C65g5XMn7RneVVouI7sNrn1rHmNZTG3FTg0hUewwjMkXe3z7PEnjHJ+ExuDk1wiutHGO0QJHlwHr6Zd8WJbWVoOBcrjZjcikY9TUjf0G4bn1KnqtHCcVPe9y5RtKxNozhYZEXX4Rmbqvpw7pWKOdjqYmOa9rvCaqRGuN4E3U+CGfDbsY4hsqb/QpG5P65arLWzne6luOSFPpx1A3Nt0kfn7ZI/ZKmuEsFucJPQEVYrcbgDikhrJDq56KzWX00P8AYqatVzAZmOO9j2/VXsJoTpk7VmsEU0WaIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwf3EQnccq58Dqi9F+bc7xjFeoTstsq+C6N9Im2uH/Ee5R8/2OtTejXMj9L75QfZK462MXj6QQPYBPI+4Xum4RU08Fvr8blC6I17WYWvKJUpvXmUjcn4RGd4rCvXFaWYYYfqwxe5VF/Js9DttvNtXUsAdxqzqrqYbIqVfPqfPDTwYsch6+dkOyG+yEdbbiXXQzqcor+CtWjR1+st1keNIyf6OFbWt1vhsd4DCmcvLN98Y+xn/AA1D0/BSVcLZYGd7hbw0/H/EAPvvYr0clWOfqpxDD71ecdiU9Cmvt7dXXU00owu+eLH3IP8AwhX3SuceTnQIrnDhxtuZJb0hP4NB96rbpttlP6sfRDmx0i0nJMkPt8Vr6xBsq8rmkqOkqnFyj9DA4vSKhPyH0CWRikRWvwQbcPdjnF+mZH0bqs7zqlNMJLRji2CE5ryH7anOd0FrBz+f54+5W6yXOLbx0uU+tZF2ma+CxW13zxeDhb0MdNPpZ9N0o5Sm4uq8Uz+VVth6/wAjqu2i8hw+FXqcG3xqUrstrjaKvxZXCN162lVwQ7RV7Xks0C+ScXyiZeptujv8tkRziXJerVcpB864SGcOaDOpGY/LhWSL102Q7mfNB3qizxLO2rZBmSbjV1O+rtdTWq1foULnD+pr+Nb7LtLpobt0/wCBZo/Dbbo/L2w/jT7NDLy0bambd5DqFz9xehSRD/Qrh3wuZ90DUmGdHc0rWbMmKH4OuYMjr4XMyPQl9Eovg1r166gtIqupg1x594spPQmkAyZHplITLvKCOgjtfdYFN5wKfkMu4RYe/LLdI+5vHd88qOuqjqfTj/2bZeB4Q3bm+4BkUdEnhkjFIIzcXMFe1532O6A5lXnQC/Nk0Mw+aCXHI0MmJU3er+iMD7AZuteQl0qixtZ4JH3GxS6ayjw8H1k18nab3+NvU87r3nzpIkXGlY91t+FxBRi8GINn+krX08M55HfGT0W5WHU+F9rfyghRlV8qW2H8b9Kks4dWIY2ZjdtuveLz3ssQ8mkXSGCxrZEPnR9fF6cKj7DZrrNEGW24M4OWMIzXEmTCewt/BArTP0DgsrlTrxEA5zNpzY1sF/5hnJXpoQ9jqV9aoy5LyPSG3OoKS2YBsWYIT8TjB2C9AuHSTSiC4OcOfD4ZFdnM7ZDrzQc+H0wMX85eP9jqHZG1uMCRecLosmrwVa+HgPHPq1U5jO5+tVdIzNHXZba3iezE3HskNzvl9wpTjCM42ZK56bpGcq8ZvWomklvI1tWSozsTMeHOCup7QPbxNG9eG2Ky2KtCiffmicIxWUaVtsJiF0P+kIKnoegLH7cG7W83iubGCMnr7OcKunpa/c97cHo/wPGo59MpjdvHs7tRWjcF7ayQCkEZUEgrKUc3MHln39P71U/gHSEO0EpS6vBDPzMfoLwD75R0TTifGOd06O1mNgn9tCNC/Bz8fOCubDSrYV7OS03F5g3WGUg2F4VbpMDdbGOsc3Dm+wz1azy4ZqODIa2uvujkBXnOkum0Z5LDKdR4aiugqVKSgiRsmbDOAuVNC7Jdz4V6oMgCM6Mo/GbvBrZ1hODNOCrj0cqxxqW+UWJq5IufheoXBeqtc1rL/aaEY3ipMjs4QIfhZ30uD/ErCOA9pjOjlczYFsu3g12fCrm7MgThfW5wao0esxjjNT2VTgRrkFjS2uY2725222PKk9usF9hunyj0/rVvhy7dNI7KqaJdRcprm8GuQPPB+UA9aJd9y0YbV7pcIxIkqtNpwWUfHP58Hcke8ULd6gLlxL7F4NJxV4PNC+rBZrsPHBma82DJ2eZ94t84RtiRnimW3yTHrhuY9YfBmibu/Th+TqzgO11GuY7W2vcc3w1Q6XOdC4ro58q3U4vhAYu2Iur+FAR/B+LOD4u8UnwEou2bS5pIz643RMfa5PKQj/J/dKvpDtrdsltWaibFeRGa54sTXNfgeNzMsgS/ManzqTRHDFmiwWaICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaIMFgfkuWaP7irs4SOqI0Y5lvpffKG7I3PaO/8A34X/AJZPUzou5uW6nilKonsm8VLO/wAS/QPb58f79e6XhFTTxTukve0z82L7lCcw38gSz0h440rzJfcrQzjjDd5ET1l1TV6UozuIjO4i21KuqsaPO7WO7wnzJ7/7YdfL5Ly6XE30e3EJ+oUhy1aLs7Sb+cysX9NOuHsk946Q/P8ABpfcVVf/ABUmf01I3sXW11LFFFjewklm09vOD4QpDTcBARYUG3AaR3CBNa1zuLKDzxirp7Hrf3ttFPqCUhfqa5Vv/Bmv9wrIc3nifXlF4ZabDUTrgyLmTJk68FYQhH7yVwDn/wBGz89SVvs7o8qZcZDuF3KKKKHG/pLxP3EKGD7OHcKa7EVKvNbX/YJM30twPnqGvJ3uCM7Hcs9+vrsX2ftCD7c4Fp662dULcXK8MohqdVu9/wDIirmV9ax4In0kVfIK6pHMzPhS5A7+vE3rrdD5kQelNq+ZTd1kwrdiMZ7iXF7MdcXbFyJ+ezf+z/MhXNowwUGHcrnXbdG7WE4n2fcA9vnmVC0F0dLLdwyQx0g0oxMoBH7o+Rz0yd/q4PtS7pY/DvCPi4/F6qWz/DfbXylDZUh39nq7/CThPyvg2pslwnMMTALrs/nldZegZZA/hBjxta/fZDX99eW6mzydxzweaXqjLLYYwTknkizZVR5ZXuEEpX/Y4UMPMh8iFeZ6UaISoTaXWkc0fR4snHKtTC6nxRH+XF+9Ct+vq0mo6Rjoo9q3p/Gpo1U6uu/gq8G426EckyPFLLC8JQ3Abu2ZJIvTGOf/ALPuMM/O9aLJKrFYYd1qU1iIYMfAwl2gvb27j64IT8zwY3PeuUrpvaowWDlRWBZDKzA7L71zcnceuBnw/wBICqRF0mLSJGlQhFeSxSBMHKN09rPv4W556RuNyoeE566rrVP+pqfGKaow7sIr12IbTFqeVb5VZMgdGCuEZpCmGPgsg3bociP1J17BO0etUcbSsiwAuZt8yEeYvCdMnxotxt55E7LbwwWZkvy8yBdQ5+46bn16Rba2p9McTRyfNM7pjxt3m+fvB1gj0hD9UnPrnfbDc471pNbo19hyhT4lI8qMWEbDIDljLk54Pcf1q0wdMrVTZpcIzsBivbvuiXnHZbfMZFhT6WWFF4HPEfE+WHVz3TBjgXoE0t8xGrWBaaNfHx4az5ZOY/QVddOqVC++M8q5ebfC0jtPDJTWzrbUcmOIlO2Q87zCmT6J2Y9MdYEI2LpGhDx+njqmXRk7hUasjR+1ma8MoLRgmBJj5g/ykAl9lwrRSuKVo3coROsiBN7+znVk+1JGPWxYD6DCZVtYky5RHeC0cwxR+okZyjZAb4GVH3sK4UdGksq17XW4j+9/OiWmzyI7qtZa9JDEJip2vNeGTg9BIyjLonXS6ikRazYDDUoGXTNtz6kJRna++4CZ37RYelO/ZNprnL1KV2So1nqyMQ8GRZpvwlC1kozgwib/AH2/j9pyPTKdNoldI1c+CVsofjRcmFJ/jhd5z/Yrt040hhShW8EcwDZl6tDHBd3wzDIzy58OR5n+9T8jQyoauLZ5DoL9XMUbwi3P/Qfk/ocK6UrJRhuIzigtHtOa4nVlie9rWYHlCEwyx/z61yN9H9DnCXoUCUArGlCQZQu8Jr8wb15zJnQzvGy+R+ByqPwxpbS6x1L4XAbm3vfzJlwyoFxgkJIpWuVxVrLjgq+hdf8ADdsD/i4fH+BZKa4TjKSfJ6VwB49qM7Z6h3N+gW9hgSGEAUbXeA8JGKI0S0sEerRFo0UqrM5rceYOQLroR/lEdTc+Ax+1tMI3kkbzg1TjOHFTPp6ZKqeNKg1q+PmzLZx4o9XZkyL+ZfSAcncqPiQHx6fCOj+GTbi6zPtzXbt/lbU75PI8jzXmlc7bPfR+RIbhN4Lm82dQd5tBQEJPt1MTq63nhN4hyvLA6mftelW2nUxsU4YvgXhlspcLabLk03dXOb1POw5glMWK8tLRw30ypQ+cC7uj/wAlVSXGq+vw5YsLzkZ2zEdqGy45NNWUf6PcQ8alKPHMCG424uE7W1wOc3Br62JNB/u/6rXbHHdFbCeS4IonR28tMx2zlmY7AUTucCVSyIyhizRERAREQEREBERAREQEREBERAREQEREBERAWCzROogrExrXymN67GojswEw298ildbosmBM/HweYBymh11S8Pjh/uqvmm1uz4U+H4R4kkDf5QcKp0s9qFKUmD1sfT524FC6Lvo6EGnkcHqFloRcs6FAk1rrzYcV9fO5O+WWi/E2SJ3gTCs9fv8A79eXcmmPBLx362tr9RZrRbeQ36uwt6to4qVU0bZ2vKZ4k+V77PWnTYGOPdRU6W1m9zVdlq4pN1j4eVlSm+nDkfcLbXC50fXyShLFcvfP57N+FCXssQXYrM19rs7/AKglLaQd9RfrBKz20dU/sFG/eskR3KgzCgd+jmVy0t4uBH8WT79S9bzxP9c5PPuwtXahVpyvgMA/SBdqVdlObwWI3wvguL//ACWPnqwdjxzQzhgq3DlT7xb/AERz/CEH2BlFXm24WuitbvGGv1pb52R+/wBB/wAD7de2fifuMvguy/8A8k1P7KpnM0fhtp0ty2v7R+3UlpvZrpbQFyTmySigW+NKG+GPLjADqyT8I33Xm3KjdP43CNHrk0XKjT+Gt80cxz+4nAVn7MGl8Q2jlqlVa6ppPBaiG345QOeD/Udb9L18vC6fZ3J5/wAL6vSzn+kMY+t+abtZ7xIGW9w4hWQgP1vIEpSFCWnTmLWudU/ll+luwb2QmS7EcF0c6QULWQMNK45E/hHMB/ONrJXhvY97KhoUCbaWxwGZIzWYSOoPgr8nIzftHg/qV5//AAU2ijpbzPdrbHiZzW+UOY4M39WfReanVR+h0jCOE89jp63Rzsqtvtd+icR1LXcgXN+A1sMWE1pH5gouR2xByAfKJHMLy7SG4X8k6ZFt8eWKLMEJjhNjZmfA45+/P8nyQTV7hZ7Wwl90nI92IEedFyx9FWVwPfm/OQrm7F78buPvVocDsO7zO08j+jbgCw9L/wDeFsoyx4TcLV6rteHZYoOXbY3wTBkxI2GVwDAQnyrhUCYDfZ691iXuQ4bcJ2sxbeEbMwn9oXmeSxtrIAWLLa+exresLk569C7G+E0K3mYOmI8CAZ1XbzJ3P964Wr1V3W6Xajj8x8jRZddDL+uCA7IrMyDKEUpnN5eFzwjH7hTUeMV1AuY2S7EHZdwk22uzTeMJsC7s2XE4N6RfNFZzKQrE5+ptG2wLHOc/KH3mDuqHw+onTPO3/wBbV8L1+Eqzn+I55YS0fFK5xMWPduc8273P2hdJqzeUyUVzfF1BJ7hR0nTq2lNABFO2TIjGxkDGdwgnMH3KlT6VSH8Q9Hp3F4UqRbof9WetVehnhCXSX+dT8FvljNHSgxjUb8IAcfD4WAMnL++XLG0eO07XWW8nplRyvyJXbsYe+5nI56OpN/wu/lWyIBvlrvwkfuFFRbNMJU0lz2xRlysog++R+n+TrL2Yxt3R/wAjfTO2qGXVAXycM84Ib9GHHNApj+EAPNSMOebveO25x97F3G+3yvl2NcxMZUlSToWDbJH79YLU3fZXy7ldCtejjQxQuiuj5kR2Y9/FmSX5vPmnfTvPLMVqlRW0k2MjTwa7x1ucbMG+n+qzfJzbPM81xrr7ZfdBZT1qt4yWuIaDKj7pwZEN7MHWDIq0yHLha3BzZlubygufjmQh+QL8oDs8ytABBPUlzsZsidj38YjcsZy6u9LmD5PJ+LO96rJozpGKRR7cJAyROwFjkr2wAmz+DjBx86tWPlxdCE8VGu+jQ3CpPsdGnil7a4GMuUN/d7csh/kM/wBkXWpPQDTCpGhFLPmVI7JFLyuDZxfoM4GHtG8C6ldV6tZohS3G3sc8JNuVAZTYP8bpkLi7/wDJdNr+dRGluj4TDfd7WNspsgQnyI43cVzCHFvgauZu4cNMs31cv5k5JPR58Zj24HtxNXPbpFaO4Oau8a3Zd1wlU+xxpPUtBxzGzauFnx5X8IxvuZ4eaKH5/wCq53GG17cNdl3La5vOMKqLoYboo9dqtXyK+M8lyhsc8btqVFb042/KwfafeqKvTWxjUvsGmbbzsGSYwWsmYLoruH5zB4s3yf4ldrTMq6jmvphMzYe375V6M3gkpgaV/e6WXYb8UWf1PmDe9/GtFM84qeLO9NpqHdodMZGsxuax+7lQP/8AN8JWa3zGEYwoqtcN7MbXNVI0ZbWFLfaat1QZFSyoLndCWnftsxe2F5LO6lScKlI0qgNWqJKrjFxczJ6YPpu6q5wxWx3RW5Fgs0VCIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaIIK/bL45/FftKaXFeQteN1F8tJsQmOdyuQ7zqoo2zlFD8VXOxTsAlQa/IrjPitb9lzs8HsDgUnD2JkhleSWOKV6UG4P9wooeoN5c2mprLlBx/pVr3XuD+wUppHTASJJpSmoZ8l/mpG4/wDFkKdzTBKxOJxGfy11LQd+p43eNsLeoUdfSpV65bE+GbwThLCd53vgHuTr5c2Va0vc1iKOTT58vZzv+JdGmEdzo7nDbSpQvFJZr60Fc+iypJY+keQzaDIZg1+SPzKnqduNinDKEq1D0Qa0F9u8KurInBFcxt8cncP7fOV2nxnPiPFTjMPk+dAvO+yYEkfgF4Y12Za5PBj+UtZ+m9x7ZemRT0q9rxuo4RmZzXfh1K+X6pPJ9O7VGX7jyLSR7mSmnC3ZlBFcBfn8Dnw+mB7hS+mkdzjZ0aje348aYB3+uLVXPAL0wNytmnFoLqcGO3XIjm+E4jes66H6jPD/ABhXPo7UcmK6AEtKPZlXK3Hr83Pxu51PMl/GpefnLz/ccKucqbv65wVHR6TEGckYuJ1tnBEFv5sfP4D7DPh+dtIVXNBbZDGc2hWkrKOjtmUmW6TU2XtyK8yA9Ou2vbKW08JSrGPqFoY5pRRvf/Bc8/bE62n+zGOEEwRuuWbosC7RmQLhVo54GF4NMaznBA5435v1oedEVVaTxCjS2z0Wp4WfwT977SUJ3VQ1VCw3nsDDpVrIEsLIuLZjzLcG5UD5g0iva6lux9onDtMx4GO167KWZIO5vOZEvlf7TlTbZf8ATO3UbHkiHcodORJI0xCZX57H749NvVmAV6uJDukM4LHO0bJMrAYYwxQ144gGyPwu9KunDwqNfzZT6Yf8/NTqPFtRfHtTaOxbM1wb5fK/LLveZrcX0WPzH367exWxlGYX7LRQ4GJvlQWyOf8A9co/AwVkIAPe8mTPigb1cWQaRvv6Dnm9OFWOzbMKdMo3Vmw5U0bfJTzbj2AAL5KUumo1ErPfZ/Iy/wC0PXDSdpEWV+O2a3bOK63PD5MXA6q7aM3wALbby0YSjCRYrRRR98SpEgO5CBUMbaDtUevx1ppEb9WsH3SssebWNFLeianvg6PwIwBauRKmhB76vARfyVv1MIz8QlH0QcrQ0fqx+/8A0QQ3ZTvjmjLDnGkfCJwZlLVbO9x+WnTPoypfYw7H8x0aFJmMsOEsUTxNME8zLEGmeExw/HI7qtFhswAx7xIxkLPySxTmI/eGlc/O9ufe+YXVYpsowbfDhM1mbGFic9+Zlq+7xCnQ6eUrJY5//bX0nbqI/D6KGXbs+ZZPg03bR59CR3PboztPK/atRoXrzxz50hboJrgxpnht9yA1jNkluuRpsEn/AOV3j7lS1NE7g0gHlkizisLhc5i6jx7rHpjkRWvG3pBdGuJ+m+nWEYSzi6E6NRCUsYUW/v4OTR/SWQXaIQc+KzbOOBncJB+e2uRvuDeZXrNkvMSQIZAvEQL24Wva/MG/yS8S0h0hspajdLecUwfNzYm7nQfT/tl2QDzRym0c+Oy5npjFKZTg9p0qFH6GcD5DePLU/wAldWimEYecJsufW2HHD7JvX51obSmsbdY29H4nmfmVfjOKF+bHwVYR20PmxmL/AOnkKY0M0nHJHStMTHtdkvETvgEoPPxD+XXXe4DMLn0Zia7ltb4flVCdc4bosF2l8t8EJeLa4lW3W01a2e1m02u7FcBUp3lN8t5XovxLSarZgg3S37m6R61DgNraShOntk3/AK4tdCLZFkVC/N5QXc79cX039qsdJG0iSG3kdaUjvqIE5vR5WLc3L0Pulspn6otlF/dWDRe9skhaYdHMdiwEG7nIskXPBP8AhVduQ+AyOEM4rZMNTPbxZcOcWu5mfm5uaJ/JWWkFeCTR3FtcMKY4UaW3oxm5MKZ9XqSehVunRBFGUB24xEYRjmu8MaslH1NsXmGnlhrHNSUJ7RRpEkZHH2ddqvGvJBcfi7Wl4smT/f3V6Dojd6HBQtWYCN3JQu5wEkXPhr+FQOjAc2PLss/fOjV4G/Fq7agnF2mbufGD2oaquaEXEseXweSWryZtLVIc6rd5Kjhz7XceV8sg93yok6bo+acf8N6HeW4HNlM1Vwtwlw+GJZX+2skAJHe7C17NkjecGToTBUr8XGomx7OZFr0T9nzXQrJD5Vv50OSskjGmwCBI5jLrFPgzG8WRdIXMH9Nuq+bkKRt0hs+AwraZBnM429JBng6L8YT/ANyXFmROCfVuZuuMTi5EoPeRvVZ4vUrltDOD3WVGr3tcBcPG3Z2J4NxN9cDIN/JMt89yqE8U9ovc6mCMr6YTN3JG16MoOeUwqzF3M0gdWoMpnCW/nIOf/qyFZlRBZbAWawWaKhERAREQEREBERAREQEREBERAREQFgs0QYPZrphULZtghAV8LbappQt9pVtWmpyqbay37bYyQu45IbsqCe0AbkNus1vkin6m9JG2gzw+oOdWKWwRgua12IJRbLmrt2Xt+Jw6s/njVN7GBKjZKtBHby3GyGcevHANvrWX1O5/R1sxygurTllPUscdX883Yd+dAUuA2JrXKDC6opTmcVBSKZzfn4SLn/YU/wBlSo9l+DwXbbVghzJumtFV7ALDWZbK6qZb84HHTvU/7I+eL9StKrumQHtoCcGms0Z+JzW9NF6cP9xvQLf5ZxxUz9zlvsURGOdIHjCURYcpvkv+taq3YhmnoOVYJb/3wgP3bndPF6AyvuMTsL24XxpAuNecdkO2SAEj3eGxzptvblkZ9Os//uA/tlGmWUe3L0PI4xlj6Jr7eo7iiacTdUoO21vlemCvLrkFwTBkRXNYGVIzozuji3Tp4X5tM3/pc5eo2i7AKMM+O+jo5mbVfib3d8onTGyio0ziizIMjnw+J5ZWQ9snM1ul939ferF8jBkhPcAxamEVmRcbf0j8jpQ0+nhVLu1mHSrDuKxwiubkTXmLGBNyXd2ccO+tN/DTF25zRcO9/BYYTpkWUNtSYpLm4BlJuh32N1J/o94CrFEhxztPMszxCMSleEwJA9cM5O726CnHHkbPPfgVV9EJxxs/cmn4Z4jbp5Ydf6++CoQNKrjErRkumB3c7bN8FSH+n/0bcPPByVlfdL6nbwc0kYGP3e5nBvN1P8wYMK397yPLFUmxwgNoDhUuzfFwaWH4QtVeLoqm4o4MXlKLsITLG59b/Y4oa01OLb7cEcj0JqyStr6lY/0VOP8Ae+g/SdEt+Sp3WA/LZDqLIMWKKGyJjzPgOxSDABNNNN9Pmcz/AM8pTF7vTKDoVzMEY7tijKasFrgZ5w+wAu+zWkcqtBRQnFZqOzyy5FO3LzJ/HI31PPLK7MinK5jqbl7xWkDW+X5/2AFonRCjGPs3vlfF7/ip9PvsVa7RncChxuk/c8LF526m36keyU/Vb9IovK4I3Rk3nBcIB+wOtenRmufcii5PD7Nbx4eqAYH7dT16tjTSCRSc3eLLc7W6n2mFXOB7A5/1LHDrnq/3G3Qz3ef3z/0qD21guDsMnM7ffJxZ3BiSjh4RuPYeiWANLH2+HDLHjBLKkmKHEbdDGKPD/wA9TmjV1ae3ka9vbTraWU4fWSoAfgmb7gC83/8Aw46atncKs9zhhLHaEU1mLeZZQGoD3B1r+ClbfVqpxzpr5paOv4XRarSwlv62dx7boDUcoFkmGHV3DWSnvaeuZgLq6H1CkNMdFHtIx8cEqREyS4owZGVQcrrsrPFrUjlvaIYQ0pSRELQwGc3QwuPc+oqrDE0mhvZm0MNurlNc/LIzzwVzOtWm1ul2bff74JVwjDk8Y0w7HLSRg3ChnNPQAgyhN6TV3f0jjopy3RwzYtYUiuwVlR4286CSDmZgPo8gOqn6leoWB7bgTDuH7H+5edaEM1VNh2W4C/frl+EXdrUxh6Jw/kdPXzld4f35c6J7H3Ry9GbWlwm7MuLM+A7thfu/sV59x6KSvYLHcxGa6ojBLgdgdUb8yi8mlxKFut6h1xfvjosKS9vR8KB2vRTnYUjHdQlwK0LKSIcDAIXNsHqqvrZsOps+bCPvWW8xnNc7xWb5vmunCt+jGBwjQ37bRbnarjxxj8z7BdeknFkv8tg9eoexu1Hi18cJYzv0f/o6yU7LcWHhqHJobFoWHMs0urn1ikLbHuf0kXJz4RvUHB6pSnY7nkfEGw2vhMZ5YB666ccqE6oKl9LxG/lLka+grxh8GZa/a2s/7GctmjuxcruHwSsgXDD5XJPAP/gQLoR4uzNq0mpUNxts5urCbNtJdfxZ+/he3Dq/SFDdk+2OpJjlE7Vw6PW3ud9vhdv2k3rQnD6dTvZUZrt8t7eUBg5rfOwDUkfcLT2WifvbJlM2nReC3IbvwwDAk/8ACo1csVsp44yWHRe5NPGiyqdKERsK+TqNYaOWlOcrwZ33KhexvXUydGpyQXKVg81I1Tg+/U5pBzJH+EPfN9Aseq+kjOOM3Fp5FeWIaguKQLKmC87HNnh9woPTycysSBfBa+1pMS4U/NTbid/YTn9Srx3aeM1ypejdsaW1yrW/wPhO17XVdsAB7DIW2uf6lMuaW01w0ZHl+FGlCf6I/a5/YnqrCJ2uiqWipuF2mK5/Kk24TH+dycg6ltEpjiRYhXcp8cT6+c1UVfraeUE2iwWaMwiIgIiICIiAiIgIiICIiAiIgIiICIiDBaJ4cbHN8JdSwVc4ZQxETYjasQK+DzfmlXNO6cGkw73TVks7Qm0+wHNuJHoT+ykGViuoXNc0ouU3bw9Z5FdMgIjCcN7WvjlDgc13SCOmmsyjuUw2bWi/QqvHsV3zHZwneVWcKTmiGVmy7l4fEL1KrXY5nPZn2eU975UDLGMj+XLthu8Zm1xu7lQk8pGqpam4k4vk8p/q5X+co3V7myG6Kwgfro2tEquXkv8AJv8A9gq7VKmz3KVNiNoAzoBKVpFkVI+M7qy9PD+9F/8AClJAXO3WLVIFtsJ46677AYYVRVdVvhtI2u8CXoTNUVZ5VS7k+Fk+PyvKeWD9nMl0ZfUirw2duTza1za2mU4b2O+AphsFW/wTPP0P5sbol6zHfh2Kua+O/m3fcqPvNoBJGQRGM14Mkg3c2QXUmXnWjF+LbS/BV1cV9rI/BGlk+T/Y5v7ZX/WhlE67umMuf861aVaOsa0gCC4RbSUrrDqdV8Tywf53PdEqRdbbJBXhBCmLHbzd2jM7eii6m6Aj98RvLB9kvYgyKNo2ta0JHdtsI3wFHy7FWlc+CWonV28vV2uT9gjmX6XJUrdppJy28Nijmw3M2ZMLtkZvPAW1mlWjLdvgoBkb9gyye4XPLsMPMcR45Ftmu46miu4MM3Fzx/kkhbPgK6N4xXaI8fjybUbM/s5whXuEY+rFk8tR04Sy/OxvOkUmZTIggJHh9LKOzL1C8gGvdUVo3gxfCNOK3xQlHExdPxb+5fci8kAylJWj7XDIe6yyyxsYV/BGx22+3P8AP9JId3eeL6JVmVdXyiQbdwqEXhwSmc0G74LFBkZ4eI/bG43K5999XScKI/jfifznWiXTpK2cspsBxnPBY3V5Uy/RZTvKCzs/3AFcNKgPpDJMDtHts5tyb9cceteGh9RU/wDUtV4G34R0bisbu2yZxm+ag208f351crZxHkCrTZdylVd0w1ULPzurTHtUUPItIoVY10zYdG1bNrW82/XTUMk9otV0t35M0BcXnFCusMKh8cOC4sCUEs2M6NTKJvzb8J/tATr0CLYxPZL0bk46Ei6p9vLi3lIvQZBfIldk/qXlOkmmz4sk0aRFM2U2TjltAzdjldBeYPnulD0qs8QpjbV2pcHc0sLJy+RzejaL6VNoKPFurXtkCZgbJwbsnnlYKHtTnNK97Xub4WPMVYsV7t8yjWVeNpsG0Nz+Dl/tH32SZbyaEixYu2Wt+qwy4lvgOp6Syrwl+dhv1ui88dVVZGf/AE98EnpTpeKo+Cwm7PjLTohZ3tptN2n7DWrfA0VELe1Zha3lEkvyxjUTI0kPLcS3aNOzXu3J7xg7RtoupB9Ikrf4d4TOq3u2y3q9Vq562rsaeGFP4ncfG3cdZek96HTXFgW4VkBXVz8rp8r0+QFXjsdW2oWDBToogAu87HHkVVMsdviv4LarczVZoD898h3H8K3SP032gAT74puuyV6vaY+Fuvwn7a60/art6ZW9MP7nLpZxib+XT/eoOLxPhv8A9ZF9zIUnpZJ1Ndh8D3q5LfH1GtwPCG0sl36qA+/WSH9oYLv7Qw0kr++lirqp3Lwz0eSBfTUp8ND1U462Quv/ALyjr5NdmXiOPwYtrkn9JNkZH3Cytrsd4nEbyY9uixvSnMc66MHZmnNIma48ptfCjSfcqtwxY7INj+ksVBu/7tU3p1JwQrgXxYcp/sVz4cm24a8WRa/cQ0jyT6cVa7Dklz6yHV8ODZpXr7YCn3CvtzZrEZvkSrz7sMB1UJ9SBYo3/wCmg/5r0SY/UMjvFYVUX+pO7kwtL8Qgu8YIlAaG11Sb0H4qXQZPXQo51OWbiCBvkRKE0T45d71fTov/AJZHU9L9JTLk5+xMylINBdRMukb1FykUXX2Pq6orRdUaUD1Bz0XF2LeONId/re8/+ZyF3aA8YZDvt8//ABp0u+uuh9JZ0WCzXrMIiICIiAiIgIiICIiAiIgIiICIiAiIgIiINBh66YVEW4mB7h15D37P1CfMptR92jNdTF4PhYVls6dqfcQuhluV3sg242oFzhMq+4Qake0ba9/RT9+wfTYdY/KgCpaHKiTIozCdR8YzMbXf9fKF1WqVWuJj9WazleUF8RlUqvbb5evipaLhJ116u3XQv/ppnvvPLZzinRNY7FIc9pI59XCBbD/r9SZSUR7uQ7lN9ouC/Q362yo/fIvB64XUrfCkDKxhxV2vir4vklgs2TWzhluSSg9I7O59RyY9cE0XIJ0b/Im8gpUBsVMXheE1b1thP1RZ+2gLVOoajnsplyRbBQu7rPI/5y+X2zw5giCkCa7EzA5rmL7pDZKuc2VEe0U0bMNHOpuzi6k/kFrtlyaarqVxR5oeWF9d4zk+uj+WVc4zq+ZUbZRxk87trrtZ3uEVpZ9lryXN3kmKvRrHMEUbZNvO14XdH0f/APXU8zFVu21v1l59pRoCWj3TLHI4HM6v5KdX7ZPPL3LnwwTqYDNwfVIuVujEXiqNrheZMUY156DsmnFVsPSC2Fjm5FCN72keYVugXuE9uZEMan5Lav8AYp5yU3Qxhu3JeNo9FbtOY97qdxxjGkf4iq8p0Z7GZYksFI4olAikyisNR/bRBHz+f9evRnXRztmhpD/qsia/9y5bheWRxEO+ORtK9ypnaiGIkusvU5t1FWqxjGKEDVr9IRgpqy7dYiur52ecH/CBWG+no07Xa+U3Bxdb0P8AvVU7EFrKbh16IRw3XGTjo1tdeKLHpkAoLyPGrzOsoqMc1jNrlYukWLxGn5X3wbtb0nLZVxghr9ZzSmDOMjI02OTMjFbtlDJ6k/2Y2zQoV5j2TH6OScLdKXjtF5YykXnSjGfX0wDt74t/uulXr1lmP18fGRvtxdcqL2dOwzCvfAjPmmiFj0KPEMVCYwn6LKcrtJfVb9RfotVKH52q92qSRtGXW0w7oxo9zcIJfg+bQfuvUm9EoQdls7dkR9NoberGKaQf9nAZe1aNWgUeLDgixODGjCitxeGKOHIXa+ACvdEP+YtWfROM7Y8ZPB26NWZ1WvrbdJLuSncrcymjR/TAkZXuVcQ2C5SGNDKcKFbaMpSlvt9HNE8e1qCea3KKSnkw5K9HflMpiwta38haCY3029gfi9IRU95Gyc5epHWy1jpRoBNY2OzYrhZl+hD9nU1LPhp4zq7DW+OubhLG0wCpiq3xebYoWTOdWrsp2N/hE6NnkQrFZfjuUdztNzo+MoxU5In5z3eOVbdHn4nnmV1Ua9+SP5qxgdN+vPUflVpRtvG/ev3pXdTG16ly6XPzahsETYzGdsubxcFtnJ9cbmfXK7SwwhlLnNHSwznk39js2ZS4Xh+qlJkjGKrvAtkLcA+/N+kLb2LW1eCRcH0pR0+YWZT815iD7AAFxaaOoSsewxKYM9uI+XTBwW0hrhLyeTncyPi/uV3jha1rWMa1rWswNa3o1s4xdKao9knUQcWA3j4ZcIoK/mwO3j+wBVbOy2V1LZPa3lnFSFTV488wYNPfrVo+6kmdIm1pR0eLmwAfXL8uN7gP8RlBdl+6Oz4UMPG8VfhCrafGXvK1i9efO/Rl7VyXdPasPYzjtyZB6U4jT5T2+aB2gD2Eein9In6gG+szAsdHbc0II8ZlcTRBEHF46xvXG+OLxjY3eaAsd/FCe6aQAzU1tPqKt6E8dbkfwSXSVteSB2v9wpy7TWCCaQ/iaMJTO9AqaUr4thIWtO2OAFf+lT/8861U9MYKZc3Z2H2/vcAteVIfKmV/T5h5H+9d3Y5b2mGvWPKb15jr4QdIdsYJvyW3CC3zgA5CldHYeVHig6sImKq7dbku9CQWawWa9UiIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAsH8dFmsEELMh1o5rmbL28h33K2nBHkhIAwmPA9mSUJPc1opI4WuphqocoXtfiFzzeU3rxLLCztTxUz2zyigdErkUJvgOe6rjUbR8OS53+kYQf/FcQ8Wb/EVS04VQPdKDSrgu2jib/iwppHZY82PgfUrHNfQwjMrqkxJQOakA+0KP0J0hK4j7dcqNFdAsoWtaO1x7jG7nwjD8hi6Lo6rZOGTTCazY2uo04XYsTMez0i6gPa6mJV17XRXue1rqwnv2m/RSdd+bqbezXvROb929YN8CUHUoi8WIZcL6VcKSPjHIHTej/r5jySkI5mu+q5vKat62QmgrkK+EY9se4UaN7tgZ697yv/bm8irGtEuMJ7HCKNrxu5TXM3ar9LbNj95Pz49Kd6yHbxnmJn7bWrtslO6KbuFvAQbgSBDKJ9NoZGZg3+hVCufYkgVdjgklQieDlPzBM4uokcn0auNnv8ctctrnCPSmusc27kM9ApheroXe15eTQm/s2RXwbx+UZchk/s85fLd2Myve0t2m0lN1UxBCEwxn+rINIOU0iN5Hdi2l6isFDNb3ZM2YaUw0bhQiKF0mvbQVitwVIeRJDHENurW9/T+qA05v5KgqU7spTThJHyy8EE8RXukZWb2z8QVM6Oy5jgALMC7MeEb3OHuyDr3VapLn8kbW/lOWmkKteMj3O+q3djXOs0s+7nBinRvRHw1Ruznu/JIFffhUrqcuMxv5e8U6yMLVhwNwrT8FRuqaoY6g7E/cheGMpXE4oXO8bBmE/qWb5Dn7NBnL+VuxqdHDE3ksa1YXKYMbcZXta1T+GuedjDnJEFtzq0xSntaJvRj5pcJ5epzQAE1xvAHTXlgF1035lyXG8uLSpaPHHhs7soz8Ax+Y643Eo+3TJJm1HZWEBFrTW+6yh1qU/loIDd8edNultr0sI7pIwr789vB3XS6OBWkCDRsu8H23Vriyw/bJuHvcHkV8xBt4aDY0k68S34sOrtm4ztmtTF6iMHi8yJq5IkqNGqS3WUPD7i91XnO8jiMYXwjXSY3wvIqxaL6NZLiSZB3SZ59WbIczo+pAH5PGWnH1SdDZDbFloVYHBYY0glDT5L2nkG1asZepBs97h7g1z6a3Umodvh17flcTXYe9I2LUaaXzXxeUdRdGlmkrQ5YI4uETy8xHbXl93fG+jx/LJojZHBoQ0l9DTz1xGPX3IfmjiVWWS2EMdzstsOPFjNE11GRo4q66ur0fKMUv+1Veb9joTpk091MxzWZzTNa7wdz2iD8QQHzvOz1l2UL4WTIZo9b8L3Ofjku6Lr8k/wBn6Qv4qC6ZejaLWsUcI449rV3XO5wxemMrum2Pkv49Mkwou30xlMbiwt3LPvlneTOo3LFXel2G/tl1RIzWMaJnJYzAsfOalWuyAzM4Jbqau25Op/z8Bj9sSP8AhD+kLl08LQsiz2vU3eSaTyt8SNa651Pb5C36I7+RMujtoXeEb81Dz5vTH9wufQGtZB594dTdlJwOL8/AIXTN88fPL6lbuLMktMX46w4VK8Z5ON35sDfm+4/WrIyirFnbmzJMzwBdpCd4/X+39wrQsjRPbHEWaIpqhERAREQEREBERAREQEREBERAREQEREBERAREQYLXKDip8zvBctiKudecMZCHIF9KueLiN4Q+jMovSSyBmDHVr3R5oX1OE46U4TClbPsOLeB7hVZTh19zlLieDE7XSuA7fC6xQonKG2SnCcOKH0T0gcRz4FwE0FzEyjnsrWuXKHr77hdcDX6uvEujC+LXEOj3Qqu4x8t8XyoPsy0aQ2gMtrRFdUE8O0I46U4TFL1wPIrn0d0mNQ3wZdmtFPpxCM3ijXQTePOh+X7mYH4vxVV84Zrq7slofRr6NKN7cXxEb4a2DNx4H01E94oMsQsd1Sxm1fHdtkjNpzfloX7FSsU4DsaVjsbfGb4Ky/lXYu5FxY3trt7Y/Gb0a6mPbWmKm01XV35KXHdrTGNRtDia/D3KupvGeaUW+0zh95zX1bq5mW3hP9o573isywV+aE4RVv4VuDOdtjn/AFo0kJP8Rko/SQvgWy5Od5kI/v1ZETOPtQ7c/cr3DbqSmoUMMZvhOkmzCeoj/tVX9IrHOaWFc2lJOkRSlfWO2gmDfGOFwD8Db8R+T8fhL0FFKFqztoPR3SaDI2Y525zeJ4XbuSPz4Db1TetUrTs+jtXMpdSW5xm14qEe3hrPMZO+VXGHFqpZmaWatXLpI4NB/wD3D9yJPlpYSevLAj20a6tXYWt5Tl5fCsemLntq+9xY4NWvA6ACbJp+DOyAiWqd2Ipkh2O56ST5Q+odGAOL6hRwingn7x2RraOrgx5I5B/FD2zX1MdV05Z5dUo4Bxht2+E3h/Bhh8za45/fGXfK7FVGAKGBcpsd9WbGTwSEPN8q23xhYlx2kVnC7HcLRLFMbTaLJjzbsP0E3fKyfbU/BdzdLc5obYRHMLSk3SKYzkOwBHaYtdWHc/JAfF1vJVrbYbnJ/wBJyqRYv0KA6tMfn7nz3qclZh02h0oxscFyN8WoNrm4P1uAISPu96LrbGtVIrdXPTpIaewjZqj3Yx4tPSmXTksUCHEjBywsBHjM8FrMsY1WZWk0mTurKOjh+FcDN1wR/F2t/CB/xbryq6G6G1JqJdpRZ7qceQ5vB7c38HAQ98emzlbBs1Uw4cLVn3yPKMUDo3o4IFCOxELJLzko1Mcg3J1eg8iq32UNOSAeK1WxufeZHJG3ecFF9MOvulmmcp5nWuwCbIn02CyXV1wbX3efL00jyKkOxzoICEwpHPfIuEl+OTNN3xKL/uD5JTrTx9UjsZaFDhBdjdmzC7ZzO3mYVWqeZrGOe92FrVvOZrGuc92FreU5RMVryuacrXNE3mxu+PyxlXdP2ocm+1xXa6yC66EfyW16EXUqG0ylEe4drivc2RJbXMe35LBrzx/P9EP8LlJaU3wcYVSOpV5XuyRBbzkqT0IQqDC8VviybhcCY5D9+cg+PMNzIIkLXyuU0Qgq6mrGKmbVpoV1BxLFb90WW2gMTKa+A2sHfp/UbkXlD0+ZS15LSPGBEhMa0mEUOOPq+LD7EHH/ABLh0DtRKUPdJ9WUnS949vFqhRQ97270PSfOTWuiwscctbiSu5w5MZvzi6WZ6b3ajdP0raYepM2C3NCEQGcljcGLxvLKRRZojYIiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgwWggde1yXeMupYKE4RnHGQjjha7YK3a8Fyhb9ahlESNOBwmI6lML207ZERvcN5/arvgqyHDrpxrDG5nL2m+MqIXTo58ELKfaoka+yYeFlzfWRbq1wiutK1pQHg5V0+j/nf1lZZsB9HVlwXtxv23Cq7teV+xPyd6uuTam1xPY7A6tOPDzb/AMYVS/g24wKuJax1kQNWN9sxbsf/ANqK7vfzPNeaWzZb+xD4nDkvlruAysxs1a+Q5rucYXqSrPg2raE7D9Xo1WrfLDJZw+2lwym0wEGRuAj69RNB8nVgtNyGVmNlHNc3Yc13ODJ1Kz4emTTy3RdA5LdeGvE7xXLesDha6mqrVy43s7u2P2g1XnOHJBILAmLU7VyvBRj9dMSLUKb8G6Qk5+4QIf1YcR0wnr537FZfuCA/anTLlNdq42nl5QP6PBygq4IiXeki7Po7Bj0ww4cYHmghGpRFB6Q6TxQVawr3OkE5EcLcySf8QEe75Jz40UHozImvo4s0QwNdyA4swrB+XN86n0JwYJqQj9Sg7jphbR1q0k2NR2rk5+MnqUIwnLinEXn2kfZDaJlSsjFo11cNCTH8BG+vkASN9I9EJV+otKJ9NkvwbBd0zg5cn0AOe9dkqca8v2p9KceUl60004tkNtKzZYxkdsDC2mZJM/yAA72qgRxrvcKa5FCWm2V4slrv31k8nnjfIP4t4u/QfsbWyFVxxCcac6m3MkuzppPT9Crm8zWtxVdhb9ZLJwgZY8XDYrPGjDbHiAGALeSMbFvuUxg24n1/Ja3nHrkdcnP2YlMdO5nVr2uz9ss7db2t1kdVxC1pqqSvxLF3s/pGPqk0x4jyOzJPJ8EPieeWWkV6jxhteTE5znYBBG3GU5epAFcV/wBJaDfwaIJ0qe7ioEdeb8Us0vycCjWxgRGkut4ltfJazBWQ/djAP6HDF/0Uv4Vrp0+PJTKeT7bYeXmXi7uEyQ0RH7T+1rXF8IItn1plyaNRSTTsuk0TxxQEx2+ISlaE49qtzmi+k8e6F0Q9fxlXyDaTTijmXILgQBPxxrcSvOE17qZc2+Nrw1GHo1L3aeQ5HQoddlvPyKdAPqQfaFO6eKcYNd0e6WZ0MVdUMT9UgjXc8T6GHV7X8atI2NpTDTkrTaYAhMaATMA28lq6lRWlOfpiLNEU1QiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICwWaJ1HLgc3kcnxV9G9tdlbloILX+UsXbnV9NPDNAaT6LDkYCtIaNMZXYlR3ZZWbPS/SI/kTKo2y/nizHCvNBx80WDho+KFKLr3Jj/wfI88vSsbm8rk+M1azQAPzMYhva9mB+JuZmCV3fjbtI7XczjpiRUX9zs6HXHZSZsTlOtkgm7+f97D/ACf4tzzXH8Sn9F9J4kmhGixCkM52KZmXJB58C04IJtjG0phpyVmsFmojBc855KDI4TMZKM2R4svML59dawQea3SPpWfDSjrdBDXlDaY0mR6/I1LdY9E7mHHwd9rBV3LLwaXIkk88c59Z/wCNeiKq3/SOSwlY8W1zZT6U437mNDZ6eQkaujX8ZPHGMX2tju1eVeBt81bhU/xByrjk6OVY1xZt8n4G91zjQ4Qv7OBfOAX83HImxbaHuZcRnDJP9NkcXsVrbolZmPaaYThkmlNk1wkcMJ6AHMx/QiovPOqvlJT0ttkrziWV76NhRJ16N41Cmkwm+dmyHZNP61L27Ri6v2MyFZ4uriDbhBLL/pkgGSH0QVbB3kFKYQsI9vgtGHdrOs6VXkRas84bB/cnxlcfpvfmy5OGxaHQI73HEHHKdypRn8Jmk9PIU4eYJlMRXtb+U9cNIMh3PSXU+qFuBdES1AbXExjcXjO3hFTK22z9hjFz1uJXd7hdWnWE3Y0paMWqsklSu1asutcEf1KxvV/iR6N4VIGNzqbLKv3pPMBbvTKJLdrmbvKJWILV3xNZvPQwW/fFCp/D5/UQ73tT9zuUYA82QUYQ08Jz8tVw064SdTYjSwIda7UkzO3TD1fJwfJ/PGWMqDbolKT7rLaUze5JmO5qv2IPyf0K0UuF1mcURjrbAr3ZcgP74nH9ig/J/PG9UtcYRj+xUHu8CB2jBjukTy7dIoa5k4/2ycf5ODyxlutmi5nkHPvJWHks2xBb3lbfMa++D+WMuiJEtlva6reIxeOpHO4RcZxfeyKr4O3ypO1MpUMTiww2urmE/PTfyuZVU7fatjSFuBpVXBgveOLyHzGV5fkYX7ZWC020QRtAFmEbV0gG1tGto3C1vJa1bFVh7k5z8hZoimpEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBgtHBm6+LZcupFCcIS5DSPF4Sr2leigZOWVryRpwuamB3ckHF7YHkS/hVkRThtFQ0Ov5nPfbbixorkFlHbDq8HnRvimQv2XR61b1SuyYxjCWWWzvkd3igZ85BT9xND6jEb9HVkLeR9wdHGf4o15dOMdxCCRXFOuQmYWvdtO5LW7whFx0iyCcZn5Q+rHXeemMu+BDEymETGt/41mznPiuwhFw1lyn81GwN8Yz/ALlZ0t8itN5KfT6omiZ/WpF720o6rnYWt5TnKvTNN7c12UI7pBuriCNNJ/Z1OGjy5bkJ3YpGtkDXnMwn5ZTLqBbQN5ABt/JYoNt7ub+9rVUTdXOTZIh+wj5xVhS2Xh/fFzGFviwoer2sjNVsNHCKHemtHxKAn6YW1lct0sZDauZDXhEmvoI/GuZmg8J1dcusmZXVx8LkmKP1HMrnmaTWKJ2sM0QRNXFFiizSf0OCtMYRQzm3fujnE7ztcnD101/Aheo3pvZLKtmuRaVrNuTxNrTXkQGcHrT8HDTb79WUuRukl2N/o+zFE11NWdczcDZT9Dj5pv15SwZopcDa3XO7yKt197W+nwfF7nSl18LN65OL3th5dit78DnCZLJTHhaws26yfeyJC+8LvkjU2LGpa49ac/LaKVOfTyUEDskP4zF9EuiI2zQNbACjhKTutCyhJh6+V6aQttJ9xNTVGBSILVzkrWST3PoTfvCKuVsV8KZOeDo5botfhCYWsiW2lK1mzy4yM8x0Uf0NKLodd5Z9mCHKF9KkM/rCDp+4uiFowGj6HkVJKkdZI3mX5kPMx/4lYNShukntig7Jo8ATqlc5xpNeVINvCf5CsCwWaKpTyYLNERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQYKHuEuTShKsj7LG+cITzAFKHO1tNb6sY3xnPy1WjabQKOqwBCyytpzcMJpPtQ7ledmUjPFD6N2KVIJw+8Cq3C9/BYbvkwuvPUPdkl2a5XRfhV+G1rW4aYWtaqvwy8l5mHGhD8aU/hEn1Efc+2WTNDRErR9xlSZz+rI7Lgsr+Yx9y702ap9mMeRnkymaZQqPfHA4suQ3icGK3hJB+e6IC1Vfejclke3h1cp3bs31PMx/bKyQYYmMaIImsG3ktazLGutSzhHihuVIOhMarqPmONONTuOlmzRs81H5n2asceKxjcsTGsY3wWsyxrqRRzlIwiKOvkc7xEZGkVjmryTZPCas9A5SKwUU1MfoCElP3zmT7i742HkZcXX+ZxsoP8AUu4E+zxKcGj8EA7qIoqY/UR0JoqJ9dcyTLleTcXLj+ojqagWsAqYY4Rjb4o2ZaZSknDtIL4anE2Yluc1vWyncGH6jnll8AzS9+TSYepit4OOnpueVmWajgn3vaibTZIoaao4Rs+dzWbx/plJrNFJCU8hEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFrIPXR1Nbqa/FWxEFXj6DW2lWkLG4QRvSS3mmk/tCsgxNbTCyjaN8Vq+op5SMBFmigCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIP/2Q==\n", "text/html": [ "\n", " \n", " " ], "text/plain": [ "