{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Laboratory 1: An Introduction to the Numerical Solution of Differential Equations: Discretization (2020/Jan/6)\n", "\n", "John M. Stockie" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List of Problems\n", "\n", "- [Problem One](#Problem-One)\n", "- [Problem Two](#Problem-Two)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objectives\n", "\n", "\n", "The examples and exercises in this lab are meant to illustrate the\n", "limitations of analytical solution techniques, using several\n", "differential equation models for simple physical systems. This is the\n", "prime motivation for the use of numerical methods.\n", "\n", "After completing this lab, you will understand the process of\n", "*discretizing* a continuous problem, and be able to derive a simple\n", "finite difference approximation for an ordinary or partial differential\n", "equation. The examples will also introduce the concepts of *accuracy*\n", "and *stability*, which will be discussed further in Lab 2.\n", "\n", "Specifically you will be able to:\n", "\n", "- Define the term or identify: Ordinary Differential Equation, Partial\n", " Differential Equation, Linear equation, Non-linear equation, Initial\n", " value problem, Boundary value problem, Open Domain, and Closed\n", " Domain.\n", "\n", "- Define the term, identify or perform: Forward difference\n", " discretization, Backward difference discretization, and Centre\n", " difference discretization.\n", "\n", "- Define the term: Interpolation, Convergence, and Instability.\n", "\n", "- Define the term or perform: Linear interpolation.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Readings\n", "\n", "\n", "There is no required reading for this lab, beyond the contents of the\n", "lab itself. However, if you would like additional background on any of\n", "the following topics, then refer to the sections indicated below:\n", "\n", "- **Differential Equations:**\n", "\n", " -  [Strang (1986)](#Ref:Strang), Chapter 6 (ODE’s).\n", "\n", " -  [Boyce and DiPrima (1986)](#Ref:BoyceDiPrima) (ODE’s and PDE’s).\n", "\n", "- **Numerical Methods:**\n", "\n", " -  [Strang (1986)](#Ref:Strang), Section 5.1.\n", "\n", " -  [Garcia (1994)](#Ref:Garcia), Sections 1.4–1.5, Chapter 2 (a basic introduction to\n", " numerical methods for problems in physics).\n", "\n", " -  [Boyce and DiPrima (1986)](#Ref:BoyceDiPrima), Sections 8.1–8.5, 8.7, 8.8." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running Code Cells\n", "\n", "\n", "The next cell in this notebook is a code cell. Run it by selecting it and hitting ctrl enter, or by selecting it and hitting the run button (arrow to right) in the notebook controls." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "******************************\n", "context imported. Front of path:\n", "/Users/phil/repos/numeric\n", "back of path: /Users/phil/.ipython\n", "******************************\n", "\n", "through /Users/phil/repos/numeric/notebooks/lab1/context.py\n" ] } ], "source": [ "from IPython.display import Image\n", "# import plotting package and numerical python package for use in examples later\n", "import matplotlib.pyplot as plt\n", "# import the numpy array handling library\n", "import numpy as np\n", "# import the quiz script\n", "import context\n", "from numlabs.lab1 import quiz1 as quiz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction: Why bother with numerical methods?\n", "\n", "\n", "In introductory courses in ordinary and partial differential equations\n", "(ODE’s and PDE’s), many analytical techniques are introduced for\n", "deriving solutions. These include the methods of undetermined\n", "coefficients, variation of parameters, power series, Laplace transforms,\n", "separation of variables, Fourier series, and phase plane analysis, to\n", "name a few. When there are so many analytical tools available, one is\n", "led to ask:\n", "\n", "> *Why bother with numerical methods at all?*\n", "\n", "The fact is that the class of problems that can be solved analytically\n", "is *very small*. Most differential equations that model physical\n", "processes cannot be solved explicitly, and the only recourse available\n", "is to use a numerical procedure to obtain an approximate solution of the\n", "problem.\n", "\n", "Furthermore, even if the equation can be integrated to obtain a closed\n", "form expression for the solution, it may sometimes be much easier to\n", "approximate the solution numerically than to evaluate it analytically.\n", "\n", "In the following two sections, we introduce two classical physical\n", "models, seen in most courses in differential equations. Analytical\n", "solutions are given for these models, but then seemingly minor\n", "modifications are made which make it difficult (if not impossible) to\n", "calculate actual solution values using analytical techniques. The\n", "obvious alternative is to use numerical methods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ordinary Differential Equations\n", "\n", "\n", "[lab1:sec:odes]: <#3.1-Ordinary-Differential-Equations> \"ODES\"\n", "\n", "In order to demonstrate the usefulness of numerical methods, let’s start\n", "by looking at an example of a *first-order initial value problem* (or\n", "*IVP*). In their most general form, these equations look like\n", "\n", "
\n", "(Model ODE)\n", "$$\\begin{array}{c}\n", " {\\displaystyle \\frac{dy}{dt} = f(y,t),} \\\\\n", " \\; \\\\\n", " y(0) = y_0, \n", " \\end{array}$$\n", "
\n", "\n", "where\n", "\n", "- $t$ is the *independent variable* (in many physical systems, which\n", " change in time, $t$ represents time);\n", "\n", "- $y(t)$ is the unknown quantity (or *dependent variable*) that we\n", " want to solve for;\n", "\n", "- $f(y,t)$ is a known function that can depend on both $y$ and $t$;\n", " and\n", "\n", "- $y_0$ is called the *initial value* or *initial condition*, since it\n", " provides a value for the solution at an initial time, $t=0$ (the\n", " initial value is required so that the problem has a unique\n", " solution).\n", "\n", "This problem involves the first derivative of the solution, and also\n", "provides an initial value for $y$, and hence the name “first-order\n", "initial value problem”.\n", "\n", "Under certain very general conditions on the right hand side function\n", "$f$, we know that there will be a unique solution to the problem ([Model ODE](#lab1:eq:modelode)).\n", "However, only in very special cases can we actually write down a\n", "closed-form expression for the solution.\n", "\n", "In the remainder of this section, we will leave the general equation,\n", "and investigate a specific example related to heat conduction. It will\n", "become clear that it is the problems which *do not have exact solutions*\n", "which are the most interesting or meaningful from a physical standpoint.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### *Example One*\n", "\n", "\n", "> Consider a small rock, surrounded by air or water,\n", "which gains or loses heat only by conduction with its surroundings\n", "(there are no radiation effects). If the rock is small enough, then we\n", "can ignore the effects of diffusion of heat within the rock, and\n", "consider only the flow of heat through its surface, where the rock\n", "interacts with the surrounding medium.\n", "\n", "> It is well known from experimental observations that the rate at which\n", "the temperature of the rock changes is proportional to the difference\n", "between the rock’s surface temperature, $T(t)$, and the *ambient\n", "temperature*, $T_a$ (the ambient temperature is simply the temperature\n", "of the surrounding material, be it air, water, …). This relationship is\n", "expressed by the following ordinary differential equation\n", "
\n", "(Conduction 1d)\n", "$$% \\textcolor[named]{Red}{\\frac{dT}{dt}} = -\\lambda \\,\n", "% \\textcolor[named]{Blue}{(T-T_a)} .\n", " \\underbrace{\\frac{dT}{dt}}_{\\begin{array}{c} \n", " \\mbox{rate of change}\\\\\n", " \\mbox{of temperature}\n", " \\end{array}}\n", " = -\\lambda \\underbrace{(T-T_a)}_{\\begin{array}{c} \n", " \\mbox{temperature}\\\\\n", " \\mbox{difference}\n", " \\end{array}} .$$\n", "
\n", " \n", ">and is commonly known as *Newton’s\n", "Law of Cooling*. (The parameter $\\lambda$ is defined to be\n", "$\\lambda = \\mu A/cM$, where $A$ is the surface area of the rock, $M$ is\n", "its mass, $\\mu$ its thermal conductivity, and $c$ its specific heat.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### testit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Quiz on Newton's Law of Cooling \n", "\n", "\n", "$\\lambda$ is positive? True or False?\n", "\n", "In the following, replace 'xxxx' by 'True', 'False', 'Hint 1' or 'Hint 2' and run the cell ([how to](#Running-Code-Cells))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Acceptable answers are 'True', 'False', 'Hint 1' or 'Hint 2'\n" ] } ], "source": [ "print (quiz.conduction_quiz(answer = 'xxxx'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we assume that $\\lambda$ is a constant, then the solution to this\n", "equation is given by \n", "\n", "
\n", "(Conduction solution)\n", "$$T(t) = T_a + (T(0)-T_a)e^{-\\lambda t},$$\n", "
\n", "\n", "where $T(0)$ is the initial temperature.\n", "\n", "**Mathematical Note:** Details of the solution can be found in the [Appendix](#Solution-to-the-Heat-Conduction-Equation)\n", "\n", "\n", "In order to obtain realistic value of the parameter $\\lambda$, let our\n", "“small” rock be composed of granite, with mass of $1\\;gram$, which\n", "corresponds to a $\\lambda \\approx 10^{-5}\\;sec^{-1}$.\n", "\n", "Sample solution curves are given in Figure [Conduction](#lab1:fig:conduction)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4Aey9D2AU1dX+/+xmA0kggQQDmKgJBhRUgg1asAoapBVsS6hC7QvxrbFfIVoNWKsWLFihhVKtEn/WArbFlqBttZZgFbQ1acEqVOGVYIUiCAFDIYEEEkhCstn9nTN3N7v5BwHyZzd5rk529s7MnTufu+w+c+bcc2xuKWAhARIgARIgARIgARIgARIIaAL2gO4dO0cCJEACJEACJEACJEACJGARoHDnB4EESIAESIAESIAESIAEgoAAhXsQDBK7SAIkQAIkQAIkQAIkQAIU7vwMkAAJkAAJkAAJkAAJkEAQEKBwD4JBYhdJgARIgARIgARIgARIgMKdnwESIAESIAESIAESIAESCAICFO5BMEjsIgmQAAmQAAmQAAmQAAlQuPMzQAIkQAIkQAIkQAIkQAJBQIDCPQgGiV0kARIgARIgARIgARIgAQp3fgZIgARIgARIgARIgARIIAgIULgHwSCxiyRAAiRAAiRAAiRAAiRA4c7PAAmQAAmQAAmQAAmQAAkEAQEK9yAYJHaRBEiABEiABEiABEiABCjc+RkgARIgARIgARIgARIggSAgQOEeBIPELpIACZAACZAACZAACZAAhTs/AyRAAiRAAiRAAiRAAiQQBAQo3INgkNhFEiABEiABEiABEiABEqBw52eABEiABEiABEiABEiABIKAAIV7EAwSu0gCJEACJEACJEACJEACFO78DJAACZAACZAACZAACZBAEBCgcA+CQWIXSYAESIAESIAESIAESIDCnZ8BEiABEiABEiABEiABEggCAhTuQTBI7CIJkAAJkAAJkAAJkAAJULjzM0ACJEACJEACJEACJEACQUCAwj0IBoldJAESIAESIAESIAESIAEKd34GSIAESIAESIAESIAESCAICFC4B8EgsYskQAIkQAIkQAIkQAIkQOHOzwAJkAAJkAAJkAAJkAAJBAEBCvcgGCR2kQRIgARIgARIgARIgAQo3PkZIAESIAESIAESIAESIIEgIEDhHgSDxC6SAAmQAAmQAAmQAAmQAIU7PwMkQAIkQAIkQAIkQAIkEAQEKNyDYJDYRRIgARIgARIgARIgARKgcOdngARIgARIgARIgARIgASCgACFexAMErtIAiRAAiRAAiRAAiRAAhTu/AyQAAmQAAmQAAmQAAmQQBAQoHAPgkFiF0mABEiABEiABEiABEiAwp2fARIgARIgARIgARIgARIIAgIU7kEwSOwiCZAACZAACZAACZAACVC48zNAAiRAAiRAAiRAAiRAAkFAgMI9CAaJXSQBEiABEiABEiABEiABCnd+BkiABEiABEiABEiABEggCAhQuAfBILGLJEACJEACJEACJEACJEDhzs8ACZAACZAACZAACZAACQQBAQr3IBgkdpEESIAESIAESIAESIAEKNz5GSABEiABEiABEiABEiCBICBA4R4Eg8QukgAJkAAJkAAJkAAJkACFOz8DJEACJEACJEACJEACJBAEBCjcg2CQ2EUSIAESIAESIAESIAESoHDnZ4AESIAESIAESIAESIAEgoCAIwj62C26WLJnM954423s2luKKrni8JhBGD95CsYNj2vF9Vdg59YP8PHO/ThRI7v3iEFyyjVIGdqaY1vRPHchARIgARIgARIgARLodAI2t5RO70V37kB1IV6ck4GMpfnNUkievRp/e2YaYpvdChTmLUfGzZnwHp2amoz8/AKzd9oCbHlhDlJieX/WAj5WkwAJkAAJkAAJkEDQEKBw78yhcu7B3NDBWOzpQ/qM2Yio3IYVOV4ZbjakLtmEvEdGNelp4fqFSJw439SnL8O+F2YiIQyoLszDPYk3I8fako4t5auQEtnkcFaQAAmQAAmQAAmQAAkEEQEK904crO3L70RyZg5S56xGzvxpiBPRraXi4GbMnzgaSz2GcyBNxPeahuK7bCPGxYz1WNpnY3ftM0jyM6w797yK0MFTTYPpq1G+ahqo3Q0O/iUBEiABEiABEiCBYCTAyamdNWrVO/GciPbkOevw9iKfaNfuRMaNwjN/2yBy3Vdqfauy5sT6J++vd49JXzmzgWjXXR1Jt2BluuegnOlYubnM84YvJEACJEACJEACJEACwUiAwr2TRq3i07exArPx2oIJ8DOU+3oTey0m+yt33xYxyW/BssVec3wypqYO9t/qWY9E6tTZ9fWznnsH1fXvuEICJEACJEACJEACJBBsBCjcO2nEIodnodbd0L2lYVdqcaq+4goM9PNzKfnoH8j1bku9D6kJzUp/xI9IRbJ3v5wcbKvwvuErCZAACZAACZAACZBAsBGgcO/EEWtebpsOVe98HZkedZ696WEk1PfTiS2vra5/pyvOBu98bxwDBvmEu0j9zZ/SXcZHh2skQAIkQAIkQAIkEFwEKNwDcLycBzdi1rDpVs+WbSpG1qhov15WoXCv101Gqof0Q7jf1gartbXwN7LnfbC3wWa+IQESIAESIAESIAESCB4CFO4BNVYV2PjSXITGjxX/d1MK93zWxDe9p1+f01IuhycYjV+tZzVyECb6+8n7fG+a7ssaEiABEiABEiABEiCBgCZwOm+NgO541+pcGdY/uwATZy1tclmLp4/G4j8uQ/GamZ4kTKWSXdV/t4bxZvy3SGwZ+Iv8htvO/11VVRVqajRVa9PicDhgs9mabmANCZAACZAACZAACXQggbq6OrhcriZnVJ0SEREB1SzBUoKnp8FC9Fz6WV2OUgzCytUrUfzx+1i9eAX8nGGA3Ezcs/xarJmZIq1H4LLRMuW0wOyR+24xMPNcTnr+x6REjcJA50X4O9adf2NsgQRIgARIgARIgAQ6mMB1112H9957r4PPeu6no3A/d3Ztd2RYAqZlZXnauwuPLMrG1pcWYOR0b05V1e7PYPu3V2F4mAPln/pkffJwf//3tutSa1raVfdvTBl/B/788suo/ZcdPa733c12Z4v7M888g3379iE7O7s1GLvNPhs2bMBjjz2GjRs3dptrbu2FDhw4EFu3bkVcXFxrD+kW+82YMQPXXHMN9JXFR2DFihX48MMPoa8sPgIHDx5ESkoKDh065KvkmkUgKSkJ69evx5AhQ7olkZYs7oMGDUJZWXAF7qBwD8iPcBhSpi3CDlRh2HSv+0wRikqdGB7nQFSUr9ODwkJ9b86wVn6G7We9WTxhDl7yGfpe0AelH9Shz60hcB50wxHXvV1kevToAV308RuLj0BYWBhCQkLIxYekfs1ut1tc+JmpR2KtqAGA/5YaMtF3ykTZ8PPSkI3y8P5bariF77xc+Jlp+FkIRpdeTk5tOIYB9W7otIexoD4Qez4KDmiMGCdONVDgp/Fxr96HdzwhJfXCRif2a7fri3k8xGq77EkX3LVuuJ3udjsXGyYBEiABEiABEiCB7kiAwj2gRz0Ok+/zhoVJxqUDNfBjNK6YkFrf69w1HzUI+Vi/oZmVlCsHNFPbtlX9FspHSjxmyl90o+4oxXvb0mVrJEACJEACJEAC3ZkAhXugj35Pb8rUQbg0xgR+vFr8yutLfiHEg6bZ4iz6D3Lqt8zGFxJaDBxZv9f5rth722DraUOvW21wFgHVW0XAl1HAny9XHk8CJEACJEACJEACFO4B/Rmoxvb3PdI7/ZsY4tHwkcnjMbu+34vxQVHzyr2scEf9XqlLbkNSB85oUD/3nsk2OAYCJ193w3VS3GdqKODrB4QrJEACJEACJEACJHCWBGxuKWd5DHdvIwJlJQdl+mk44mKbjwzjLHwVoYlTrbO9sq8WUxJ8ynv7i3ciOcOI+tTsTcjLGtWoV06sfXAk0pZqBJpkrCvaggkysbUtS2RkJObMmYO5c+eetln3KRHt4opf+oQLFzwZAv3IBeOEkNNepN/GU6dOWfFiw8NbzGnrt3f3WXU6naiurkbv3r27z0W38kqPHz8uk86juvS/i1aiaLBbZWWlNQlTJ2Oy+Aho/gz998SJhj4muqa/LeXl5ejTp0/DDXxncdHvXp2kyuIjcOWVV+KSSy7BunXrfJUBvsYR7KQBqt75ImL6xyO+fwxs4x7E2u0lDXtSshkPe0T77Fd2NBDtuuPwu35cP3E1f9Yc5B1seLizcI1HtAOpC55rc9GuZ1Px3ZovAXWdUReavg+aj9vRuTKB1dV17xd79uwJivaGn0d9p1EwKNqbctEaFRpd+Wa2+as+c60KU4r2ppwYaacpE63Rf0MU7c2zUcNAa36vmz+669Yqk2DjQuHeSZ/H2kq/0DD5S5GW3B/j7pyLl9aux6vL58LWfzSWIhUrN+zDM1OGNtPLBMx7t8DjMpOPm+Mn46XNO3GwsBDbN76EKR7Rj9Rs5Mwb08zxHV/lDRMZ+S27uM0AJ3JdcFV2XQHf8YR5RhIgARIgARIgga5MgMK9k0Y3MnkKVs72RYfRbuTnLMb0tImYmrkJS1a/g+LaPNw1JqHlHkYOxzO1+7ByjkaeycX00cMQn5iI5LHT5V0yFqzegPK8LARaSpeeI8QCH2YTNyAbagrcqP3M+MC3fKHcQgIkQAIkQAIkQAIk0LZOz+TZegKOONz1TB7SF5ShuKJKjqtFrfiBR0TFIDbaG0mmFc05EnDXojX41sMHUXRY2pF8TA5HFAYkxKL9Y8i0on+n2UUFvLtOItOLm0/5Shf63h9iWeDtEd07gdNpkHETCZAACZAACZBANyZA4d7Jg++IjEacLOdbwqLjkHT+zZxvN876eFuIWN4vBqIyzMOfku/WYcBKhwh6mcAq21hIgARIgARIgARIgAQMAbrK8JMQEATsvYxI7/cTk4H1yPfE/72c/u8BMTjsBAmQAAmQAAmQQEAQoHAPiGFgJ7wEvBNY+862o+44UJnvQu0+CngvH76SAAmQAAmQAAl0XwJ0lem+Yx/QVx46yFjg7RIKvfp9N+ziBlQnmVh7XEH3mYAeOHaOBEiABEiABEig3QjQ4t5uaNlwWxAIucCGXl+XOKsRQMXLLqvJml20wLcFW7ZBAiRAAiRAAiQQXAQo3INrvLptb22hNvRbaPzfK15yoe6IG3UlFPDd9gPBCycBEiABEiCBbkiAwr0bDnqwX3LM43bYeosLzQduVL4jWVhrKeCDfUzZfxIgARIgARIggTMToHA/MyPuEWAENK21JnDqdasdoUk2uGQSa9lTEhCehQRIgARIgARIgAS6MAEK9y48uN3h0jT7qvrBh99oJq2W/awO7hpa4LvD2PMaSYAESIAESKC7EaBw724j3kWvN+xa81EOH2+X+O8SRvKvLjiLKOC76HDzskiABEiABEigWxKgcO+Ww951LzosxVjgNWzkqQKZwHrcjap/mmg0XfeqeWUkQAIkQAIkQALdgQCFe3cY5W54jY548YGfKGEke5k48IqgaoNMZHXTCt8NPw68ZBIgARIgARLoEgSYgKlLDCMvoiUCNocN0d83YSSd+wHnZ7DEu+NCiKhnMqeWuLGeBEiABEiABEgg8AjQ4h54Y8IetROByHQ7HAnSuASgqVhtLO9M5tROsNksCZAACZAACZBAmxOgcG9zpGwwkAmoBb7H5TZEZXii0CwxYSRrdtKFJpDHjX0jARIgARIgARIA6CrDT0G3JKCZWLUM+LX5J3Dq/2Qi61E3egyTGPHiF2/rSTeabvnB4EWTAAmQAAmQQAAToMU9gAeHXes4ApH/Y0fPq21wVwOlPzFRaOqO0ArfcSPAM5EACZAACZAACZyJAIX7mQhxe7choJNVHXEymfVh88+i9AmXxIR3w1lMAd9tPgS8UBIgARIgARIIYAIU7gE8OOxa5xCwRxo3mQueln8ePYCa7W5U/NGEktS48CwkQAIkQAIkQAIk0BkEKNw7gzrPGRQE1A/eHmZDxM12RIwTMS+avSTTTGat3U8BHxSDyE6SAAmQAAmQQBciQOHehQaTl9J+BEIusMFmt6H/ShMTvuofkpH1PRfqjrnhqqSIbz/ybJkESIAESIAESMBLgMLdS4KvJNAKAmqB1xJ1p0xmvUoms56SyaziC6+ldi8FvAWCf0iABEiABEiABNqFAMNBtgvWs2+04uBO/PO9Tdh1sNw6uGdUHK5NvRkpCdGtaqzsYCHKa5vZNTQURz/8NUbO64PSbVloXWvNtMOqJgTsUeJKEwXEPGHuf8tXuhB1j6yLjg8R0LqdhQRIgARIgARIgATaigCFe1uRPNd2qvfgxTn3IGNpfrMtpM5ZjT8smobYZrd6KkvWIyZ+4un2QGr2Jor20xI6941eK3y/BSFigXejthAof9GFvlkhqMxziX88H2ydO10eSQIkQAIkQAIk4CVA4e4l0Rmv1TvxYPgwLD3NufMXT0f/TypQumZmi8J748qfnaYF3ZSMR6aMOsM+3NwWBDRxU4/LgNDBRqxrYqewa92o+bcbjosk3KQsLCRAAiRAAiRAAiRwLgQo3M+FWpsc40Tegjs8oj0V2bmLkXbdpQgtP4C/v/QMps/P8Z0lNxML1o7HM5OSfHXetYrN+Pmjaq1PRvqM0Yjw1te/ViLiygzcFFdfwZUOIKATWbVEP2Qms4bIIxMV8SHxYo3/lRt91KWGhQRIgARIgARIgATOggCF+1nAatNdSzbgwcUFordno+Dvz2C41/k8NhbT5q3CTTddi/ixs+pPuXTp37BAhHtkfY1Z2f6n55Arq+krc7DqruGNtvJtoBAITbJBFy22HmYSa8UfXOg5UuovlTqP0A+U/rIfJEACJEACJEACgUeAZr9OGpM9//gDRLbjlbVP+kS7X1/ixmThnTmpvpqjxajwvTNrzp14LkMt86m4/3aK9sZ4AvV91LfNP7vwMRKVplLmsh4Hjj5u4sO7qhiZJlDHjf0iARIgARIggc4mQOHeKSNQgY3PrwBm5GJyQssPPb70P3f4elewC4caKffCN38HaUVKPkZHjcDkmXOx/KX12F5Y5juOawFLwBFnQ89km0SgsaH3beaf4vFfuHBqm8SGr5DlBEV8wA4eO0YCJEACJEACnUCAwr0ToEMcXtJW7sa+n96KlmW7xAX371vqDRjSwE/mIH43b7HfHgXIXbEYmdMnIjkxBrbJC7H5YLXfdq4GMoGeI4wbTd/v2eEQP3i3DN3Rx0x8+Op/ueB2UsQH8vixbyRAAiRAAiTQEQQo3DuCcjPniE5IQkL06WR7o4PiIxHqV1W9/XXMV1+blkrufIyOD8ezGw+2tAfrA5CA+rprltaQWBsueNr886zdJxNbZaxr90m21neNmA/ArrNLJEACJEACJEAC7UyAwr2dAZ9P85++t67+8OwHJyKs/h0QNvw7KC0tRlHRbmzZsA7LFsyQuDJNy6yx8XhpJy3vTckEfo0txFjhI79pR1iKCnrAud/0+9izdagrdcNdS0t84I8ke0gCJEACJEACbUPA5pbSNk2xlTYlIBNPZ4YOMz7sqctQmtdyHPf68zrLsPXNVchIm2VNfK2vT81GcV7W6ZM41e/c+pVevXohLCwM/fr1a3LQ888/j/HjxzepZ0XbEKjZ4Ya9D1B3GKj6pyR7uj8EzkMSK36gEfttcxa2QgIkQAIkQALBT+AHP/gBXnvttSYXcuDAAYwbNw5vvPFGk22BWkHhHqAjs/OlmRg2XaeepuKdorcxLu4s3GrKtmLuTSOh0Sa9JXtLObJSGjjJezed82tkZCQyMjJw9913N2lj0KBB6NNHlCVLuxOo3etG6CAbjs6tQ1SmPERzyinFryr0Yor4dofPE5AACZAACQQ8gf3794uXQmmTfk6dOhWXXXZZUAn3s1CDTa6XFe1EwFm4FndYoh1YtuVPZyfatU/RKVj07hYciBqJHE8f8z74VIR7Spv22GazIS4uDldffXWbtsvGzo6AinYt/RaFwF3jhlOmNVT+xYU+94bg+K9ciPwfG2ziZ+V1vTm71rk3CZAACZAACQQ3gUsuuQS6NC7qNRBspZOEuxNlJUX4/MB+lBSfRI2HWq9e0egbOxAXxccjOrKTutbZI1i9Ew8nplmuLnNyd2Nmijcz01l2LDIFj61MR44V512OPXWWx3P3oCRg6yEJnRJhiXa9gB5DJU78CTHCb3fj5Bsu9FsoLjWfi0vNRbTGB+UAs9MkQAIkQALdmkCHquOKg9vxes5v8KtHl0rk8dOX5LQZuC89HV//2hjEBd8N0ekvrsWtZVh+zzAsle1p2ZuwSDKlnk8Z+pXpMmE1p6G/+/k0yGODjkD4DWb+uWOAWN0jzXSW48+7EHWv1Msds1vyPvW4jCI+6AaWHSYBEiABEuiWBMyvejtfurNkO5Y/OA5R8cmY3grRrt0pyF2BzKljER9uw9wXN6LrpxRyIm/h7cjMAZLnrMPvs0ad/6jExNdHmik//9bYQpAT6Hmlz6XGMVBcZ8KB6veNmD/2jESpOS5Jnyo5Vz3Ih5ndJwESIAES6MIE2tni7sTWVxdj5NT5zSJMTk7FoEHxkDmOUiJkqURFkSQSyvebVSm1izPGyjID7+zLxriErml+3/7id3HzfHkOMWM13l00oUHoR6VzTqW0qN7aPvoqUWosJOAhYAu1wREHRH3biPnwcXIPLxm/aj8DTq6vQ8ycEFRvdqHnSLHUO2iR5weHBEiABEiABAKBQDsK9xK8OHM8MlZ4RHhyGuZIVs+x112LYUMHYUB0NMJaOruzGmXFRfj4w4147ZVnsDRH21iBmxNXYOWWUtx1rn7fgUC8mT4Url+I5AyJIJO2DMXLp0le1ebLxoUj8HiflcjLSml+h0a1he+95RHuqRg/vH+jrXxLAj4C3sytGivecal5EFfzMWCPEXcamfBau9ON3rfbLYu8PYJC3keOayRAAiRAAiTQcQRaks7n2YMSLL+zv+X2geQZeGXlXExOSUCrT+YIQ3RcEsaIj/eYSXdhwRLxjf/1zzB9fg4yRoqSKCjHXcNbkrfn2fUOPrxk83IkTpQnEmnZKFozs/lY63Ijs/3NJzFWUqWu3DHE6mHZnu3YdRwYePEQJMQ28xTCuQdLp6q3PJC+Up5UxLaavnUM/3RfAiF9jDCP+o4R8K5qcaHxRNE68rDEjH/ADrvMma4rBnoOp4jvvp8UXjkJkAAJkEBHE2gHH3f11b7DEu2pc15B8bblmHI2or0ZApFxwzFt3iqUFrwiUc2BDLHe55U0s2OQVVVsfwn9R2eaXufOQvqIEbDZGi4jtC40HMlpIu5Tl+CrQyOh4SJjBidj9MhkJPYPx50/W4sGOCQe4PKMwdYkV7XiP33X8CAjw+4GEgF7mA3hY8xXRf9fhMCRIP7xch9YtcFldfPYL+pQWyjivoo+8oE0buwLCZAACZBA1yPQ5sL9YN7Tlq922pJ38PaiKc1bkM+RY/TwKcgr3oA0iUlz8x3PNhSr59hmZx1WJqL9huTpDU6fX6AuQQ2XAqvO7Db7vtstns6qhkkEch5NQ3/bZDz76nrkvbock0PjrRuntAW5KG3Jit/gzHxDAq0nYJcJ4yH9bOj73RDroF5ft1tC3lUOHPmeEfMn33LBedgNJmZuPVfuSQIkQAIkQAJnItDGwr0Crz/4KDA7F79/ZFzrXWPO1Ev/7bFj8PvduUD+LLy8tcJ/SxCtVyB33vT6iaOt63g67rzFhIcMG3o7chekNTosF7OmTsTNUzNRnr4A7+woxpp5k3COUeAbtc23JNAygdBLZKJrvCwScjL2l+YrJURdaQ5JDHm5xyz+rsSclFLziVjkTzBqTcskuYUESIAESIAETk+gjR2fI/GdzeX4dlhk20RFaaHvYUmTUFVeDocJR9PCXoFcHYm71rhx1zl3MRKT5q1B7cNlKCo6jPJKbUhCgoRGYGB8AmK7a/Kqc+bJA9uKgGbT1RL2RZ9NIOYxs+4skkmu+yV+1Dig9CeSDOoJSQYlVnmdEMusrm01AmyHBEiABEigKxNoY+EuESlEtJ9vo86yPdhdFY+hp8m8FBa0or3tPk6OsGgkJNGm3nZE2VJ7EHDEGTEf8WWfmI/4sqk7tdWNOpmgEfW/NqivfJ9MO9zVEs2ml9neHv1hmyRAAiRAAiQQrATOV2M3uu5qrH92Ad46VAUcrcSRSonLXlGBcrGOH83PR0FqNkrzss7gvlGNnNsHIyM/Ga/seBdTZDImCwmQQNci4M3o2muiCHWXcZ9RdxuIV40mhar5j0SvER/6E6+5EDFRYsmH6oRYivmu9Sng1ZAACZAACZwtgTYW7tLc8U1YulgSCTUqqTMWIPfutDOIdj0oDOk57+B38Tdj6rD7sKl0FUbRqNyIJt+SQNchYLMbQd57srHIR4y3Iex6I+bd4gFWd0QWcbOpeteF6O+HoPJvLoRdJ2JeMr96j+06NHglJEACJEACJNAyAd+z65b3OYstDkyYlyNRX/xK6hxs2F2KvOXzMGlUgt+GllcdcePwhw1LZIccjM56CcE6BbXlK+QWEiCB0xHQyDVaIu+wI/RiEfKj7Yi623xduU6Yia+1u+XB3g/NxNeq912oKzNi/3TtchsJkAAJkAAJBDOBNhbugqL6KAZ4iCTPWI3yvEUYcw5+2LFjsvDKjGTR7tPx0nZK92D+kLHvJNAWBEJifJb50CQbelxmQx9JBqXFLV8RtZ+JoC91ozjTiPnqD12oPUAx3xbs2QYJkAAJkEBgEGhz4V7x6XtYYV3bbLz2i2k4dw/1MHxNQ0tKyfxNPpzWGv+QAAmQgI+AhqDUEvEVO8JGSnx5EfcxT3i+1kSzO/ca4X7w6064a904tU2WAlPnrqGo95HkGgmQAAmQQDAQaHPhvu+9d63rXrBhLpLO04M+bOhNWCBGdyz9DQpodA+GzxP7SAKdTsAr5sOutSN8rPmKG/h7SRYl30d2sSTUSQhKLcX31MF5UCbC7nKjMs8kjqo7TjHf6QPIDpAACZAACbRIoI2FuxNFhZr5Mw1fuTq2xZO2fkMkLh5k9pY5aiwkQAIkcE4ENLykxpgPvdQGb1jKAb91IKQ/JAusuNqcMs0eX+pCtYSodB5yo/w3RszXFkriqGoK+nMCz4NIgARIgATalEAbC/cqFH6iwj0XZRKL+fxLOHpbjeRi86dl598cWyABEiABPwIaYjKknw0allJLzOMh6DlCxLxEsnJ4jAanPpCINn93W6429Vlg/yPJpETQs5AACZAACZBARxJoY+EO9LR6n4rosLa4jCpIAAkWEiABEugwAprF1dZTLPOp5uux9xQ7ek2wSyx5m8SWN3VuSVVR4/GVP5TulJCV4nKzw42Tbxkrfc2nIvSdFPYdNmg8EQmQAAl0EwJtLtzNE+ejKKtoi+mkFSjea0aiZ+h5Osx3kwHlZZIACbQfgR5XmMmwPa8WK/3XzdfngJUhsPcVK7243diM5QIVq10yCVYi3UhUm6PzPFFuNrlQs9uIeddJivr2GyW2TAIkQAJdl0AbC/dIXDtOo7gX4M9v7zhvahVbX8ej6nkjPvNXJ557fJrz7ggbIAESIIEWCKgl3utyE3GT+Urt96MQhKXY4LgIiMrwfc069xnBfuibdVbG2KoNLlS+baz01R+4LHcct5uivgXUrCYBEiCBbk/A94vSRigGXjXSamlFRjrWFp6P1X0PFo/M9PTqCgykbm+jEWIzJEACHUXAOyFWz6dJpCLGm6/cuDccVtbXHleKj328seJXv+dGXQlwaitQ+oSx0p/4s4lF7z5lot90VL95HhIgARIggcAk0ObCPe4LNyHVutYCpCU+jK3nNKe0BC/NvA2LPcyS54xHQmDyY69IgARI4JwJ6MTYniLetfSdFQJHnGSJlXj0fWaZr2bHxbJBNLxGvfFGudHXE2uNlf7482K5l3j0GgXH+V9a6i2Q/EMCJEACXZhAmwt3RI/BEwuMdJcA7BgZMwI/e3UrWhuGvWTneswc0R/TV1g+Mhb6ed/5UhceAl4aCZAACTQkENLXiPmwa+wITbTBHmXDBT+VWPRSIr9tQ/iNZrvjEnkVve4sAk7+xQj3Iw/VQSfHaoz68hc9k2UlVn1dmdnudlHgN6TNdyRAAiQQPATaXrjLtY+Z/ZR4pXtLAR6dOhJRtnFYuHwttheWoKK6oQtNdUUJdm5ei4V3jkP/YRPhp9mRPGcdJie1SYgab4f4SgIkQAJBS0Cj3oT0McK919ck2o1EwLGs9PeYr/OYH9uhlnp7H1lizGVqxJuaj02km4O3GDecynyXiH0j7E+uc0EnzOriFfhBC4gdJwESIIEuTKB9QrVEpuCFDdnIHTvLD10+5mfKUl+TjGTJilpQ4LOs12+qX5mBP8yfoAkPWUiABEiABFpBwB5uRL3u2nuSWe+d5rPRxL1lLPcaGafuiGnQdQwi2mWRV42I0++JEJQ9VWdZ9jWSTkWOC31mhqBWJtfaxI7iGGizJtfa7L5ztaJr3IUESIAESOA8Cfi+zc+zocaHx47JQvGmlRBt3kIpOL1oT56NLaXLMZTG9hb4sZoESIAEzp6AV2yHRNvQY4gR3pH/I1b6/vL+Mpsl2rXVPpl29LhcIub0EKEuvvdanBLeUhNSafnv1+tkMq3byjR7fLmx4qvvvfNzk2lWM9BqcVXSNccCwT8kQAIk0AYE2k24a99iR92FbaUFyJ7Rsnxv7hpmZK9D6bZnkCLZC1lIgARIgAQ6noC9t/Gt13CX3pj14WMkGZUnfr1GxrFfAPQYBkR82fyUhPQTl3vV8DVA5XqPG85r4mu/yqxr5lnXCRH//5ZkVZ7tGgbTVW4y09Ydp8jv+JHmGUmABIKJQLsKdwtE9HBkLd+G4h0bkD0nvWULfHIq5mS/gh3FVVieNQHU7MH0MWJfSYAEuiMBDXeprjmhlxqLfPj1Mpk2wQj+mLmeybTpdkTdaX5qoh8Vn3x5ihoigl998LXU7hJL/iEJniNuO0d/YAR++a/F/1787rWULZHIObUi9reZRetqPxOhLyEyOdFWabCQAAl0JwId5j4eO3QMshbp8gLKSipQVVtbzzk0PBKx0QzUXg+EKyRAAiTQBQmEahQcKY4BunjcdKb77Ef9f2nEfu9p4kMvVnstPa+R/eR/d5WJc99zhA0a377XV81NwNG5Tgx8yWFZ9UMTAX0qoGEyo8TVx/m5HFctTwXEBUij7ITIeXVyLwsJkAAJBCuBDhPuPkBhiI6VxVfBNSFQcXAn/vneJuw6WG7x6BkVh2tTb0ZKQmtIVWDn1g/w8c79OKE/dj1ikJxyDVKGxpEtCZAACQQdAWuCbbjpdsTNRtiHjfYJ7uiHjMDXPVS0a+l1q4h942ovLjxmX51sW7vHbQn34ytciJymbblxbKkL/Z8PQfnvXAhNkuRYX7Lh2M9d6PuQHbWfil++uO5oKM5T/+dG6OUi9uUUrip5UuCJ5mOdkH9IgARIoBMIdIJw74SrDORTVu/Bi3PuQcbS/GZ7mTpnNf6waBpim90KFOYtR8bNmfAenZqajPx8T6SetAXY8sIcpMRymFvAx2oSIIEuQkCTWXlL5DeN2O8p06t6Jpv6fj/yif3YpWZ7xASZfCur6vKj0XOsIm72Lk/iker3XRJSU3aQG4Ljz7twwVMhVlZbFfrhN9tw9BFTp248atHvNdGOyr+7rPCc+pTA+V+xo8gEYPXdt0fIeWS+AAsJkAAJnA8B8+11Pi3w2HMnUL0TD4YPblG0a8P5i6ej/+TlKGvmLIXrFyLRK9rTl2GfPErOy9uGqn3vIF33z52Pkf0zsLW12a+aOQerSIAESKCrEbD1MAJaI+mEeKzzvW4V1xsV8BJJJyLV/DT2uS/E8tlXH34V7Vqif2hH2BgV/Db0tiz44q8fZazyut15QIT/CdH68qV9Mtf46Z942YXKPBNHv+gWk8ek8q8uK8ymHnPs/6uzMt9qBlx1A9Ki1n5nkRzjFt/+AjNp14q1L9/zLCRAAt2XAIV7p429E3kL7pDcslpSkZ27CfuKi1G0ewtWL7Bkt69nuZlYsHaP772ulW1ExsT5nrrZ2L1yJhI8oTPDEsZh5e5XPNtyMPK+l1qdudZzEF9IgARIgASaIaA+8vYwI/zDUsxr6CAR+57IOjoR13GhTNi92Ibo7xux3yczBL1ukRsDhw1xr5s6y2r/ZXO8+uXbe4n47ymLx0Wo7ogI98PSAdHpmgFXBXz1e25UrDTC/vDdTtTslsRakiW3dIHxETrxJ5cVnlMn7R571tTV7JTj/mWOqZInCJb4lxCdtft9NwM6+ZeFBEggOAhQuHfWOJVswIOLxaVF4tUXlOYha9IoJMTGIi4pBdPmrUKRJLDyL0uX/s1PfDux/sn7691j0kW0JzXyhnEk3YKVXv2fMx0rNzdns/c/A9dJgARIgATam4DX2m/vZaufoKvJsOxRYv2X2Pq9JpifZb0R0BsDtezHPh1iPQ3QOn0KoKX/r+RpwKVAaCIQmWGO0XZ04q+66TjkxsFbdIKultod8jRAfgo0gk/Fb42YrxA//8q/mgg9RalOK1KPhurUOQFayp6sQ63E71dXoHLPTUPVRhdqdhmxr9l39aZCt+t8Ai366qqWNuWGoK7U1LmdvDmw4PAPCZwnAQr38wR4rofv+ccfoJ7or6x9EsObmX8aJwms3pmT6mv+aLFPuFdswTIV/VZJxtTUwb796tcikTp1dv27Wc+9A893d30dV0iABEiABIKTgAp6axG/ebXuawlNEuEeL/Xi8tP7G+bnvcdQ8ccfa9aj7panARfJ/hLdJ2ae52nAvfI0QN2EpL34fIf1GiH++73vMG32mmxHSIy4A/WWm4FBhpUm5VK/fy21YvXXpwIa0vPUR0acq+W/rkjqZClbZG4Ajv/SBa3XcnCS3CCIqK/MlxuEFzw3CE/LDcJeuQEQd6HjyzxPEMTV6NR202bFH+UGoU62i/uQuhFp0acJ+gRB29IbBy2aJ0BvGqx12cZCAl2NAIV7p4xoBTY+vwKYkYvJCY1M5X79+dL/3OF7V7ALhzy+6iUf/QO53i2p9yG1hTbiR6T64ubn5GAbfd291PhKAiRAAiTQAgGdROuNoKOTa/XpgD4RiLjJSIawUZJVd5gR9n1ny9MAEf36dKD37WZ79CPyNEBuIkITfXMD+j4QUr994MtyjJxDIwX1nuy5QZgkNwgShcEukaF7SMhPLXrDYN0kyLrruP4xcwe8Yr7yb5Kp96DUlcg8gWxzA3DiVbkheMsI9sN3SsIvEe86n6D0x+Zm4Oi8Opz6WIT+f93QdS361KBqg+cG4ik5RoS/PlHw5hLQeQd6w+CqkDkInnkL2oYmD9NS9a7cVOjThWM+FyRt33rqIG5LmmFYi/W+xqzr/iwkcC4EOli4V+Pgnj04WNbdbb+RSFu5G/t+eitalu1iyfAf0dQbMMQKde/EltdW+2+BmerUoMp64xgwyCfcRepv/pTuMk0psYYESIAESKAjCeiNgBYN+xkSa9Z7DJabA83WK9vCrzPSRH3/dbKwlj73yFMBEfs9r7Ih6n/N9r73h1hRexxxcoOwxDxBiLrLjt5pZvuFr0l2X2lPXYyi55q66IelzctMEjDdV4veKHiTiPUYLk8spCmNAhTieRquScPU/UifLLhP6hEiwiVkaJ3OQZBS/U+x+p+SJwyFmjHYCPIKmZBcu1P2OyqJxeYbgX/yTyL85cZCy+HpdeKy5LZEv/cGonRRHaq3SLtlbhx51HNTIYnIvDcQpYvlGLk50JsKbV/LiTXitvSp3CTIvIXy35g6jXJUvdWc5+TrZl6Ds1jqNvm2Ow9Ln8V9yVun771PLdTVSW8s9EZD67VoZCRNeqZFb4a06FwKdZNi6VgC5lPbUees2IaJgwdj4gvbWn1GZ8lW/GzmZIyQR3/6+G/EnQuxcU/wm46jE5KQEH062d4IUXwkQq2qKhTu9brJSMWQfvDMZWp0gLyVJFf+pPI+2Nt0H9aQAAmQAAmQQBcnoE8FtOiTA51noDcB+lRAi7oaqQuRFmsSsWzT92GjjUTSMJ96c6DHmlwAkujrS3b0+prnZuDREOumQ5OD9ZnhqfteCHTOgd6YeBOLRUqyMe/xA//osCIahd9gR8x8c0zf++Wm4krtIxAlNypaesqTDG1XS8R46YP84If0kz57bmgc8bK/TmzWmw3PjYZ1kyFuRVr0SYVbrHtuyUNQu9+qsuYg6FMKt1gHvU8naj4REf8vc4xOhtZ5EE6RDOXLjNjXORHVm0TMS1Sjw+mem4rXxK3pObNdJ0trRmN9EnHkYbNdoyWpO5TeBBy605gYT77lqr/BODpX3KP2yVMKOU5vWrSU/bwOOolabwqOPiZZk3VS9ofiZvWKOU/5Knn6Ie5UeiOi7lNa9GmJnleLulnpsTX/kZsiz1MUPafeJOnNR2WeOaZmh+/piHVgEP05C+XYBlcVGopB2kyfUDidZSgqPCwZVEMRNSAecdGekCgNTnMQi/uPxHyrLhXLcu9D4dKpGDt4PlYWlOKu5pzDGxwf3G8+fW9d/QVkPzgRXkISeKC+pKVcXl9fX+ldiRyEiWkSFTLXUyEWARYSIAESIAESIIHAIaA3EVr0xsBbegw2a94Mw/ou7Foj5kNEBKh496/T9d7fMMeb3AVmPTLdc0wfEfsJpq73baZOj4l53Dyp8IZA1bp+C00dLvRt75vlqZPtF/7ZSMfeU3zt9H9B3J9CJAmaiOaYH5l664mG7KrX530iEn6D7ONxJ+iTZeZPuEVLe29oeqnLlNyA6I1WxFeNwdYhuSS9LlOhibLuEUF2uSYtNs2R4K2TCd5WnXbR02W9adGbF92i4Vq1OD+X3ApygxSMxUe9I3pfZUYrN3MkQkNjkDh4GIYNG4z4mHCMe/BFHGzk81Gx9VWPaAfSl2Vj5qQpWPT2biyQpBoZyT/Azkb7d8QldNg5nDuxPNOjuFOX4c4U+SRbpRS75C7YVzz/AnwVfmsO+It8vw1tshonFv2QH/8YP7noInzxi1+0luuuuQbPDxiAj77xDfnH6etb6aJFKLn/fglftrv+3BXid691le+8U19X9e67Vl35b35TX1d74IBVd/Txx+vrdEWP1cV10vPsUurKnnrKqqv55JP6fSv++Eer7uSbb9bXVW/ebNUdX7asvs55+LBVd3Tu3Po6XTny0ENWfV2Zz9Xo2LPPWnWnPvqoft8Tcoek/dFXb9HtWqf7e4u2o3Xarn/R82q99sNbtH9ap/31Fr0OrdPr8ha9Xq3T6/cW5aJ1uvgX5ah1ytVblLfWKX9v0XHROh0nb9Hx0zodT2/RcdY6XTjmOkGPY85/5+qLzX/n/G4335Ld4bv9xMurrd+Aqvw8yz1Jr/zUtn/i6MMPiIX9N9YTC62rK/0cpT98APo75Bhonn5oeNVjTz1gHe+Iq6zPrVD93tNWnevYjvpEas7/vorSeQ+g+v111tMRbRN1H+B49gNibV+GyDvMRGtb72KceDkLyr63TLBetGIhrrt1FFY+GmdplK8+eg3GPjAae/c2EFRWc4H+xyaPIczzhQ7oafX25QhPzmz5TMkLsG/LPHjnWm5dPhkjPeJ1WUE5Zg63nLxRsXU5okZmIn31DqyaNrTl9oJ4y86XZmLYdJnAilS8U/Q2xsXp7aOWErw4czwyVnjcZdLXwb1qgtnU5G8FXpwchQyPjkzL3oI1WSlN9jrXitjevfH/JkzArSLS6+LjTTPycXLs24chQ4ag//XXW+5NuqFW5ja4qqsROmiQ+A7K7bEU58GD1o+bY+BAsR4Y84H+2Gl9SJ8+8qjyIms/PU6Pt/XoIf6MQ6w6/XPq3/+21nsMGyZ35+YetFb+EboqK2VSVKJ8ecjzQynOQ4dQd/QoHP37y2NLmf0kpe74cbnj/lwmQokL0iWXWHXumhrxFfxUYi07xK/ycqtO/9Ts2CFWBJf4RV4mlgPjsFQr16jCOPTii+Wu3dy2q+CuO3JEvnQukJBsA6zjXeXllkDWvmiftKi4rdm1y+qz9t1bav7zH7EKOK1r1GvVUrt/v0yIqrBYKBMtdSUl8piw2GKm7LRoX7RPylYZa9E+a9+19LxSnr96il6jXmtoUpLEozbPcZSFMnHExYm1w9wkKjNlp++1XouyVcZ6nB6vRb9CvDdKPa64gmPOMee/c/13wX/nIsy673e7bbDRJqFiba7esRPlZU7YEodYv2Pi9Yuokwes7/aKXvGoC+8jXgjyW1Vcgn4oRtiFF+Bw3QCorchZcRKu/XvRP6EXLhp9KQ5K9JzPdtfBUWi+23t/4SpcJX7/J8Xv/MNXd6GuuganBiTBFRqGr37Vbv3O/f31MlRGxsHVOxr6U3n9laXoXX0YH+7qg70n46xzu+W7feSAfRh2dTh2VV+K998XaSjf7b0PfQL9eR5/71WQnwT8Vlxmwkv2yA9wNaovGITvPWZ02S+fOAD3sTJU9x6Iml798L8yD2FA+DGs/+3n2FMchePhF6FOvGHGXX8Ko+L24r0PHHjj48H6E2KVL0R+giliwT/SZyie+rn8zsm+EaV70aOuEj/6lfxWyW/od78rlUf+i/Dqo6gM74+HfjIQSeLu9PySUnz23gHUhEaivPclmDrVjlu/7ET+yv/g1TV2HI64XFieQGzsMTxw6z9QctiBn//pRtTZQ7F9+/u48cYX8MYbb3i7EvCvHSjcJeHQwq/g5vn5flCSkT5jHC7uV4k3Fq+wwiOmLyvAqpnDrX22v3gnkjOMtS97SymyvFZn5x48GDoYS0XoF22bByMp/JoN8lVn4VqMTEyzeCyT657pvW7rusrw7LgYzPJgTF6yCdseGdXCFbevcI8SwTpX7mZ/8IMftHB+VpMACZAACXQ3AqdkEqMKURVf+ir2EXnKbhPhJ37JFaZOt6kgvEAy1x4R/+O9e80xun+UuIyMEL9uFaP/+IevXnQkbvdErnn1VfG5rvaRveUWiXcv/uT54lOtD3brxMdbz/HFL9pwrbiYbJXJmuslPr3W6SJ2HNwnMfEPib/0kiW+ehXVzz1nfCwyM+twXPyixQZiHfOTn4TgcvEtf0oiz2wSf28VwWIDwTTJoPvNb9rFLVXCWx4Hfiex8XXbtdfaoMfsEz/uRx5Rf23TX7EN4eWXjTFu+nSn1X6InFKX+fNDLDG6QuLofyx+21qn+996qw2pktF3k0wwfeMNT0PS3GCZ1Pvtb4s4lUmkL0hoTd1Xj+nZE8jyuLcsE7/vUx5XWb0+7etAsXb/VaLt6INX3V9tRcnJNlx5pQ3/Ef/wDz8059BtarcZKyFFy2VC7oYNbmtfvRbdNn68MZrlie+430N2jJaIQX362PCRhAjV8VUeur8K7Ytk/sB/JeqO2Ojqi9q/hgyRmxyZECs2LGtf3V9tZXqNWg5IPgEdC2+5UFx5esh8BW3f78E71Pakn6FKmbCr9V4maqfS/dXYJPcpVlFvgcTE/kEl3M0nx0uhPV9luvXfPKI9eUY2VjwyBSOT4uqjqiyaPxcvzkpExvP5eFaEe7REHd/+Tk7zPXL0x4g02ZQ7H+/teRhTkozVsPmdg6y2eice9oj2Obm7G4l2vRaHfCB91zQozFiAfTUtr5W3vIlbSIAESIAEApSAS/yGVSB6xbCKrHCJyKLCVh6KWQJWhZkKkyuuMIJl40YjXL1CdbK4C2j5k8RSP3HCtKUi6Gtfs+FCyfT65psufCITFPUcKsquv95mibXNm114TSYheuvlISMefDAEn4uP8KxZMrlQPCL13Hqev/3NSIpvf7vOEkwqvHRZtEgFr4pVlyWgTb0N3xCfbBXcO3e68frrPpGqD1ZVuFdVweqT7q/iy/PA07oOFe1eMaoVXkGnAlEftoaIv7Ueo+JRi94kqJD2iri+fU19376whK+33vOw0zrm8cclo620p3XavuehJzIz7cjIEJ9paUL75nmIjK9/3SYWaXc9B6sR+ZOYaMMfZTJqc2X16ubrZ3gmuTY+ZrRMmB09unEtMGCADT/8oXSmmZIpmXubK1+WaDvNFb050aVxUTGsn5fmyrhxzbd1tUzQNd7lDY/Sz5wK78YlTNxmRoxoXGveX+yXVMx/D735kwfdTUpEhPjJmwf8DbZpoBPPA3kZX7+7vwZ7Be6b5j8x7dHfquNQr+PUBevw9rwJ9YK9/lRhCfjW/dniArIGuyqyMCpSIqLInbkpaRg1xDy+N+/DETMoWVYL8NlB2anLCPcyLL9nGJbKlaVlb8KiSUnmchv8deJUAwXu8yNvsJu+qd6Hd3J9taMT5ZuLhQRIgARI4KwJlEmIPhWSKhZVrKonnwqDwkI3iiXChYpd3a7WRLUqqgX5vfeM4FYrYr9+NsvSWVrqxs9/bqyTXiGenW2EVVZWnTzSl8gccg5dFi4MsaygP/2pC+++a4StCkVj4bVh82a3JYZ79pTII2JhHSax1Y1wB/7v/8RtUX7hvaLXe8Fesav7qxD2imG1QKvA0v21LsEzkVFF55QpRgirgFWhq0VF168ke2u4RjmRY/Rc3vL73/u98VbK6/0SvrG5coNEVrnhhqZbVJB9//vNH5PumXTZ+Kgbb2xeQOr1eK/J/xgVildf7V/jW1dx2Vzp3Vviz0tCqsbFLhMqMzKaP6bxvnxPAudKoPl/Xefa2umOky8C1Zt3TL2pqWj3HFdxTJ4xIcoT9lAe9fi1J4f7lSqUHimw3q//vwN4ZIzxW/bbIQhX1ZXodmTmyOOqOevw+6xRLVxDNK6YkAp5Hmhtz13zESpkX+Nl1sIhnuqUKwecfgduJQESIIEgIKBCWC3QagHUouJZrcgqSmskwY1aC6MluoSK192S2dMrhHWqh1osCwrc+LMk1fHWqxidJ5lEVYDff3+d1bZadFVYv/22hPoTQTZnjlqq3R6hahOrs92yIqtlW9vziuBx44w7gB6vQl6FbS+JJe6dBqTv1TJrxK559SJ/6CGJqCE6VUW1LupiomXu3ObFq1o5m7N0quD9wQ+aP0ZFf3Plmmuar1dLri6Ni1q0PdNhGm/iexJoUwLiICOJemslZ02NvOpSa71qrZgy/eqa1kuQyvrtEkjSs7+v7obHw7F/ZZt2t90b6zjh7jEMb926Dxg6tMmFlWx/FXeMnS/1yRCXpCaliV3ZY4338xppckwwVWx/8bvG/3/Gary7aELLIR7loq4ef4f8NcId+YUolR+XyGZG0ln0H8h9gKfMxhcSupBLkfey+EoCJBDQBKok7rOKWBXW6leqlloV3OqW8emnPiu2ulKoqNZ6dedQ31TdX+d5P/ZYCEok+2S6xI9Wwa4uISpsX3lFMnSK7/Qvf2ncP7yC9zvfMaJShbgep1ZV3aaWUi36WP3GGyVOt7SjPq9eFwh1p/jFLyT+tuxrFp9gXbaseSHckuVXrd+6NC7q4qL+v82V5izCze3HOhIIVAK14ubslKUWVbLoa7UIZxXdDQW2imjdx+xr9vMeZ4S5imsjsOV5lhh8e0p0R4l9jx6yhFqvEkYCEmHfr87Uh8q+cksse4XLWpTsocf0sNqQW+MG+z/23MuINXEsAhVpk341I/ea7NM2FZGDcIf4pWdOH4bKPSsx46sjESfx3I8Ufoy3Vz6P+TkeISruLyte2owxMwdiW72bxxUY2MCkXIxdnm0NvEbapqcd3krh+oUyCXeF+McsQ/HyaS1azzcuHIHH+6xE3n3jMVt6udTq6WJ8ULRAHgE2Hcoyz6xz3S11yW1IarqL1QL/kAAJkIA/AfWdLi2VVPAintVqrPNq1P1DI1rk5al12whuFcL3SKKYCkkF/+CDxq/Z63usolotzQ8+6LImJaqlWV1LHnjALhPgjJV8/34z0U1dPVRca1Hr9w0S61l9U3X/mBjTMxXbf/mLEeqmxvf3pz9tXlTfckvzVuQ4SaajS+OiVmRP4KnGm/ieBLocARXEXuGswtortn11KsJPiY270nr1bpeprtZ7tYAbK7axhKtlXOWyCmaHJMYdawAAQABJREFUmB9DZfG++gtsh2xRIR0hsxm92/W1h3VcuGzzinHzqmK7vUqVTJgGhXtLeKMxbf4yZOZmImd+hizN75eano6czNHIed5/+2IsWj4eT80cZ4naPS89h8WezalXDfTfMejWSzYvR+JEgZGWjaI1M9Gs049TJuq++STGzi/Ayh1DxJkwEnevTMfSDGNPfz53C6Y0ca1x4v3XX/XwSMYj6dcFHRt2mARIoPUEdAKjV2yrpVrdPIZL+naNrvHnP5voCt4oC/feK1kfRVQvWVJnRZDwCvTvfc+Om26y4w9/0GgeLks4qy/vTTcZv21tVy3e6oaikxS9IldF9pw5KtSNNVwt2V4h3pKleqJko2yutCSqdUKZ1x+7ueNYRwLdiYCK5BrxTzglorq2fjHi2ye8/cW4WsCN4DYCvMqyaBtx3dMjtpu+qrxuKrAjLEu3sWSHynqoSG1jCe9OY9BZ19qB4SDNJe5cuxDD0ppX7cmzc7HlmUkoWv8zEbOP+jExE1GRnI4FUy6QcEnG1mzFOC/Ow7hm1a7f4QG6WrH9JUQlT6/vXWpyMvKN6359nVSJ/6SnMnUJivMe8Yj7QiwckQjR8lI01rtwiKs/DM7CVxGaONWqSF2wAXnzxvg2ttEaw0G2EUg2QwIeAv4+1Nu3mzBqKqp1SZHU5xouTQX1W2+ZsHoank0jZeikvw8+cOHJJ1VsG5/qhARICLoQy+dbw8SpUDfbgK98RUWwDXv2mDBtKrhVoKuFm4UESKBjCBjP7UqR0yctEa5CXK3b+mrcTFSUGzcSFdvqOnIKJ6zt6usdKpJahXVPMWmqK4m/hVvXdbsKalMfLq9NhXnHXGngnmX48OG4RHK5BFMc9w53nhg6aR6qir6K3/96FdZsqcSgAZU4gssw9e5pmDQqyRrdhAmPoLQgGc+9/BaqBqZiTtYkFL/6IAZPXeoRquZDkDznEYwNUtFeJqL9Jj/RrleU7xXo5vKsv/5Vs++73c8in4B57xagNCpZXGbycXP8ZKze9FPcNDAcR/f/E/PGem4IUrOR0w6i3a+LXCUBEmhEQCdIajxnDSGnE/tUYGs8avXzPnbMhNZ74AHz+Peuu5xSByuKlgprjdShft0ac1rdTrxiWydIatFIF1//uk5cNL7Z3jBoGqv6j39sasVWH+7vfrf5R83q/sJCAiRw/gRUWPsEuBHfRoh7RbluN6LbK85VfPcQPw0V3+bVt95T6sMsQW5cTrzuJ+pOovvqe5buSaDDLe7ng7mBtT59GYpWzQzS5EsNEyO1jkk6tpSvQkoDX385UuLjvzh/FjIW108I8DSXjAWrn8PsaWNa9Jlv3Xlb3osW95bZcEvXIqBRTDSLoUbRUBeQf/1LY17DCt2nAn3cOBPzes0alzVR0i76WSOCpKbacO+9IVbiEE0Yo5MytV5dTDSZipaiIrdVp/XqDsJCAiTQeQQ0TkmNJbD9xbdaxRuKbq9VvBoVYgevtCzeXgHeE70ta7f3vQptFeJqAddXbz3Fd+eNs/fMwWhxDyrhrqCdFWUoczoQG91YwXqHoXu+VpcdRNFhmUUmcTMdjigMSIiVu/X2LRTu7cuXrbcfAY10ou4nGjZPRblmAywvl5C1suhEy1mzjIV65sw66ARKjdGtYlvjamtca82QqFZyjUKiEzc1eohmbdR2NZ61uqGwkAAJBAYBdTGploDUupwSoa1iW1+rcNzz3levPVZB7RXXKsKNEDeWbm+9EeO9ZT9TbxNPb5bgIxCMwr3DXWX8h9VZXYEK0ZqRIsJNR6qR9+wCfHjBRNzzzTGIbqZ3jshoP3cR/9a693pYdBySxBrIQgLdnYCmKN+7F1YYwJISTSSjWSBNqvDsbJc1gVNjZV93nc2K3a3uK1u2uC0BrlkW/d1HFiywW6ECvRMtvWzT0pr/kdZQfywkQALtT0CjmVRZQlwFuQrxE/J6vF6U+4t03TdMwgLqov7g6oISjr7oI8/sdV1DBprtxle8/XvPM5DAuRNoRhqfe2OtPbJk+3o8M+9RLM7VmZWp2FSeJ5lS9WgH+kZV4dHpY2VJQ+6OlZg0lGq0tVy5Hwl0VQLqM64ivLgYVihB9dvW9Om7dplIKpptUtOQf+lLdokB7oZO7FQLuVrBNQKKFrWKP/10iBVeUMMPeota3TUiSnOlucQzze3HOhIggbYjoP7iVThmWcQrUWq9mvdaZxYNU+gvxsNFhqsol+fN8jq4gUDXiZssJNBVCHS4cN/64kyM1Jjl9cWXKVWFe8pdz6B05LXWxM20YTHI3lCErDF+4VLqj+MKCZBAVyGgccP/+U+fCNdQhjp50+l0Y+rUOisRj1eIL1xol6Q5gKZoHzhQ43ybWN9xnq+Ju+9u3hqu1nRvop2uwo3XQQLBRkBFeSXK5G+ZvBoRrpZyU3fMerVJ+pxwifEdgRh57WMtMUiQ1xGy9JX6aMudJdiunf0lgbYg0KHCvWL78kai3VxC46yo0cOn4W8bjqD/2FmYNXYiLivagglxHdrVtmDLNkig2xPQuOFqJde43iqyNSvmW2+5ZEImcOiQSU2vqeb/+1/go4+Mu0q/fpocx6BzOGz47W9DrEmdjWHefHPzAr3xfnxPAiTQMQQ0qorXIu599Qpyfa/Wc5PPsq8lwFWE63IBksQmHiWCXN+rKG/vGVodw4NnIYH2INCBargar/8s03cNyWlILsiVPKnWfEpfvWctdkwGlqXNkoRNBZj45N9Q+8wEjx98k11ZQQIk0EkE1FJ++DBw5IhbsmrCiikeH2/DihUurF3rssIhqmX829+2W8JdwyNedplNMmNqWEN7vUAfPNhmxRxv7jI0EgsLCZBA5xNQX/KTEsD5JI5aS6X1WmoJchXmJhumV5RHiwjvg/4Y4ifSNVOmPC5jIQESOGcCHSfcqz/FP3JMP2ev3oLF01Lg2PMiQgf/roXOR+LGyelArhy09M/YsXgChvMmvAVWrCaB9iOgGTk3bnRLSENYKe8PHQIWLbJbYRFnz66TzJwmVrnGHtcJn1omTbJh2rQQSerTUHRfdZUNurCQAAkEHgG1mKsYVyv5CZRYgtwn0kutSCvqvqJLL/STv4m4BNfWC3O1prOQAAm0L4GOE+61tRDDHDBjtSXaVYNXVJ467dXt26X2eC2HUan+NBTuFg3+IYG2JKDJgdSqrRM81651Wy4sKs7VOp6dHWIlAcrLc+Oii2y4+mqbFUKxp2eu1wsvNP8Vom4xLCRAAoFHwIjyYrGdF1vi3N+CbhebeS9xXFFRruI8CgPlvyvlvYr1frSWB95wskfdkEDzv7rtASI0VOZ7A2kpw1unv6u348+LvcK9PTrENkmg+xDQEIly72yJ7o8/duOVV1xWUiD1NVcr+Y9+FGLFMFfreXKyDV/5ik3SQBs+ERE2PPFE81FXug9BXikJBA8BdWk54RHm+loh1vOTsuirJgDqLUGVe4sTS6REYImVCCwqylWs07c8eMaYPe2+BDpOuIcl4oZUIPMP+SibOVymn5yuVOPVOenwxZ4ZgAg+gTsdMG4jAUko5Mbnn5ukQBriUH3M33xT69zQuOX33mvHhAk2a10zfV50kV0WwBsaMSHBhrvvpqWcHyUSCAYCGg6xQp5GG8u5z4KuLi52sY1HesS5WtAvRool1HvLOkMjBsPoso8k0DKBjhPu8jVy4/+bAUyfhYyFiVg5bxIiQz3P2/1EedmejXjyobES492v02nXIZFuMn5AuNqdCWg0ln373JZlXK3hS5bUYfNmt+XScvHFNnz/+3axrMNKJDRrlg0XX4wGvuYaz1wXFhIggcAmoImDvC4tKtJVlHst6LrNWM5j5de1Py7EVdarWtEpzgN7XNk7EjgfAh0o3IGh036M7F+twKz5aYiRZUZ6udX3D/6eh88OfYy//u7XWJHf1D3mlZ9/S76QWEig+xBwu91WiMQDB9wYNcqEPbz33jrJCOq2YpEnJvomed52mx333AMrnrk/oSuvpDj358F1EghUAm64LIFejv9KRPODkg/0kCz/tSaHqgtLlMhytZb3w6VIxGjLeq4ZP1lIgAS6H4EOFe6SxxBZb+4G7hmMWTm5WJFjgGdOzG+RvCZgmpJEc3uLgLgh6Amo/7nGMR861GaFVZw7tw7790MyfprQiaNGmUt88EG75XceFtZQkA8Z0vB90APhBZBAFyagDi7lYj0/hs9FpBfVC3WNYd5XnFrUeq6uLToxVP3QdcIoCwmQAAl4CXSwcJfThiUha1UtvprxR/zox9OR04Jmn7FkNR65dxqSaFTwjhVfg5yAhlUsLTUTRPfvd+MXv3Bh9243amoA9TkfOjQE4eHAQw+FICFBkxY1FOQa/5yFBEggOAjUiL3cWM99VvQKsaS75b++iLeEuYZTvBTXWxZ1urcEx7iylyTQ2QQ6XrhbV+xA0rhpWCXL8yWF2HfgEEIHXoqo8gM4GjoQiQlxiOyknnX2gPD8XYNATY0bPXrYLGGem+vCrl2w/NK/8Q0bMjND4JDP95QpNgwapP7oPkHeq5cNl1/eNRjwKkiguxA4IUmJjuGAx4p+0LKk10oO0T4i0M1yoWVFjxQrOl1cusungtdJAu1DoNPlcWRsAobLYpW4WHgynVtvD+YtxBP7J2P5XcPb5+rZKgm0EYE9e9zYsMEtAt0NXZ882S4JiGyoqIA1EfTWW2249FJfBJe4OJtkDfUJ9jbqBpshARJoZwIaB70MhbLs9ywHZDJomEQ6TxCRHodBuM4S6+qbzkICJEACbU2g04X76S5o5z/nY8WrPfFjEe6xp9uR20iggwicOOGGxkFXC/rOnW7ccosNN95ot+o05OLXvmaTaC52eBMQfeELNujCQgIkEHwEfCL9gIh0XfaLSO9h+aJHiw19CMZJaONLJDZ67+C7OPaYBEggKAm0rXCXpElzvzUPByT3eYTgiIjQv1rCLd9ds37mv+Hi6Fv6+RYsXaH7Pop/FH4PUxLatqtn7gX36O4ENKPojh1uEejATTfZxO/chqefduHECTORVK3o115rRHlamon80t2Z8fpJIFgJVImji7GiG4FeKlZ1I9IvsoT6YNxoiXS6ugTrCLPfJNA1CLStGg6T9MjluQ1jsLcBp+dzt2BKlie0Rhu0xyZIoDEBDb/42WcQ9xW5zQy34Qc/qLOs6FddZcPgwTYrwoseM38+Izw0Zsf3JBBsBDR5kYr0o9iHUll03YU6S5jHiAU9CWNwDdLpjx5sA8v+kkA3INC2wl0cWr6iSZbyLVN5m+HLn/Ucdt43CkPbuLdt1kE2FLQEfvtbFz76yI1PP3VbSYuefdZEdsnKstMHPWhHlR0ngYYENHmRCnS1oh/FZxKQsURE+kXil54oMv0afAFT5blw34YH8R0JkAAJBCCBNpfCg6//slzmCqQvWI37vzoU3qSooeI2s3f5MKQtVQqpyH7lh0i9PBa1tbVNschBxe+twsRM3TkN6wp+JHPzWUjg3AkUFrpRUGAW9VHPyQlBSIgNPXtKMt/pNlx5pd2ytHvPwImjXhJ8JYHgIuBEjUek77NE+lHsld+hcEukexMYaaQXxkcPrnFlb0mABAyBNhfujoRrITZ3JE2+DaOG+ydOOoh1ebIhdQF25M7D0DPFZx+egi0SB3dk5gr8eftPMYGBZfiZbSUBjZf+6adm8qj6njudbmhSo+RkG1JSbLj7bvnJFtGu5Vvfom96K7FyNxIISAIaL/0IdsvymSx7rIyjGif9AnF4ScSXMBLT6fISkCPHTpEACZwLgTYX7pAvzPvX5aK2cSSsikNYXwDMWfedM4t2z5WkTLhO1lZgxa/+gaemDe02CZ6dZXvw5rp/Y8Rtk5Dgf+9zmhEuO1iI8mYeXiA0FEc//DVGzuuD0m1Z8ni465XaWrdcpg1VVW7Mm+fCJ5+4ceGFwMiRRpw7HDasXt0OH/Wuh5JXRAIBT0AnkZZYQn2PJdirRaqry4ta04fLE1pdl0wJAX8d7CAJkAAJnAuBdvh2c2D4hElN++LxmUmIP5Op3Xeo09nDvMl/F/uqZ6KBAd+3W9dZqyjEq79chKmP6hyBVGwqb6VwL1mPmPiJp+WQmr2py4h2tahv3uzGtm1ubN8OHDjgxtq1Dsj8Uiup0fDhdmgiIxYSIIHgJ6AhGUuwyxLrJfgUOrH0Agy2LOqadbSv+KqzkAAJkEB3IdAOwr0FdGINjpJN727Zh5nDW+f3suWNdZ7GKlCp1uRWWp9b6EHgVlcfxNoVTyBtlv+k3qj6+QFn6vjGlT87wy7JeGRK8EblOXXKbU0g/fxz4Pbb7di/H3jtNTdGjLBhxgz1TzeXHxFhw+jRFOxn+DBwMwkENIFqmTpajP9YYr3YI9T74zL0x+Xy33h58jogoPvPzpEACZBAexLoOOEeeTG+lCxR2TOScW3SPmSN8WRLbfbqnNj60sMYPSvHbE3+Ei5tvaG+2RYDtbJ654sIH5Yhc3BnY3Z6Kpbm5J9dVys24+eP6jHJSJ8x2oqf37CBSkRcmYGbJMxhsJUjR9xYtMhlJTq6/HIbJkwwojwx0YYnn2RYxmAbT/aXBJoj4BIbuvqnH8ZOWXagCscta3p/SW+kCY6iMLC5w1hHAiRAAt2SQMcJdwkVmf7cEjw69lHMGpuIX6cvwJL7p2LkFYmIjhRTulPsLGWHsev99XhuXiZyxB++vowe2mXcPOqvybPiiP8KdheVIilOvM+rt2JvzkjkNt7pNO+3/+k5a//0lTlYJRlmg7UcO+bGBx+YRRMcLVoUgro64JvftOHqq+0IC6MlPVjHlv0mgcYENDyjCnW1rBeLG0wfxIkdfZiEZfym5aNuA/+9N2bG9yRAAiSgBDpQuEtymzHfwztL1uNmsRAX5MzHRFnOXNKw6aeTOrajZ+5Um+3hiIxDkt/TBL/VM5/DuRPPZehTiVTcf3twiXaN9FJYKNGHkmzYtcuNhx6qsyaTaibS6683P9oDBtigCwsJkEBwE9DIL0aoq1VdUhGLMB+AoUjAKFyLO61wjcF9hew9CZAACXQMgQ4V7nqfMO6Rt7HlovkYOX1xK64wDbk7VmFUVwyF0oqrP9MuhW/+TmLuaMnH6KgRSJvxVUy8cSy+dP0oDE8IPGjV1W785S/Gqr59uxsTJ9rwwAMhuEjmluXmhsBup0g/05hzOwkEAwG35CHVrKTq+qLLCfFY1/CMKtYvs/zU+wfDZbCPJEACJBBwBDpYuOv1O5AybRFqJ/4v/vjCcix5dCn8vWIMoVTMWfYIHvzOBMR2Qg8DbpSa7dBB/G6e/81PAXJX6OKpS1uATc8/jFFxnTejV8M0btnixqFDwOTJdrGsmwgwX/uaDfPn+yK/6KRSFhIggeAmcEomlR7ExziET6yJpRESoHGgCPXhmCyi/VKxsTNnQnCPMHtPAiQQCAQ6TRY7oodi2iPPyPIkykqKJQZ5KGLCgYoqB/qLv3endSwQRqUVfaje/jrmN73j8R2ZOx+jZcneUCQTgTt2ZqpOKn36aZcVCUYnld52mxHmmgApOZmTSn2DxDUSCG4CGv/lILbJsl2iqR8SoX6FZPIYgRTxVe/ZbTJvBPcYsvckQALBRaCN9XEFlo+IwvPTN2DbI2NaScKB6Ni4+smnka3x8CjbiHExY3FHQbmEljwrr/BW9inwdwsb/h2Ult4mSYfk53LPp/jg73/G8/NXNHl6MWusZBDcUYVpQ9vP8l5Y6Ma777px9KgbWVkhqKgAvvxlGx57zGdVD3yi7CEJkEBrCJSKC8xB+aZR63qt+K7HiVC/ArdK+IEhYlPnjXlrGHIfEiABEjhXAja3lHM9uLnjDuYtRPzN8zFj5RYsvyuluV3Or656J+aOGobFBXOwr3YREtr41uP8OneeR0tUmTvDRyLHaiYNW8rXIOVs7kucZdj65ipkpM1qKOBTs1GclyU/rG1bwsOTEB6+FH369EP//rsRH78dUVEl1kmysrKQktIO49+2l8DWSIAEzkBA/dU18ouK9SKxrvdAL8uqHichaKNx8RmO5mYSIAES6HwCv/rVr8TA+G6TjqxduxbXXXcd3njjjSbbArWizWVv3Lg5yJ39KtIyRqKy/B28kDWuzfImVRduxJxJY7FUXERe2T2/a4n2tviEOKKRMikL20pvwNybRsrNjafR/Fl4eWsGss7qLuDMHbLbXSLOXxdXmKs9Ow+SV12A6OjWPDqxduUfEiCBACNQJ7HVdVJpET7Cf/FvcXrpL5b1ZNyEB9FbPNZZSIAESCCYCFx66aWoqalp0uW//vWvTeoCvaLNhbtOPp30zFosyUvEo7NuRs6aOViXfT/GD487Z791Z0Uh3ly5qD6z6IJ1+zAlqf1cPwJ90M7Yv+gULHp3Cw5Eea33QN4Hn4pwb1sLeEjIUYwffynuu+++M3aJO5AACQQ2ARXrh0Skq1jXCaZ9xK5+Ea4WuT6Z/uqBPXTsHQmQwBkIjBs3Dro0Lr/85S8bVwX8+3YQ7nrNCXhk8w4cU5eW/MWYmCyRTpLTJYLMdEy6fiQS42MRdrozSzKmMknGtHfnNvzttVfw6NKcepDZ70jW1XEJ9e+50gKByBQ8tjIdOVacd9nnVAv7sZoESKDbEqgTL3UV65+LWFcLu7q+xEsapBG4jWK9234qeOEkQAKBTOB08vn8+h02FIu2FSNl4T2YOj8XknEJj06XxdNqalo6hgy6AP3CJZSMlKqqKlQeOYLDRRLSMN/r4+HZWV9SZ2NTzuJODW/o15ugWB36leliLctp6O8eFD1nJ0mABNqLgBHrO0Ssb7Us6zFiaLlIxLpmLe2BiPY6LdslARIgARJoAwLtJ9ytzsViyrw1KP7qWvwwIw0SZry+5OfmSNqg1pRkLFi9Ag9PG9VmvvKtOWuX2CcmXoS73DPJUt4lLogXQQIkcC4EXKgTi/pOHMAWy8Ieg0RrgunVmCqW9V7n0iSPIQESIAES6AQC7SzczRXFpkzC8m214j7zJn793FIszmmFZE9NR/Z9M/A/XxuDWLqzn9tHo7So3to++qqB59YGjyIBEghaAiXYjf34UCLCbJMJpgPEESbF4wbTO2iviR0nARIgge5MoEOEuwHsQNKoSVgky4LnS1C47zN8uveAxCI/gZoePSDTfdGjdwwGXnwRki4dgoTYs4mD2J2HsOVrL3zvLY9wT5XJwUwx3jIpbiGBrkNAkyIV4l8i2P9l+alfjJG4GY+IEwwjPXWdUeaVkAAJdFcCHSjcfYgdkbFIGq7LKF8l14RAaKsplO3Zjl3HITc6epPTzCMJ5x4snbrUai99ZTbGxXbKULf6ergjCZDAuROoRZXlBqOC/SSO4hJcixtwL6Jw4bk3yiNJgARIgAQCjgDVXCANSUVJvWuL1a0WdLyzcC1iBqfV9zx9SS6efmSSL8GS8yCWZwyGJdvTluHpu4bX78sVEiCBrkHADbfY1v8jeUw3WZNMB0r+0mGYIA4xQ2GTHKYsJEACJEACXY8AhXsAjKlTwl9WFO/Duuee9RPuuVj+2zw8/s1r0T8yEg6/kXJWlTbodc6jadAl+5VMXCUPyZ+dmgmJ44O0BblYOW8SH5A3oMU3JBDcBNSirmK9EJstV5hEjBbP9TvkeZ2J0BXcV8fekwAJkAAJnI6Anxw83W7c1m4EqrdiSvhIS2g3PseKzJuxIlNr07GlfBW8iU/Dht6O3AVrkKZhNutLLmZNNe9T0xfgnccyMW5obP1WrpAACQQvATdcMsG0AJ/hXRyXtYtxDa5HpiRJigvei2LPSYAESIAEzpoAhftZI2vjA8JSsMbtPstGIzFJwmzWPlyGoqLDKK/Uw2vFRT4CA+MTEBvJYT1LoNydBAKSQCXKsBfvWUsk+uNS8VzXmOt0hQnI4WKnSIAESKDdCVDhtTvi9juBIywaCUnR7XcCtkwCJNDhBNR3/TA+Eev6eziCPTLR9BqMRZZMNB3Q4X3hCUmABEiABAKLAIV7YI0He0MCJNBNCVSJE8w+vG9Z18PECSZJrOtfxLfhkHymLCRAAiRAAiSgBCjc+TkgARIggU4koBlN92CjWNd303e9E8eBpyaB/5+9s4GL6rzy/w8YFFRQUNRCFBRNMQljCrGSF4mjJtG+OG6CTVZJV5IG2GwWTHejIV1ti1mpZls1f9cCaUqqaJpqGkc30bQRUk2jxkAjJkoUI2ggCgoKKoMzMP9z5/XOKzMwDPNyHj849z7vz/fC3HPPPc85TIAJ+AIBFtx94SrxHJkAE/ArAt1Qa73CnEElaU+GknZ9FmvX/eoK82KYABNgAgNDYFAFd7WyAx2dQEQUuTvUrk+JilcL8emYBXjmR7MQNaizGxjg3CsTYAKBS6CLwiPV4UOyX/87RiOB3Dg+QfEXpgQuEF45E2ACTIAJuERgUKJ0tJzYj5cWTUdoeCSio+Wo6jDMWYJRkZ1YuTQd0aGLsKe2zVDAn0yACTABnyVwFY34FNvxPtbgFgnvs7Ec9yGbhXafvaI8cSbABJjA4BDwuE67+o0cpGaVilYbSYFDDEmClGUb0Jo6A7OlSyGfFo1NBxuRN4t9FRsI8ScTYAK+QUDwDvMNTuAMadhvkAW7YA6zAD/nQEm+cfl4lkyACTABryTgUcG940SJhdCuY0IeyM1SVPISfHDwMsam5yM/fQFub6zC/FiPTtVsPnzCBJgAE3CWgBpd5BnmsNYkJoycOE4h/fptuJt9rzsLkOsxASbABJiAXQIeNJVRYu96bRhQ3WSkckj10zJp3E3zjJmVhWK5cF6DBa98QFu5ODEBJsAEvJeACp04hf3Yh19Q2KQGzEQWZPgpeYpJYaHdey8bz4wJMAEm4FMEPCe4K8/gb+U6Nsu3V6Hz+G5U1ZVRRrsdYBF4cFGmrmzjOziltFONs5kAE2ACg0igC9fxOfaSwP5LMom5Qvr157UeYqIRP4iz4qGZABNgAkzAHwl4zv5EpaJogJSyt6NoSQrC6LDjZpdDpvWna/Tll3BTsKcRGnFiAkyACXgBgU5cxWlUaN06TkAq5mIFhiPaC2bGU2ACTIAJMAF/JeA5wT00FBFEUZ6S7Jz8rTyBd4oMgru/4ud1MQEm4GsEOtCML/FXNJEZ3yTcj4fxX/SdJny7cWICTIAJMAEmMLAEPCe4hyXgARmQ+1Yl2nKSEeVwXUrsKsiEyffMOAyzZQjvsA8uZAJMgAm4j8BVfE0xTv+CFvITMwUPkoeYX7CHGPfh5Z6YABNgAkzACQKes3EnjdSDP8kGKvORtWYPbd4CwkOH6qYoEsrbzh4iH+/hWLxRpG2X34sENpNx4nJyFSbABNxNoA3n8RGK8TFeo6BJk0lg/yWmYT4L7e4Gzf0xASbABJhArwQ8p3GnqSQteRmbfleK/NVyRNNPdma7doLHPqzAVxc/x1+3vo7SSpHArp/+zl8/wS+ie72UXIEJMAF3EhCCJp3Eu6RkuECC+iNkFJPN3mHcCZj7YgJMgAkwAZcJeFRwB8UJzHuvDnhmCvLLFSgt1803d0Gl3YkLAZgyElndbhcQFzABJuBWAu0UNukLvIdW8sb+bbJgn4mnEAIPf1W6dUXcGRNgAkyACfgLAQ+ayuiQqRGH7DIV6g5sRybZvNtL2eu2o65dw1FT7QHifCbABNxK4AaJ6p9gKw7hfzGGTGLmU5TTKUhnod2tlLkzJsAEmAAT6A8BD6qROrDnJTnkRYJ2XYqddUexrUKDLS0NqL9wEaHjJyOy/QKuhI5HQnwsIjw4s/4A5LZMgAn4NoEu8r5ei/fJreMn2k2nqVjCwrpvX1KePRNgAkzAbwl4TjzuOInfa4V2gWUNyt89iYy8FETExCOZfrQpNgaxuiP+nwkwASYwoAS6oSI/7AfIR8yHmIh7yIr9vzAUIwZ0TO6cCTABJsAEmEB/CHhOcCc/7uK06OGp4lOHxx0tbQiPiWIrU4eUuJAJMAFnCGjQQ9brh3EK+2nXzRQKnPQCBU4a7UxTrsMEmAATYAJMYFAJeE5wD5uKRXJAoaD1ZiqwLMm5gCXqszsQOeVrtGpW9OL7fVA58uBMgAn4AAEhaNIJ7MEwjMID+FeM5Hd8PnDVeIpMgAkwASZgIOA5wZ0cOi7bVYcLD0/B6pp3UdHwMObE9+4t5tShP5FJ/IKA0rar287ivX1fYPqjC+EEIrqWHaitPobPa8/j+i06HRINaco9SEliwyPDLzp/BjaBVtSTyP4O1OjCdDyG8eTgkRMTYAJMgAkwAV8j4DnBXd2APeVHkbgoE8gvxdyEUmQXbkLKWH0QJktyQ4ei+fBWrC6lzazyBZal/nne0YBdv12LxSuFmLEyHGnvXXBvqChB1txcGBxqymRSVBp84csLUfVaAVJiPHeZ/fPC8Kp8lYDgKeYEdtP/DbgT3ydb9hnkiz3IV5fD82YCTIAJMIEAJ+BBia4T72YthSCSGlLp6nzDoeNPXZwmx3V8uVTZhD2lv4ScHmhMKZIiMzpODfvXIGHBal2lzGLUv5aj1dArGyrwTMJclCtWI1VxGlXt25DinGWS4wG5lAn4CAFBs16Lv+Ar/B1T6SH4u/gxggPqvZ2PXCieJhNgAkyACbhEwHN+3CVJyCkmI3dOZgSUtW8gKDwO8ophWO7Isb1ZKzppO4Qsg9CO5agr0wntQrWw+Dkoq9upb1GO1Gd3kDENJyYQGAQacJScO65BJ67hIRRoo56y0B4Y155XyQSYABPwdwIe1LgDKT98CtJcBdmaSpFZsBRz77oNI4YAt25ZYx4yZAiuN1VjQ34R1fffJIl7GHWNrUiMjQKU1ThXngph/67jpMb+V54zmsdkktCeaHElJYmPoIyskrLKqafypSh7bgHyZtIYnJiAnxIQ7Ng/wy4yhAnGfcimzewT/XSlvCwmwASYABMIVAIW4t4AY4idhaelwOtLS7FtxUwnBsvArDEXMGVdF20q888kiYhFosiMRXRof8EdVSguMjzOSLFYNsVG3QjIFi8noX2jtix/8wFkz8xA79uBbXTFWUzAiwkImvUT9LjbQh7ZpViECUj14tny1JgAE2ACTIAJ9J2A50xltHOMgnxNIebcNtLpGcelzIV8TizCnW7h/xVbPvubSSsvexayeNvPX3HTZSTI6FN5OY6zvYyBBn/6AYFuepwX7Nj/irXk3jFaG0CJhXY/uLC8BCbABJgAE7BLwLbEZ7d6/wviF67CBme7UTfh+DUZdm/QR1Z1tp1f11Oj6s/bzVZo722EZNwkreCu080rcPRMG2amsLmMGTw+8UkC3+BzrVnMKNxGAZRWUgClaJ9cB0+aCTABJsAEmIArBDyscXdlakDD7pVIS3sLba418/PanWg4ZzCToaVOHW3/bYRKZbYpteLYOT9nw8vzdwKduIqP8RqJ7XvJIGYJ7sVPWGj394vO62MCTIAJMAEjAQ9q3JU4uusP+OzKUJCL9l5TV/NpbFlZTvVk+EfLCsyJ6bVJwFQQ45OnfNu+3XrEJCwgRz7aaLUCna6AQcQL9TMCGmjIteMhnMQ+JCKdBPantZtQ/WyZvBwmwASYABNgAg4JeFBwV+GzLbnINUQKcjgtcWEl3vprLeYsSRJnBvBxK06bKc5VDlhIIBbyHVTsU1FPTw/27t2LixcvWrV/+umnkZycbJXPGUzAVQLX0IQqvIkQ8sM+m1yfRmCcq11wfSbABJgAEwhgAjt27MAnn3xiRUCQXyZO9C0PZB4U3IGhkVbMnMooXboVP1+yFrFO1fb3SsNwexptOa3RW65/1AzkDN6aR4wYgbFjx1pNYKgzr1WsWnEGEzAR6IZKq2FvwBGKevpDTCI9OycmwASYABNgAq4SiIyMtCmrSCQeFYNdnbbN+oMwYymWr3saSeRYpsum6YZgSnMN+7ashIJk0+XbD+DJ5Hjeema8fBK0nzHZuEuTB2+zaXBwMGQyGV588UXj7PiACbiDQDO+JC37HzEaCRRE6Wf05mi4O7rlPpgAE2ACTCAACfzgBz+A8GOZ3nzzTcssrz/3qODeTpGFCg5+iLWzehc2n54vRUbCAmz83ed4oWKOfTtur0fs7glKQA+OxjQpLNR43NtBe28VuJwJDDKBW7hJAdfeQTNOIwVPYDzFPeXEBJgAE2ACTIAJ6Ah40KtMOG4vLMA8cbQhB1dBEj8fa4op9GdlPp4tqXZQM9CK1Ogyk8Ad2Lgr63GAHpYMKS1htOGQP5mA1xG4QDr2v+BlhJKfpIfxEgvtXneFeEJMgAkwASYw2AQ8KLhLMH/VWsyJdV7JP/XBuVo+itxdaBhsUl4zfhTumC8zzkax+zMzl4/GAhsHKXfypj4bWDhrkAl00W+w4OLxS3yA+5GL6XiUtqEO5LbqQV4wD88EmAATYAJMoI8EPCi4uz7D4385oG90Ehc56qcR4N3zHjceo7IBrXYiMKkbv0S5seZyfCc+zHjGB0zAGwg0kmHMX/ErRJJ+fS5eQBR8a3e/NzDkOTABJsAEmEDgEHBe/e0GJi211ahtudFLT0MAVRv+8UEx8osMdh4R9Pqck4FAhHQeOcUDNmozinCssRDx8daXsq3hlKEJZOseRaJ1FWM5HzABTxJQoVMb+fQKzuE+PEObzxM8OTyPxQSYABNgAkzAJwl4UJTrwJuPpyLf5BDFeWDZckgjnK/uuzWdfDyRJOKpskxszCrXLnWLogoZeTMtlq3G4b279HlSrMhkV3oWgPh0kAi04AyOYRu5d03GPLxIZjH0sM6JCTABJsAEmAAT6JWAR01lIif1Oh8bFeQ48PIiurkHQOpoIcMBUXIgxycvexmF5M5dSJX5Baho0h0b/lc37IZ8o643WeFmzHdhb4GhD/5kAu4kIPhl/wy7SGgvxz1YiruxmIV2dwLmvpgAE2ACTMDvCQyKPCzPzsakYcMcwL2Jm5eB0TMeQk5WBuL9XNuuVivR0VyPfZtfFQnuCpT8oQI//9EMjI2IgHWMgHis+qgGrZFSMpmpxNy4Rdh+5FeYPT4cV87/HavSl+r4yjahfNUsB6y5iAkMPIE2nMcn2Eo27BPIL3sBmb7xfouBp84jMAEmwASYgL8R8KjgLvhxLzzYjFWzYvyNY9/Xo6xGRngqDNb84o5Kc+eiNFfIyURV+zakWD7ARCRjg6oe01fnI4v2AyxNE/ciReH2zVi+ZBaFiOfEBAaHgAY9OIX3cRaH8B3SsN9G/3NiAkyACTABJsAE+kbAg4J7KL5TXIaYGc4K7Uo0NXQgNt7Z+n0DMOitwlKwW6Pp+zQk8Vi2djeeeKEJjZc6IezilUgiMY64sU6z71i5Zf8JdOCSVss+FCNIy/4i/T6KIof1v3vugQkwASbABJhAwBHwoI17GCbeHY3qv1RD6QRm9dk/Iy5hLBatr4Adb4dO9BI4VcKiYpGYlIjExETyMMNCe+Bcee9caQNZsn9IRlyTyGfMA/hXFtq98zLxrJgAE2ACTMDHCHhQ494BBXmHyccmtC5M6VUbLElcgjrF55giJ+/Ok+uwISPRx9DydJlA4BGguL5GN48PIo907N8KPAi8YibABJgAE2ACA0TAgxr3UIwRvMqMHkoBzZ1LidPTIDhO2bjmbbQ414RrMQEmMEgErqEJB/CKdvS5WMFC+yBdBx6WCTABJsAE/JfAgGrcaw9VoF4FrZfm0NBW/EnYOymtxYdHj2L4Lcq34b45NJSMtFUqXL30GcpW5eq8rNR8jK8ocmoM77L0399EXplPEziHj/E59mI6HqPYp/f49Fp48kyACTABJsAEvJXAgAruTYdfxoKVleZrr9mIBWm6mJ/mBY7OxmGkA5/mjlpyGRNgAgNHQDCNqcKbEDaiyvBT2obq55vJBw4l98wEmAATYAJMoFcCA2oqM2cFadwPFvc6id4qyAofxxR2kdIbJi5nAh4lcBVf46/4FTkyCscc/CcL7R6lz4MxASbABJhAIBIYUI27ADR+Vg5UjXfg3+LSUaolLEVmdhochV8yXIhhoxNx/7yFWDQnKTAipxoWzp9MwMsJnMVBnMQ+pOBxxFEMVE5MgAkwASbABJjAwBMYcMFdWIIkdhZKWo/gZnQayqXP4rWSnF69ygjtOhpO4Ix6HAvtAgxOTMALCKjQiU+xAzdwhbTs/4HhGOMFs+IpMAEmwASYABMIDAIDaipjhjBqJrbUHcGB0nlOC+LHSjKROiUaO2ppZyonJsAEBpWAzmvMejKMGUlC+09ZaB/Uq8GDMwEmwASYQCAS8IjG3QA2InEm5hjcsavVUNKPvSShmcWkzKHiGix98W08unuZU1p6e/1xPhNgAn0ncAHV5J99J5nGPEGmMdP73hG3ZAJMgAkwASbABPpMwKOCuzDLhqO7ULJ5C4rKLbzNOFpCexe9oAcL7o4YcRkTGAACGvTgBBRopAfodPw76dpjB2AU7pIJMAEmwASYABNwhoBHBfeWQ+uRkL7SmXmZ17nS5bR5jXlDPmMCTKCvBLrIkv0ofo9g+uuj+MUUj8GZLeV9HY3bMQEmwASYABNgAr0R8Jzgrj6LtX0R2qXLse+tJ8Gxl3q7lFzOBNxHoA0XcISE9glkHHMnfoAg+seJCTABJsAEmAATGFwCntucqr6Gc8JaMzfhVGMrOik6qkbTijI55WXvRKdGQwFTVbofOm48ovP/nrkyB/OTogaXEo/OBAKIgGDP/hF+S5bs/4S78EMW2gPo2vNSmQATYAJMwLsJeExwV9bXkqWsFAdfzUNSbBTChN2niML38wqB0i041kZuIylP+0MlsTNzcGSTHOVLp+EN9irj3b9FPDu/IfA5/g+fYw/Zsz9H1uxSv1kXL4QJMAEmwASYgD8Q8JjgHjZ6PPEajSEWxjkx6YuRjUqkv7Iflj5mRioVWsYbSv5uVeYP8HkNTMBbCKjRhY8pRNoVfEWuHl/gTajecmF4HkyACTABJsAERAQ8JrgjYhTkJKBv3lGtHV6tVOqmIUnCc8WZQNECvLCrVjQ1NeqvyrTnNcdPgxTynJgAExgAAjdwGRX4H/LaNBKz8G8YSh7aOTEBJsAEmAATYALeR8BzgnvYBNxHcnh5biqCgoIQGh6OoEXr0URMkpc8R0I9sHHxNCx6qQQVhyrwak4qFhTpXUZWVuACx2Dyvt8enpHPE2hBHT1Ob8AUzKZtqI+TB5kQn18TL4AJMAEmwASYgL8S8Jzgjhhk/XKdOUfFfp1AHjETa8pI605JUZSLuelzkV9aY6orW4Cp7FbGxIOPmIAbCJzHp1rPMWl4CpNxvxt65C6YABNgAkyACTCBgSTgQcGdIqHOWoFTOwtF65mOMeG60+RlW6AosL0Zbt0vH2V3kCJqfMgE+kvgFN6nTah78SDyMAaGcMb97ZXbMwEmwASYABNgAgNJwGKr6EAOpes7KWMVVO25aGi+iei4eEQZZxCBhWurUJP2Otb/fh9FagQiI+7AUyuex8LkmIGfGI/ABAKAgBAJtRpv4Sq+pk2o/0l27fwqKwAuOy+RCTABJsAE/ISAUWz21HqETanq8Bgk2lTySZC8MAfb6IeTawTamhrQrrLRJjQUVz59HamrRqL1eB454OQUqATUuIXD+J3Wjl3QtEtoGyonJjCYBG7hItph64vLtVmFkCkmORl20EhNyqBy/IMiE/wA91jVU+I0zqKWnCBc15YNo7BjkyiSga3vy24cxD568J2BJRhn1ZO/ZqhxCe8Rw+/SXhjBQ5wz6TrVr6Z9bF+TzyohRSMOdxNXZ9s7MwbXYQKBR8CDgnsH9rwkh1y74VSKnXVHkZHo6Is28C5Gn1fcsp/eXixw2Fy26YjNm5DDRlzoNwQ6Scf+d5SQQ9ZJdOvMoKBKHrWS8xuOvBD3EriI5XhH+361f/2G0gbrZ20I5LpeL+BDErKP08loqmeehLIXqEx4xyukOITSsfAocYh+4rGZQpBNt9iyrcI3FKDsjxTv4D4UkwA/Smjot+kyrfMDvEKCOzCM+DkjuF/GG3RdX8dNPZVh5LHqJq6hSnsux0K67pNIdcCJCTAB1wl47i+n4yR+b/ASgxqUv3sSGXkprs+YW1gROFS23irPPEOKFRkzzbP4LGAIXCOd199JwJgKmfYnYBbOC/VyAmp6nNRpuA0THU3+xcbTrgvhxqSkzdNfasVtXWkkfkTC3lDKb6efejSIysJJ3LadTmI3cqguaCfHVtK2TxJVu0DhxpaQpl2X7sQOzMMEOlHSuP+J/dR/AwUie5OE90wS3g0pBHPxDM3xj1T2MYn1N0hEnU3n/pbaiMD7+G+twG5Ym8QuZ0MNkHPZ/8F2CreoS09jKZZp6dyiNxV/ws8oVoSCHgXqSXjfbHY1TD3wERNgAo4IeE5wJ5MNcVr08FTxqcPjjpY2hMdE8fO5LUodR/HrlYLbTCkys9NII2KZbmLYnVmYHWuZz+eBQOASiSCfkPbrOyT03Eb/c2IC3kNAiVbSwgppGGm9HydRLlI0uW4MMRPcJ5G4PNvMHMakSRc1Ex2eNgrt40j7ay60g/p+wSi0jyOhXie0C83D8G1spMeDRSSYXyNB8zl8RMYxD2CEqO/peALrUYYVJN7/Ez1O7MO9ZuWiqj53qCSTuofoe0N4/zCbrs2HRs1570s5TI8xBqF9NjHSCe1CuyEUj/mfiflm0t6DqO3BLnqkyjC7or33zzWYABPwnOAeNhWLyFm7QvibzlRgWZJzm+LUZ3cgcsrXaNWsYFMPG7+vJ97erP2azCwrx7ZlyTZqcFagEqgnZ4+fa1/nZ2tNZAKVA6/bewnobkC3k9BsLrQLM1bRngxxUpMmXBCqTWkCiZU/IxHwv01ZxqPLJG4+rdW0g4TFR3G7sUQ46CZt8gGjecx0MnkRa+KFGhLSsS8hwf23wgmZeOygx95si9Bk99Lj8JO0a2QbCbkvkpX9ZoqH4A9JgiR6kJESEyEU2zniuIf2APSe1PQu/b+NQv5oYmO5ByCEtsSnkuCuM5nZRA9E8+iff5sa9c6NazAB1wgEu1a9P7UjsGxXHQopCBNq3kVFg/Al3Hs6dehPpEweydp2W6jUtdicVU4lMjz3GAvtthAFat4XeJe22r1Pgs3zLLQH6i+BD6xbdxeQY2Kf55pG2nGg06L9efyCBHohTadHgoWk7TVP57HTuCU2lHTxcebF2rMhpEM35W8jodT6njWchPtUbe3j9Be3w0YNGx17fZaElGQ6oV2Yagj0Ppt7nfdnJJDr3qCAbNrvoOgQ1mkEPRTMNmZ/QeYz5o9nxiI+YAJMwA4BncLDTqFbs9UN2FN+FImLKNBSfinmJpQiu3ATUsba8WwxdCiaD2/F6lIyA5E73njp1nn6UGcN721FqXa+lUiLnA559vex4MF03Hf/TCTHR/nQSniq7iIguHv8DG+T7fAFepz7D3qFL369765RuB8m4A4CI0jozScd+ncsNn+60vcoav009SE2svmUtOk6sX0YmWpY6tIFK+wvRRrk25FmZ/xJNL/bSS+v0zbXUqt7RbbuulmOoPGfJIF1G53+ljTI3wtYDXI7Gdi0Gy9dBgnutsWLKAr2FkrvQ3S+hBQ4Tw9WU4zt+IAJMIHeCNj+y+qtVZ/KO/Fu1lK9oKnroHR1vnM9mb4NnKsfELWasHVVkWilNVBQtFlFqT5PXogjW17AzFjxq2VRdT70OwI9UNMr+630fxdZk/47CSOhfrdGXpB/EYgiG+cH+rmkcSSci00yztOeDsMt4y5y/2iZumnT61eWmXbOxdrmdhyljajTLcxlQOcPkWZ+m9bw5guyqn+A5hN437pq1NMbPnHqFp+IjkPo/YrwmHVFm3ea2l0lwZ3NZUSI+JAJOCTgOVMZSRJyisnInZNbCChP7MXqGgddKVYjLS4crx5qclCJi/yFQDfprz4ma9sest69j2xxWWj3lyvL63CNwDl6eNVp20EmGZNtiNAq8h2v0/bqeh5uo45hzG4zI5yj5AbSVpqEaUajmtdxwk8MZmyt1H6eaaOxrk60A7WByoz/Bf1OBPt9cwkTYAJiAh7UuAMpP3wK0lwF2QqSB5SCpZh7120YQcaHt2wYuQ0ZMgTXm6qxIb+I6nOyJBCW/DRaWx9FZ2c7Lp49g2MfvoMtq0utWOWnx2HMqU4sSQo8HZAlM389FzTsgrvHcLJMnUGO69hHu79eaV5XbwSEEGON+kqhpAkXa+INbc21VdPJ/aT978YIrZ22zlRGaB9i6MTicww5WoV+5C9Jnz+DDEWcSefw/8jMpp1mMNSZ6mZ1hL/7yWRqJPUSczixMBFJOnTLfQWmycdrzZcMj1emfD5iAkzAGQLivzVn6vevTuwsPC0FXl9aim0rZjrRVwZmjbmAKeu66PU/J3MCtIEoiqIF0k9sbCJSZs1HTsGvUP3eNmTJ880E+KXPluKhijzyeuDe1NPTg08++QSvvfaaVccPP/ww4uPjrfI5w70EbpEPh0P4X4pJGE+2tj9yb+fcGxPwMQItFBvVkMJpg6StdINs3E3JclurqUQ4irRhIW9eQ3c2krzEg+y2hXQFJ2nD5R0OBFdtNfrvOuma/2R80DDkuvLZQhtrpVZ296704K66bWZUBZ9A9pPEjvW7/RaulLSS8Q2ps1xpwnUtCAjKn3iKkutP6W9/+xtOnzY9hBvW1tbWhokT+7493tCPJz89K7iTRlC+phDnrtv+QrW18LiUuZDPGeH0vnZbfQRMniQKKQvzcLz1Abw0OxVFhlcVlfl4szoLeSkRbkWh0Wjw1Vdf4cMPP7TqNyUlhQV3KyruzVCig3wy/D/EIpkseX/o3s65NybgcwSUFCzoVK+zHkIbTgUba4MdvKMGPU76PBE8vwsxNHSRQo+S2JjhlKec/t6A+9ve0dpdKwunIEsj6UHkmrZZu4UY71pf/at9nca+bPTQ37++ArW1PwrutbW1OHjwoNUlvXnTEN/XqshrMzz+dx+/cJUx6LRa2YEOUnhEREXon8CVqHi1EJ+OWYBnfjQLUTS7sKRl2L3Ba/l558SiUrD2oypciExFuX6GFcfOkOCe4tb5hoSE4IknnsCLL77o1n65s94J3EQbCe2v0qvyB0gMmdt7A67BBPyegJqEcZ3gKCw11K66p8Epod01XMO0o+lEgFYnxf0R9Nd7qB+bc4X30B6/hdvBIiHLfjF755Vzdjrsc/ZE3EMPTff0uT039E8COTk5EH4sU3Ky77nSNjf3s1zRAJ23nNiPlxZNR2h4JKKj5ajqMAwkwajITqxcmo7o0EXYU9tmKOBPVwlEpOBnZeR605C6DAf86esEhFf9f8MmsiKdzUK7r19Mnr9bCYjF2NvoXZStFALxm0fHPsqDLQxe7HlKsRzHni28Zb3+nYtX66inq+TI8g18QD8f2vj5gCKYio2HHPVkv0xitlMg3MHWVMs+2AzWkgifMwHHBJz9y3fciwul1W/kIDWrVNQiUvQnLkHKsg1oTZ2B2dKlkE+LxqaDjcibZfsLWNQJH9ogkPTwUrJ/LDezd7dRjbN8iEAHGQMINu1JeIS07ff70Mx5qkzAswTUdndG3RJNpJ7eXanJkt32rbDNzPRmso86Layjt3OvGyOaihavP4xDApn2jLEucCHHkrYjG/fzZIVuSjG0Q4cTE2ACzhOw/W3lfHuXanacKLEQ2nXNLf/Eo5KX4IODlzE2PR/56Qtwe2MV5sd6dKourctrK0fHkeBOgWrpxxl7Tq9dB09MS6CdnNEJQvtdFLDE3zYO8SVmAu4gINbe6twMWvsHD6M9ISZ79GtopU2isCOSd5FYb0rJtEvLXgo1K3BWM3+DNrJ+QyK14L7V2Ta6gYS7ZihFRZ7uYE6GKY3Gt8j+/Lzh1OJThQl2veVYVHVwOorGiCNHnI3aOu34nExn7jHTwttrHOd2twn2RuJ8JuAfBDwoDSuxd32uiZpUDmmN4BpS+A7Enh8AAEAASURBVPqxTjGzslBM3lFyFTVY8MoHUG2Yb0cnYt2Wc/QEWhuN2va0u8YzFh8mIAjtwkbUu7EYt5H/GE5MgAlYEhhBfxsm4dGy1HQ+Teu88bgxw95tUNjsWm+sNY4EfnsmMN3092lSjkRbGNgYu7A4uI5jyDF6nbcodOo0EiXI6tX15CTyPfN/TvXXn0rxmE/NX9d30ah9HLLlaLMbdfrgS0LV2WSPbquWvhv+YAJMwIqA52zclWfwt3Ld+Mu3V6Hz+G5U1ZVRhunrznx2EXhwkd5Ge+M7OKU0L+Wz3gk0fPy+XnCXYV7y2N4bcA2vJKCkv5E/4J9Jt5bBQrtXXiGelLcQGEXCtSGp7RqHjKKASbMN1fAFPrKj7b5KAqZhw2UcPS5PMraxPFDhgsgB4p1w9ttW/IbAsk9nzjvtrtGZ1u6tE4YHjWGogP04Z8dU6QZOGwcehu/Z9LVvrMAHTIAJWBGwp2qwqtjvDJWKtBeUsrejaEmK9hm746bjHZP1pwV9vJAu4abwZpAfzLU0hP/azp7AabqnjJ8wFfExNsCoz2Lj4o3a+pllmzAnxnOX2jhJPug3gav06vkjMo95EMvphXZKv/vjDpiArxI450RE0iik0vL2a5d4k7ZkKnGvzdvGOHoQHk1bNa9oa+4kIXM+bfY2T90Ug/VLfVYoniWHj46SyW5+GO0+sfUW2bp1GM32ddpgbj+wk3UbcY6a3kJ7k//pSeT5ezre0b9D+AyfUSAqS+8uatK3f6hfxEjMpBqcmAATcI2A56S50FDtXn55SrLNL1KraStP4B2jI3Kr0oDOUDfsQfQUuZFB5joFfrNioclSUN2Ekqwp0Irt8mL8ZplJC2VsxAdeT+Aamkho30KavidIkyXsVuDEBAKHwBV8arbYSU7cOUKQhjup1Rfalp+SAcsyO3ryO0hUl2M7FFTzNCrJEG0K0kXjqUn8LNWfx9GDs7hMVE1/eBYVxsy7SHy1Z1JjrKQ9oCB6JLZHmWd63Vk3xEGqHD+STMRKCkW1ROtF/Sb+h67DH7XXw7CobrxH+3R0bzGG4Wf0reY5EcQwB/5kAr5OwHOmMmEJeEAGKN6qNNvuYxugErsKMo1fm6CXacMcf1/Y7sZPc9WdrWYrK18px9igRXh1135U7CrBotA45JYD8kIFWnfnmAR6s1Z84s0EhMh/wkbUu8k8hoV2b75SPDf3ElDiBpmd1NG3/3sW1t9f4L9wmPLacNWBn/RRpMU2KDWOk8b8qt3pjcF/4p/0JjM3SYh8jdwiNtLf3WXaMHqYbM8NAua3SQUiPAzYT+fI90yjvvhJEkZtvAG139hLS9TEWHjft4PcSJpMW9pRRsL4RSqzZ+QzgezpS/QmM43U9mlieZqu2QXaHLsLW/GKkVMGvQ3hxASYgOsEPPi4SzbrP8kGluYja00CylYtREToUN2MRUJ529lDeOU/0lEkKEIMSX4vEvzhu9Cwnn5+hiU9BkXhbshXiyEpkL9Ydy7LLMSBn+ViTlJMP0fi5oNBQOfycTO9dH6MbdoH4wLwmINGQEmi3e+wzc74x8l45Tn6AQnSezHPjieYKGSS1leh1fp+SZr0h8gLkz0N+ESswY9JON2N39JOkk0kWm4yjh1KDwBzkUsmMiOMebYOlBRVwSC2J+JRDLdVycfyzpNpnsHkxXzqR0gYX0w/oOizm2lj7HTzYu3ZHaRu2EFvC3+BKhLaPyHhXbhmujSSrs3P6NrZNmEy1OJPJsAE7BMIorD1GvvF7i5pwatzxiK/UuhXjuzMdpSSZrh4339h9MXP8detr6O00mDXbhp7Z10nMhJZcjcR0R2plW1obLyEdm24PtoEEDoM4+PiERPhmeexyMhIvPTSSxw51fLC9OP8OlpIDHiVttjJOfpfPzhy08AmcIM09roHgJGQkUeV3g3NlKQVFhwzCrFIJRQFNYYEU2fuOddJo7xAL5jmk54+w6lWgXJ1bpF2vk1vaiMEvookb/FDAmXxvE6fICBETp04cSLeffddn5ivMEnPSHhGHDHIe68OeGYK8ssVWqFdKMpdoJXkjbXEB0IAJhbaxURMx5KwKMQnRpky+MinCdygrXI6P+0/ZKHdp68kT36wCQzHU6TVrSDNcCPZr++igGUZvQiMYWRrPslle/PLpKHXaZOnk16fhXbL6z4E49lrjCUUPmcC/STgORt3w0TDEpG3TYW6A9uRSTbv9lL2uu2oa9dw1FR7gDjfrwh0kj2p4Kf92/Rin4Mr+dWl5cUMCgEJmdMUa33MgITrP5HdurvTLeyhza2CB5uRuI82Ytp3Funukbk/JsAEApmAhzXuBtQSJM5ZgrIZC7D6zCl89U0zQmMmIkZzA91jEpEYHwsPWXsYJsSfTGDQCCjRoTWPmUIb5Sbj/kGbBw/MBPyLwCg8gJ3kEnIxbajMIb17CenE73DLEm+RwP4H7UbLOBLaf0dODZ0xq3HL0NwJE2ACAU7A8xp3At5WW4E1OXMQGhmN21Pvx/wf/BPmzkyFNC0d35mSiaLX96ChI8CvDC8/IAh0kQ+Ng2TTnkCbtaaS4M6JCTABdxIYTyYze0m4jiOjmRxyrnqg353fokeA3+K/yR5+PpnH/JGEdsebV/s9IHfABJgAExAR8LDGXY1Dr2YhPb9cNAXLw0oU5Qo/QOHOGhRkJHvaEN9yQnzOBAaEwC269R8izwxx5PQxiUxkODEBJjAQBEaRcP1HMmURonkK4Y76l0LoEfu72EDxFe5hPXv/UHJrJsAE+kDAoxr3hj2r7QrtUqn1vv/Vi6XIWH+oD8viJkzAuwmo0aXdiDqWrNrvxPe9e7I8OybgBwTGkIZ8BsUf7m8KIReI97LQ3l+M3J4JMIE+EvCc4K4+i43yIrNpZhaWoaq+GSqVBsePH4dGo0J7cz0OKoqNITQUK9Ox/lCLWTs+YQK+TKAH3fiY3NV9i0R2KRb58lJ47kyACTABJsAEmIAHCXhOcO+8Rq8pTam4qhnbVi1DSnwMJEaDHQkiYuIxa2EOdmvaoSjQuZ1Z+fM/0/Y9TkzA9wlooMER/B5DyafxNPL/zIkJMAEmwASYABNgAs4SMIrMzjZwR73MshrkpPQW1TMCC9e+hU1HhIBN1ahXAsm8cd8d+LmPQSRQTba23RQwPI38TAfRP05MgAnoCDQ1aEBh5PqdxsUHObY9b9Og5JVu3P28BDNt3IZqq3vwea0G12/RVChakDQlGClJtv9WD5WocXZqCJbNsV3e78V4UQdnD3XjiyHBWDjT+bW2NWnQbuuiUrT0K592I3VVEFqPh7jsP9+LsPBUmIDHCXhOcKeonuP0y3sgNcHJhcbg4R/LgcphoL9zq6RsacAlRCM+JsKqjDOYgLcR+ALvkrf2r/Eg8hBsNwi7t82a58MEPEBA2YPMhG4KltT/dKQ9FDPt3BKaSPhckN6DGnpoPvK8+VgNFd3ImttjnINMRrce7YR6KNB3EKpek8BS36Rq1iArV42tBcF4e61/CqANR7uxtqCHopoDsnVBzgvuLT2Ijus2h2xxJtsUzEK7BRM+ZQK9EfCcqUxYAh7M1E2n+Sqpz51MLc3tVPMcbtp4aj9ZloCEYvcH1nByalyNCThNoI48tX+Nf5Bf6WfJS9JQp9txRSYQCATUlzQUN1iUZEEoWBeM4mLhJwiZYt8FdLyO8svKgrGJBEm5uIy6sKXkEXo+sUuNOEFop77rVOba9ob9aiQYhPbMYNR3hqKiIhSd9SHQ3rYUGqSOVaPawmZzzqpQVJUFobKIhNQnu+FPu7GaqruRM12FhDSd0C4wjHThrfehMsdCu9DfigzPiSDCeJyYgD8Q8JzGnV5eLvnNQewrT8fqX7+Jp2flIbYXgsqzu/DzlZWQFR5AipUGRYnaE/Qac4a9r+leOudiJuAhAufxKU6T/+jZeJ5E9uEeGpWHYQK+Q6CTpPYa/XR31kiQkWxujjF0nwrlhgqTgpGXE2I0h8lbATSQJj2BhHJ76SwJ7dLFGioOQs17FABQfOdr60HWAqFMSCTUl4UgXl8eFk8PCHUalE8R+ibh/dlutG8LoR0qppSyTIKDzSqkr+zB2GFAe4l5uamm7xzteFKFpeXA8oIgyGo0xrcQTq+gowe/XqmrnZkdBMJilYbdGYzZvQkBVq04gwkwAfHX18DSUDeh4nAbbhe0I4p8xC06h+IfzcDQW4IhoWUiw8L2z7Ehv0j3Zf7159i147zO5lBf9cLx3VhNXyzyGZZt+ZwJeA+BZhLZa/AOmcfk080rynsmxjNhAt5EQK9/kReHWAntVtOkl7DCC1ix8jd+VggUy3sg32hVG21k6jFFK7QDO+skVnul9pO9u9YihppmktBuJtRTniQxBGWZJNzT/QblPSh7jh4cLOy8Z62QYBNp7fNLe/BkShB25/i2Jnn2LyRopTcJUSQhVI9XITXfmqujnBNv90BBFQSe25b5NgtH6+QyJjAYBDwnuNOL0DK5HMJ3nzYpNiJX+Mt2JpXmY3GpMxW5DhPwHgJXKVbjUZSRz+dnSEM31nsmxjNhAt5GQG8KmTmv70LerCdIS7/RYoMr2c7nkamHkLQPBYkWCyfNcLHIS/FiMqOxlWSLKb9cp5XP39yD7Jkmjb+ufhCytwQjfxoJrLndeOO+YCxLttWTb+TFJpo4hA4Vjg1vJJyYv1qDzVm6+s891vfr6cRIXIUJBCQBz/1VSZKRXSgLSMi86MAjcAOt+DuKkYInMAaTAw8Ar5gJuEAgQhqM7bRRcUa8C40sqkZND0FxYTDGiKwnj5Z2G5VFBUusb3ctn+k0w9quZMGQ2Rk/bnoQxVzQJ9K6H7ewdRdKwpLI5l5/i8vK70aboX6AfTa8101RKnQpLVKFRTlqlOzowQnyGsSJCTCB/hPwoMYduHvR48DqSpq1FMsLl2IS7dFzfpuqabFh9I70XMV2bFQYjB5NZXzEBAabwC3cxEfYgiQ8hDiKssiJCTCBXghIgrAkL6SXSr0UhwUhZ5WoD9KmFxlMPGjD6XSxYbq+q6o/mwuTajtDSMbpBHfDHefoGQ1mkkmMeaKNssuDyH0x9VnZgz9Vh5DbY/Ma/n+mwdZV5kwVpRoo6AFKm8g7z5EttDGYbdv9/1eBVzhgBDwquEckz0M2LWX0gQ+wdo4NB7quLDPvp5DlhGJVXyR/V8bhukzABQLdUFNU1BLaeC1FItJdaMlVmQATcCeBhvdN2vRsebCZTbxhnIZzhiP6nAqEi07NDsmUR6xkrzimQZ6V4A7E3xtMf/nd2r1ZuSXdeJo2qnr0Jms2ac+fKE/0YLXh6cbW8OSdJ02hwqaDEuTNsnzwsdWA85gAE7Ak4OHvlETklBXiq1jxtiLLKTl7LsHtD2ZD2iF6L+psU67HBAaAgBAV9RO8QZtQo5GMhQMwAnfJBJiAswQqSUg0pH+6z7aQKHbMKidB3O6dKSIIC+TkV8GwL6vL0LPFZ1QQ5lCWVnYlTfOpTU4GDiTPNusLe3A12sHDg8VQxtNOoHN8MArygs283RjLPXgQlhyC1tZgdNKcLp7V4NiHPdiyWqPjIZpHfroaY06FYkmSKJMPmQATcIqAhwV3IGXZKrL7dT6pmyrwb7+8iP8pWWL1pZS0pATbnO+KazKBASVwHH/GSDKOmYZHBnQc7pwJMIFeCNCm1MPlpjpjbZjJCBsuT4s17qbqNo6CnIu+QCY/SSTga12qUP9V9SS4OyGcdpzTYCVtrO176oY8K9hu4Km+9+t6yyh6eImKAmJjg5AyKxg5BRpUv0deeeRC4CtTWkquNR+qCEE/372bOtQftbdrcPOmKXsY+aKMjAxCV5cGbW2mfAlJP2PGBEGj0eDSJVO+cDRuHDkGDQrC5csaqEX2U8K6htJmXX8f49YtDYYMsf2wa06KzwaDgMcFd1cX2VyzF6Wlk0hwd7Ul12cCniNwjgxkLuEUadv+gzxBW2+C89xMeCQmwASEgE5HRBhsxO/Tlt6eRh96aVLxER3niBr18fCO+6ihXjN/4EgPltGm1V6TG14cu6GLXqfZpwr0MJOyMATHW4Pw0uxuFBmkd9oH8CbtA8hzRZPnxAT+TPsW3iczKUN65BHy8LMsCJ99psHGjab8CROCsH59CK5fB55/3jxYVGkp+eKnh73163tw4YLpgWr5cno4Ileg/j7G8eMazJjBgrvhd8jbPgdBcFej6ewp1H7xJc5/cwX23jgKoLqu1eL1leSYV17sbdx4PkzASKAFdfgC/4fZ+ClFbbRrJWuszwdMgAkMLAFxQCchqNIwO1Jt+xnTPKRuct84aqQg8OiEvY52U/+OjiLIxESjoo21g3BHdjQvt5ZFBWMtPRxdiDR5+qk4Ru46U5x4sHFhIsvIb7zwY5lmzgzGm29a50eQGdSbb9oGLwj2tpK/jzFjhjUnWxw4b3AI2P5tHai5dJzASw9ITU/czo7j5Jefs935X70O1FYfw+e1+iBVQ6IhTbkHKUm8dX+gr/UNXNb6av8ulmEEOX7kxASYgBcQEAvq5MkkwabxehCZUJjmOslmHVO5+GhAbkmevRuLl+O544hg/KysB+V6P+8ONXeemxWPxAR8ioAHvyqU2PFsH4R2Aafoy9Wn6Hpgsg0VJciam2uM/CeTSVFZWaMbWV6IqtcKkBLjwcvsgTV7yxAqcmb6d/Igcwe+R+GVbveWafE8mAATEBMgKVtkpiwq0aDLWQmcbOYP6M1fhA7SEtiMQATSpcOkh02ed1xqyJWZABPQEvCcRKduxOflJuqy7EL8+KHpGD9iiCnT7GgIbrV+io1LV6LS2S9Xs/b+f9Kwfw0SFqzWLTSzGPWv5SCetEbKhgo8kzAX5YrVSFWcRlX7NqTY3Jzl/4wGaoWCBxkhKqogsE/G/QM1DPfLBJhAXwiIjdrJlvpcRwiirL4Dg3DHfOq8UjeAYrcGHXmwcoJga/iUO90suFO00RNVtKlSeFMgnrutwW3khZJ5TkqSm+dkYxy3ZEULkVx0Wwv41u4WotxJgBHwnODeeRkn9XAzi6uwLSfFCdRzMGvCVUSnX7OjMXGiC3+t0nYIWQahHctRV0ZCu/5qhsXPQVndTpRPWUyrL0fqswvQvs3aK4+/ovHEuk5gN4nu3RRe6TFPDMdjMAEm4AKBiElBkFF9vUxut+Xd8wRbXv2GRQqc1Eqq+Qgbd0V1o8YYgVWwmf9OvN0u0SiKEBpB3kycSR2neiBNM22cdKaNZZ2qzlCkuGDuY9neY+etxv3ASLvLOT4emxsPxAR8gIDndiCEj8EkLRAZsn/kjNCuoxdBvrWKy+7lLX9mv0xq7H/lOeNNKZOE9kSLm40k8RGUZeoblS9F2VGRHyyzvvjEVQINpGv/hrajpuEndAv33J+Qq/Pk+kwgYAmQS0LBYYwhXbUTqC9CGkxqD0Miv+ONhmPzzzaRMC5bF2z1fSuu3WDQUFHmDKmTgmkftOziMYVjlRv6sOxzIM4bPja5hZyX7CSfgZgI98kEfJSA56QOSSIeKRBekFXi5DlxDDrH5CQxt2PGtBi/3mzvmICN0o4qFBt9akmxWDbFRqUIyBabbkn5mw+QRTan/hK4gnPkPW437qMYwKH2w7X0dxhuzwSYgD0CkfYKxPkkuJu+/vC5yKWfuBbIVeFTZSbhcYvCttb78F6dlxih7YpMR7dNUz2h7u3jhf97T+FTg3GqRoJTp/r2U0Nt7/ACh1ZtZ3twtLoHDS121kwmQRsX6xhlloWgvwHU7YzC2UzArwk4+gZy+8Ln5azR9pm74W04q/9VnngNqWl7zMJNu31iPtZhy2d/M7gJBmTPQmawkbFYR9x0mdaWUJtdXo7jzj8vWfTEpwKBTlzFYfwOM/BjsoMdy1CYABPwBAG1+cZQULAi25tNzScz6wnT7e3YMXOBWlwzeVkICgWdEqXK/G5UNOmODf+rGyi4EXklFpKsMATzHTnratFgi2ETa3Yw5jmqq+tS+7+EXBImkfY5iezU+/KTTG1tmfiIhujzoYoCFxmTONSsMVN3IHCKntKNtNRuJIxV4cn13TCT30loL8lSQ4tSHozf2HDZaNElnzIBJmCDgOmbzUahu7Mk8QtRf2AdmV1n4bGX9qCJwpi1tLTY/TlbvR8F+Svp23Ika9yNF0ONqj9vN54JB/ZuYpJxk0yCO4n6R884+7hk1j2fEIFu2jEmeJC5HXMxnmKjcmICTGBgCSg7NGio7cGr/2by+60dsUaDvDXdqD5LkTAdKCOiyG+3QSAvf4vq2p1uEFZ9FGI0mZkbp8KOoxo0kXnMiUPdyEjQa+FlwShf5fiW2XDYZAay7qlgn75vCfxraf3/mW8Cp9jSg4paDZQ2Xt+qO031hKPylT0YG6TCq7uoza5uLApVI7ecwrIUBqN1t/sjppqPzmdMwH8JOP4WGoB1hw7X7Z6pLJIjLjoaY8eOtfszJXUBNlbSJJx6NToAk/XKLjvRcK7GNLOpo+3b/5PRo/i+VnHsnKkdH7lE4Bi2YRRuI8F9jkvtuDITYAJ9I/AHuRoJ07qRX2rdvnx1D1KnqBH9QLdDgfzpdXozGPIsc+CsdT/GHPIvvkElQVmBLmdpmhpxCWpI03u0bzcLt4egvSIEvSnQ9/9er50m2/YsirDpq+lEiRrhkWpMo/ULt2BjooemudOoLFyFRSXmZkVhSSFQFBprGg/yF3dj7uIetGcG4QCZAu1eRR5+jKV8wASYgKsELLY0utrctfpndz2PKYv17xxdaco+o8xoid9WylO+bd/SOmISFsgp+rbh1a2jMLVmI/CJmMApvK81k0lHnjibj5kAExhAAjkVocjpZ/+x80OwSaZGPkmfa17vQcZaB7oqsndftjYUT7ygQeMlGphcM0roDjkuPsj+d6xofsoT3cjVf9eWlUsQIyrztcPkHAk0fYC/cFUoVAI/2uTbflNYNT3IhAZhfFwQYqzccfoaFZ4vE/AOAh4U3JuwY42l0C6FTDbJLHqdCUs7CZz6Z33WuJuwoBWnz4lOHTr9lUAs5ItbueNYo6FX2Q0N+Pjjj626S0pKQjS9UfH11ERbUc+RkcwcvIAQn37x7etXgufPBPpCIAh55SHYHdeNyqJu7PhxMJYkOe4njDzSJLqqEib77UKpTgMtbLpclux4DH8ulYQFIT7RsELffetgWAF/+geBuro6NDc3Wy3m5k3tE6ZVvjdneE5w77iAKoOFhxDRc8tySGMjehGFOlCxXo65+70ZoafnNgy3p9FOqhodTMVH9IvYB82IO2bd09OD3bt34/Dhw1bdbdiwgR7KZFb5vpTRjkuowh8xC8+Sxo3VRb507XiuTMBIIDYYCgpuFJnag6Vk5pHULnF7QLpdL6hRRANKlwfjNd50aUTPB0zAWwhs3boVe/bssZrON998QxvCe3mat2o1uBmeE9yNftyl2LmpACmxzgwdgfSFjwMrOQCT6ddEgvYzhicgulEku6oaMvXU36OQkBDk5+fjxRdf7G9XXtdejS7yIPMakrFQa9vudRPkCTEBJuA0gYiUEDQeBOLIZjv1ATVqPpIg2U3P4vvXqCBYgMoK6AFhbYhTZjVOT5wrMgEm4BYChYWFEH4sU3Ky770ec2DwZ7m8fp5LxmI62Vu7miRJT6O9PY83sxjBScxMiyaFkSGmk6ndyXpcDaRpfxNjkIgEszAuTIYJMAFfJRA7KwStNcGQ0QZLaaQK+xv6v5JdT6ogBLAu2BmCChLa3fQs0P+JcQ9MgAn4LQHPCe70lSYv2EQga6DYb9IY90q27SDkD5Q68BzQaw9+VoF0wWYSuINwecp6HNBvlhIgpCWM9jMWA7OcszhI3ngu4W4sHpgBuFcmwAQGhUBUMgnYZCqj2B6MqeP6P4XJi4NxpD4UazM8eCvt/7S5BybABHyYgEe/baJm5uFgoRzluakoqbbvVVfMs/bAW1p3VM4Y1ojb+e9xFO6Yb7IdV+z+zMzlo6N1p9zphjuVowH8oKwV9TiJfbgXP+HNqH5wPXkJTMCKAAU7WrgkBIk6z8RWxa5kpCwMwcx4V1pwXSbABJhA/wh4Th5W1mJ9QQmu3tSpgHNTZ+MtOXmUcTT/dgW0jmXkxY5qBVzZ3fPI7t/gXbeyAa0UgclW1Dx145coN9JZju/Eu+FOZezP/w66cANH8Hvcg0wMB7+d8L8rzCtiAkyACTABJuDbBDwnuIeNRtjxjSgiD49SrVOUGlQqnDSZMTMN8W3g7ph9hHSeNsqfzrlmEY41FiI+3vpStjWcMg4nW/coEq2rGMsD/UBD/oY/QRkm4rv4Fu4MdBy8fibABJgAE2ACTMALCXjQVCYG8uXLtQj0ngydx+FQLe98N35TU5KIp8oyjcvZoqgyHpsO1Di8d5f+VIoVmfeaivjIisApCD5Hg0hk/75VGWcwASbABJgAE2ACTMAbCHhUBxsvewJybISC/LgfWLMY8cMceUSRQHXtFEqyFmAja9ytfleSl72Mwg3lWE0vLSrzC1CRUYE5onjc6obdkG/UvdGQFW7GfKfcb1oNExAZzfhSG2RpHlaS6B4UEGvmRTIB7yKgRFfDJSHOZj9TKIbEx8KhRqqtFpde2YlhzxcgIsbyFtiBm9XH0Fl7Hj23aCpDohGecg9GJIm+XI0zVKO9pAhdU5cgZo4x4pCx1OcP1MTi8N9x4+RpdGujbg9F6F0zMDI9RRtRtvf1ucKy9964BhNgAjoClt9aA8slIhWZ5BJScd/3MSfZGYf38SgqX4eNUvbjbn1h4rHqoxq0RkrpUagSc+MWYfuRX2H2+HBcOf93rEpfqmsi24TyVbOsm3OOloAS7WQisxUzkUVRZtmZG/9aMIFBIaA8icaEVOhij/ZnBlKMaz+OCDt/yl2HSvB1ei49IGSS4G4+jrKiBE1zc41zCJZJ0VNZg2tCNVI2jX+tACMsBP2e5kpcy12NjoKdmLg2o5eAgubjefOZ8tAbaErPMrIQz7WN1G+jql7DmJQYcbbZcV9YmnXAJ0yACdgl4FAxYbdVnwskeOTXR3Bw4QRtD2plB9raOkB7K/VJiYpXX8L6HYfQps8Mm/o4Dh58jP24GxCJPyOSsUFVj7ICwUG+AkvTpiEuIQFSEtoVkKJw+0G0V+TBlq5I3E2gHmvotiRsRp2CBxFD/3NiAkxgcAhoLn1trm2XZSJ83SZEFBfTzzqE0r4oY5LKMZzyR5aVYcS6AkjEZZhk953ZjV3P44IgtMsKEafaZqZtV+5fg68NQntmMW7r1GByxXFMrj8A7XthxWpcHJuF6x3GWdCBBKNWVWB8WTZ6ihaj/skSCEp6X0+dxOlrO0K7bm0KXE0di4tHbXuG6xtLX6fG82cCHiSgGYTUXLNPUyCXCm9F6UemOdJumIRKU1W2XJ8v1yhOtRoK+LMXAp2tjZq6U3Wauro6TX19s6azl/ruKI6IiNAUFRW5o6tB6eOEZo/moOZ/B2VsHpQJMAETAXVVseYM3Q/O0P3gck2zqUB7pNI0y4Uy/Y+8TNNtUaPz4CZ9uVzTYbyfmCrd3LlcX75cc93yy7H1oOasoW8s19xUmdoJRz11O01jZ27XqM2LtWfX1sl1dbJ32iy30cQ7sxr3aer0LM5mb9K0n6rXdDU3aq4f2K6pNzIyXIsCK1YaN7D0TjA8K38lcNddd2m+973v+dTyPKxxB6rfyMFY6QIUGT3KROo0GtqHFQlSlm2g6HbbSV+sgHxaNF491OTBxxjfHSosKhaJSYlITEwkDzMxHHa7l0t5EadwHsfIh8y/9FKTi5kAExhwAvrtTpLi/8HoZEsTjE7z4du7zLXzVBo261lE63wfmNelM/XRV9G4WPDBJUVUXRGGm3nFVaPtleeMJiGhZTkItzAgDUp8BCMz9d2WL0WLDU1z5IrXMEIIr1G6GBdKqvWVfe/j6usrtWyHbq/B5JI8RCTFY0hMLIbPWYJ4VSNGCC93jakI12rEryDcw9LYPR8wASZgk4BHBfeOEyVIzSq1mohl7M+o5CX44OAmbb389AXY36S3m7FqyRlMwHUCnbiKT8nD/XexjOzah7veAbdgAkzAvQRU2t2PiJh3Rx/7lSDyiXXU9py5UK88gca0fG2fkuIyjLaMutRRhWtFuk38gmAfIbNlMheBiMWmp4Lrmw8YBX3TZGMwdkuZ9lRNAQZbTogFWlMtrz5Sn0W74O0gW4HbliRbT1USi/Fb9pmZIvVcFa3TbSyth+YcJsAETAQ8KLgrsXd9rmlkslM0mCba8i0TMysLxdqn+xoseOUDkR28qQs+YgKuEhDs2o+Sv/apmI0xmOxqc67PBJjAABAIofvBqE1lGN6PIHGS6Y8hovBZSEQ3lI7SVdAphuQYvSTFaua3Pvub6d4iexYjbcTDEBoNnS4zCazl5bghklcNnQYnyXVad8q4ll9m6tdQwcs/e059oLXRj3rpe6a1Ws459n5EirTut85cNNZwJ0tjp3zABJiAFQHPCe7KM/hbuW785dur0Hl8N6rqBA1Fu9WkdBkReHCR/v3kxndwSmmnGmczARcIfIH3MIS07N/GQy604qpMgAkMKAFJPMbkLUOYhZmKS2OGJWLcKjJ1MZjCdFTjSr5C10XmjzDcytOMGjf+vN1sCGGDla0UNG6SyGOMAjfOtNmoFoVR+lgl5KMXV6ptSPc2WnlLVvDUHyHuVCOi7Ty82Jpn2Iyp+mx3s7Q1GucxASYgEPCc4K5S4ZIwYvZ2FJHmQ/hu7bypez0qZNtK9acNrzAv4aalPY2tBpzHBBwQuIyzqMdhpGKJg1pcxASYgD8QUL6/zaj1HiKfaeNm14lb5wz3GFrx1NE26uhJ0P1LLNQrj52ziSjs3h8atdUdJe+btbHZwJsyw6IQTv7qe4tkIXbZGTLMsAD3szT0zJ9MgAmYE+iPfsO8p97OQkO1XrLlKcnObZwk28R3jLaHvXXO5UzAMQEVOslf+x9wD5aSXfsIx5W5lAkwAR8n0IEOhbAhVUgyRNwXrzu0+F+suZKkfNu+4B4xCeFkItKhV+DDns6JnAQMoTG0xaUK3NyUYbEZ1mIChtO2anxTuAs90eG9Cs6GJsbPzk5oxqdjfN58hBgzB+ig4ww6DQxkxYhKMr3GcDvLAVoCd8sEfJ2A5wT3sAQ8QLvuc9+qRFtOci9+2ZXYVZAJ0zbWcXAYZNXXrwLPf8AJVOMt8mcvxXj0dfPbgE+RB2ACTMBdBJT16NSbZgLkuSzC1q2ulTTu4gEdvdaV2BfqxV1I4jCEBPwurXBbjpv1r2F4ksF2R1zR/Lj73Ee4sbHIPNOlsyO4mTXfbuApl7pyULlzb4nxLcaIoh+JzIcGgKWDeTgqaif//jfffx8jFi/GiMce01btPHgQ17ZswdDvfAdRK1dq89RNTbj8058ieORIjC0pMXZ56V/+BZquLsRs3oyQMWO0+a1r1uDWF19g1PPPI2zmTG1ex44duLFnD4YvXIiIJbq3uMqjR3F1wwYMufNORK9apa3XffkyWp57DkFDh2LcH/5gHKc5Jwc9165hzG9+A0lsrDa/bd06dP3jHxj57LMIT0/X5l1/+21c30mRfh95BJFZWdq8rs8+Q9uvfoXQKVMw+uWXtXk9HR1ofuYZ7fH4P/5R+yn815KXh+7mZoxeuxahkydr869u2gTl4cOIfPppDHtIZzZ64//+Dx20fyN89myMzM01tucD7yNg69tsgGZJNus/yQaW5iNrTQLKVtEve+hQ3VihpiHbzh7CK/+RTu4iTXmQ34uE3r/7RA34kAmYCJwnHzLX0Ii50H1hm0r4iAkwAX8koLl0Tr8pVbc6jc1FDsOQNCk6a3TmMuqPmoEcmxVdyIxA+H0y0sxXatvcPHIGSLLhocWyR8O90DLf6fNI1zX1Tvetr0hvwVuW6tRpwYUHMH5mlKiHgWAp6t6FQ0G4NQi4hmaCEGwQhA15grAsFnAN+WLh2pBnEMIN58KnIKwbBHZDviDUW/YpCP+WeUJ98cOCob3hocJwLnwKDx+GBxBD/tC777bqM5jCBdsaJ+bVVw3NjJ+j8vMB4UeUhv/gBxB+OHk/AQ8K7vT9teRlbPpdKfJXyxFNP9mZ7VpCxz6swFcXP8dft76OUgoxbZl2/voJDkZvCYXPnSJwA604jreRjn+n18ge/XV3an5ciQkwAfcT6Lnyjci+fByCRcoh02gSdJ8x3W+CksWCqKmWq0chI+OMTTTtjrT4xmoISc7BFBU9NXjtVxT5aC/M10WGzSzDxFVzTJPXHg0MS4tB+JQJMAEi4OGviRjkvUdx2Z6ZgvxyBUrLddcgd4FOO2Hrimw62IgMS9+7tipyHhOwICC4fvwEbyAJD2MkGcpwYgJMIEAIiAV1OTlDsPnGVoKQSBOPkDBxI1O+rSPxBk1b5X3K8/Dd2JU5du56AVeKhPt0AeLKltkQHLyMpSuL47pMwMcIBHt8vuSyK2+bCnUHtiOTbN7tpex121HXrkHeLBa47DHifMcEavEXusEMIZ/tDn7RHHfBpUyACfg6AXqxa9tURo0e3Utf/QodaMeV9bgpMt8cmjDa16k4Pf/uE2/oI89mYlzrWqvIsrqOmKXTQLkiE+gngUF6xpcgkUIob6OfLS0NqL9wEaHjJyOy/QKuhI5HQnwsbO4l6udiuXngEGjDeXyFjzCP7doD56LzSpmAgYBYBq/cB2VHDkaYHKDoa5H7w/lkj16pe+Or3v0ZuvNmOuWZJezOcYaR3POpbsONqtPoEZT+Kuc1/7rBVQgaOQEjyJWj21NTBRqkwoZIGaJpo22EXWsiL2LpdgjcIRPwLgKDJLibIETExCOZfrQpNoYNGkxo+KiPBNRkiXkUb+BuLCbXj1Z36z72ys2YABPwFQIhk+7QeoHpzaRl+LzHaUk6wR2VDVCpgRAbd0VN45eiza7LMcxuhFf69mloNGIKijQ6Ojfm2TroPrUN36SZbxa0Vc9+nhzjO3djhE2TIPutHJZ0nMD5uLlkcAiMrHmbAjM57tz9LB3OjguZQMAScLupjLJ2B+ZMn445c+ZgOn1ODwpCEP2sP9oWsJB54Z4lUIN3MAaJiMN0zw7MozEBJuAdBKIm0kO7IbVDbSfydoh0nqheEW40kuRuI6kaThlzg9c9asdcRKhCgYhO6h8E6Gyo1LRR1diBrQPxGwJb5b3mnYOm332IBlE3oOkBqXYz6ogjzYixt3G3rQJng+bgOgWJdT9L0Xz4kAkwASMBG7oFY1mfDlSqDlTq3WtpO5Blo2x5JmR3sOazT0C5kUsELuIkReg9RSYyL7rUjiszASbgIwREG0rtzzgO4cvJ1eNGwWtMJZQXSHEUY8POQ5KI6LJMfJNVru3qmqIKo8lcxjypcX3vLn2WFFGZ95oXm52JBX8Zho4PNyu1dxI8NQOxNQ8DrlrJ6DvUkHlNmHND2ZuCKL8JFzMScJPQDT/QSG4fY0RlpsOelhO4+PhcaDK3Y5j29u5ulqax+IgJMAETAbcL7qaugXWKGvx0YbKNHejiWnzMBNxDoAs3UIUd+C6W0f3P8Wtd94zIvTABJjDgBNTmG0Nx7pqdzabimUgQ+cTTaN2oMz/pOvY1kGJDcKcmw5e9jGEbKFgSCao9+QW4mlGBUSJzcU3DbupHeAAAggs3IyrWwW2z5R+4btjEmv0s9eOgrrZH3X9BEbEYliwaVFTm2cM2tDwZZ1zDjZczcXZuJTRSKaBDgCA6BCnnNPqJDT/4kDE4lVtZenbhPBoT8BkCbjeVMa58+T6sYKHdiIMPBp5ANf6IiZiBGEwZ+MF4BCbABAaUQE9HG5S1h3Dx3/JF9uU0ZM1KNK7ZgetnG6DusGMDQ9UkMzMwTBAyKakoYrdYF67LNfwfj9iPavQmM5W4HLcIl4/WoquhATcO7UBDwmJdRdkmxK2aZWhk81N5eK9JoH1q7sAHRbI5i75mtuFyzmxcKxe1p427WgFd+xZdkNxJYBcJ7cByjLpXrJF3H0vRLPiQCTABEYEBE9yzZySIhun7obrpEF4tOQT7X89975tb+g+BBtqOegMtuBPf959F8UqYQMAS6ECLPBpfT0vH9VKTzbgBh2r1UlyckoD6B0odCOSxGL2uQNekMh/XztoX3RGRjAmqeowskFN9Ba6mTcOFhAR8k76U+pdi2PaDmFSRJ7KHN8xE/NmBa7/fqMuQrsNos8ii4nreedxzgtZdqlerOznF0OInre393cLSyQlwNSYQgASce4/XBzApyU5uyuml78ZPy5Gfm4gnc2ax8UMvrAK1WIiOWoPdeBB59Mp2wH6lAxUvr5sJDAKBCIyr0KC/TheHzn8eI2RFuE6y/9XXD2L02jn21yKJR8za3Rj9QhO6LnVq7c2DJJEYEh9jNAWx35jMbE68jQ69mczI8n+lCBK+lYKTl2GKZpl7Jt1Plu6ZBPfCBPyTwABKOX3cZWPB+eyRUnIhW8zimAUXPjURqMJ2TMN8ROJbpkw+YgJMgAmQ4dz48gP4SnBrWDQXl3/ciTFJjve/BEfFIty2Obx9nuqz+Ebr75zk/bIa8sLCzhgEWH1iaZ8ylzABJkAEBkxw/2j3HxBxYihu3eoL5yEYMeQWqvdtQFE5tRfeXnJiAjYInMVB8jOsJueP6TZKOYsJMIGAJxA7B/FVZTiXmoWr0/IR1l5iIxhTfygpceWFR8kRJBC0XIEJy5L70xm3ZQJMgAk4JDBggnv56lwIMrdbUrtbevHrTtqaGtBuy49vaCiufPo6UleNROvxPLiqSPJmaIKJzEnsw2zaIEXRArx5qjw3JsAEBpFASMoyTDjYjgvp+bj4wGh866O1GO4WpbgSbWu+hzbyOhNcsBPxaxc6ZVYziCh4aCbABHycwIAJ7j7Oxbem37If0XELHM5ZtumIXwntwmKryfXj7ZhLsVH7awnrEB0XMgEm4AcEhs7KQ0JNLM5LF+ObyHcxuv4oonqJBup42aRpfzIcbaShCt9Zg7gM1rQ75sWlTIAJuIOAbwjuke5Yqv/2cahsfS+Lk2JFxsxe6vhW8Tkcpqh+nSS4O9hs5ltL4tkyASYwwAQkyRmY3F6P1r3HETbOsa1771ORYOjinRj38iOIiHeL+r73IbkGE2ACAU9gwAT3dQcb8dMZ0ehU2bLf6I17KAXQ6UTjyQP4RdpilLOpjH1gHUfx65WCuzQpMrPTMMyq5k0MuzMLs70htofV3PqW0Ymr+Bx7tF5kgvjFdN8gcismEKgEIuIRvSTeDauXYMTCDDf0w10wASbABJwnMGCCexgZEErCwhBBP31LYUikABorimUo39K3HgKh1Ym3N5PXYSCzrBzbAmRTVBUFWppClu3sRSYQfsN5jUyACTABJsAEmICBQLDhwN2fSpV7QibddreMgrVdcxBkw90z96H+1LXYnEUGlpDhuccCw76yAZ9QMK5rSMJDPnSheKpMgAkwASbABJgAE+g/gQHTuO8/egErZopDIfdtslEzC9BJfrb6qrfv26i+0arhva0gL/eUKpEWOR3y7O9jwYPpuO/+mUiO9yf/MbrroUQHBVp6B7PwHPmQGbBnTt1g/D8TYAIeJdDVoIHGDSMOie/l26FNg0uvdGPY8xJE2LhF3azuQWetBj2CK2OKohSeEowRSba9VrWXqNE1NQQxc2yXu2E5g9eFUoOOv/Sg44gG3YKvS0qhM4IR9Wgwhjp5Q3aFpW4E/p8JMIHeCAyY4F75+i405KWg/5aEEvTZ2qa31ft0eRO2rioSraAGCgpXrSjV58kLcWTLC5gZ6+Q3rKgnbz08jl3kr30WRsE9UXm9dZ08LyYQcASUPWhM6KaYDP1P49pDEWFnr2jXoW58nd5DDwhBJLibj6Ws6EbT3B7jHILpZW8PbR+6JuTIgzD+NbJptxD0e5o1uJarRkdBMCauDRm4wCjmUx3wMyVxaiJOltejC924Tj8jqySISbH/sNIXlgO+KB6ACfgJgYFTW9YUIWHOS6iobWIzlwH4ZVGe2IvVNQ46VqxGWlw4Xj3U5KCS7xQ1ka79KhrxbTzsO5PmmTIBJuAUAc0lC227LAjh64IRUSz8BCFUKuqGjodT/sgy0oSvC4JEXEbV7ImTN3apyY87Ce3Ud5zKXNuu3K/G1wahPTMYt3WGYnIF/dSHkKMESgoNLo5V43qHaB50OGpVKMaXBVFU1h7UP9lNnq58Pyn3EAuD0E6shi63foNxLVWN9jbba+0rS9u9cS4TYAKWBNwvuKu6TGNUFmHutDiEBgXhjRMW33imWnzUBwJhyU+jtbUZjY11qDq4D8WF2eRXxjrlp8dhR6179htY9+6ZHBVZtX9G2vZU/DP8R6flGXY8ChPwBQI9V2A0k4mqkWBKhQRxK0IwLkf4kWDYJNEqJgVr82OWhWD8CgkSjofitoOOb2WdJLR/s1gwxAnCt96TIFz8rrmtB00LDEY6JNSXhRjf8gbHkya9ztA3Ce/PdpO+2TyNWCbB2HWUV96D8znW5ea1vfyM3nxckutYjCKtunAdJmyQYLImFOPoAUWcWrdZ6uOptJ8sxf3zMRNgArYJiL++bNdwMTd8khwHD9wFwQnkrevXcf3WLfoZgYen2nl36WL/XN1AQIKoqBjtT2xsIlJmzUdOwa9Q/d42ZMnzST9tSkufLcVDFXmweMtrqtDHI41Gg+bmZpw8edKqhwkTJtDravdc8xPkN2c87sQYMpThxASYgB8S0Kq1AUlxCEYnmwuIVqsl98AGMdtQFjYrBNHLe9C60ZBj+lQf7UajVmgHouokGG5hPdhG9u4GETSUhHYzoZ66CUoMwcjMHlwrpxMSzlueC8b4meZzjKQHiJuktb9e2oMLZEKSkGMQ9k3z8IWjm3/u0d67R9eHUnAq8xlH0AOKplmF5pXm+eIzd7AU98fHTMBdBJqamnD16lWr7pRK31NsBpHwZfkdaLUwzvAxAm3VeGl2KopE0vumqnbkpbhHkDbQGD58OIYMGYKRI0casoyfpaWlePjh/pu1XMZXOIrfk4HMf9Era4s7rnE0PmACTMCXCXRXd+Ncag8J1qEYbeP5vGWRCtcEv7dCkgVjUkUIvX0zT+qjatSnaWBm404a5Ibwbq0wKjwUWAnUHWTiEtltNOeMJoE12kJgFUbRmo/oNdEgU5rJ20Kstsf31Hbjq2m6R4CRNaGISTafny+cXZquQtcqCSZmmD+YGOYuXmPwphBMzhM9oLiRpWE8/vz/7b0NdBTXmef915f5SIQNGOOV4hEY7GAnNLEYD4o3eNLgzeLJu25ex8Qz0LwH4h3BJjkgZsb2kbNmduQ5sHKcwc16vRJzHHliidmJiA+y1xGTGUkTwSTi9TQTWklEjAhSPC1jESRbsmnZ3VD7VHd1dXV3datbKkndrf89R+pbVfc+9z6/ulX11K17n0sCVhH4sz/7Mxw7dixO3KVLl7Bx40a88cYbcccydYfhqsvUKrJeaRNYWI4Dp9xwGjK2v3nesGVNtKCgAE8++ST6+vri/qww2tXHqRtH8Tl8lUa7NaeMUkggIwkU2PJxkysfnzAxmlOtcOGaAhTX5KNQ671X840eCRntanzx1vjH3cc/u64b7eoLwY0Jyp+zJi8ydl563T80GfmZv0rG3NvVkmRC697Iy0BoT3b8X+ouSmi0qxooVyN6zL0n2ri3kmWkFMZIwBoCzz33XJydotoud9xxhzUFTKMUy4fKTGPdc66o0QsncfSNfwXmzInX7aOPUHyPA1vXJ3iyxOYoLse3GpxoDPp5l4OGqQexSTN1+xz+PrjIUqnp6P1MrTXrRQIkkDaBwjzcvCe2Dz1NKXPzsPRpgwzpAb6yV5MhveSyJmBc+PBVJWpf9FbkUN5SmQQrm+F1wD88r6A4zqtKHm6SiZwfdIiUDin7jIzPL4/IyIrYOBbBcL02qEhecm5eH224W8syK2ixkiQwIwTGuUxnpE6zttDzP/hz7H6yI6H+9tovpG64i5RVX9omJm9j1Hj3hMIz7MAI3pFBMqdkmaXqDKsZq0MCJJANBMb+PtKbfoMjP25oi6rDxxcNmkjHW3yfvHZcLHajUT/2pmzFGe6y3sjn86Vn/low7Wj9NdxSXxDpqTcUlY3RUfFZ/566cIiw/J3jBaqL+6hgNcso4dwgARLQCdBw11HMfOTGVep31iuwmbmH8Xhwxy2Gb8CpVHdRqK9aHeou87myJqiO4dz4W3wW/0lGtS/ImnqzoiRAAplDYFRcOIZD8X3RvcPh/UZDvVAMceN2OE3wt1jcUzpk6E14nH2iL5gL84IGbfDwEQVXXeK6MpWpOeKN5Z0a8Zu+KLE7y6j6GDdkcSTlVpkwK+PNDd8bjCkmFb/WL55mZOjP1bDuIwo+6pe1qcqixRrZWcIyWjy3SIAENAI03DOoKax46GkoytPW1WjIq/e2V3z2VuvkTrGkPvxUeqkKsBz3TXFJFE8CJJCTBGRSqq8xolmRyTAZtQ89qpc4ktwklsSoN6aWIT83iIH/UdDIFcO9Twz3VcYE5vFrFxV8+HzkRcM8VbK9YljvFJ/3pnomy5f4WKBbXiaevqbpYkgnQ4HeXebH1a5CLNW960wBS0OR6USv/sN15N8oXz9+Lx+ql5ub5IXmY5ni5b+g4JPytWBU5ijM/YKcT2H1QfN13Li7AFfbJM8nJE+F5PmOLDD19XwE+uSLTI/kkZViR/9W8oiu+Qvl5e3oddz0DcnzT9eRJ31p8/59Pt57/hoW/LHk+TfJ0y15HpE837+OOTIPoHCpdJy9LHlkKJivMzTUaN79kuew5Nkhed6V9vKvMvTqq/n44Nh13CBelQo/JXn+WvJUSZ5/lrUH5IvP/C9Knv95DcUyV+P6sEyYPi15/kjyiCegG+6SPMtkbsWLMsH7Twsw1iUvgR9Kno35eL/uGj65RfLIvIyxU5JHho190HIdRSukrcpXpvcOS57HJc//L3nelzz/IR8jL13HgseMr2LpnAGmnWoCPDNTTXgG5ff/5O81w92OB1bfMoM1Sb3oj/Ahfo7XUS4TUhlIgARIYCIE1AWdxNbRQyKT+IYKPQkCpyLxycTmGfobrooBlVJI82OqmUzzbwpmKVPbF7isoOhBmbArC2CpLyOxYbRCVlE1TNKdCpaxZaayXfgp6fa5JURDNZzVyQkF8iWjaFloX9GdMiRKPuTmyZeQG+4O7QvmkXkMapjzOZmILHlUI73odi3PykieOZq70sISMZZvDR2/wSZ55Bzm3yTFhfOIYVwg2+onGPW4Ggokj/qnhuA+OaamUY1oNah5VRmqrHAetQy1LDWoZav1VutfJHVSg1pHta5qndW6q6FAnZMhHNSg6qjnEd3VoLJQmahsgowkqjIL5ym6S03FkKkE5LQxZCOB4QvdeEvejm+97Q6ULTH5Fhu4gOe3PB9UzdngwoYl2XGqu3EcZfi94KTUbDwvrDMJkMDMEzAu6KQOPslPYBhfk57YcMhbHY5N7rfgRtVgCr0qKCmOUSxYXYCVfhnokkG36bkbZIGrDRqLXcD1AemBd16DryPMR8Fvpff5k5rP+qlgGS4pnV+19zkc5j8Q6pssLBG08qcGtSc+HObdrxm3nzbkkV5qNRTKR2r1Tw1z7zXJc6chzwYtj/Suqz3swTxrDce/qJWz0rhPkymP7wJtkZW5hnkT8zeE0oaNelWm2lMfDPMkz82h42FjXd0/f6OWZ3mkHD2PfFEo+D0tj3hJCof5D2h5tBcbdf+8+yL6htPxN3MI8OxkzrlIuSaB/tewaKUNFWttWHbLPGx/9jVcNuYODKB+50oEzXZHHf5qh0VPJGMZUxC/got4F+dwN/5gCqRTJAmQwKwhYDTUHXn6SqjR+kuvo2EKTYFJ/0d0+shWiv3okQypxDLIaDerbn5JPkpl1Vmjz7Nr/eFXlAxjaaYA95FAjhCg4Z6w8F42AAA6ZUlEQVSFJzLgG4qqdeOTDtyStxmHj51A+7F6bC4qxe5Gmfxf04Kh47ssXzE1qnCLNhRZu/AM/jfW4GHpdDI+GiwqgGJIgARmJwHp9TYfKiN3nRR7xCFj5vXJmUJxjqF3clZBFZebt7RFemuVLkV86KiBLGdVO6CyM0ogw9/xZ5RNxhY+d9VX0FJzHI79LYY6tmDvltC23VmDtm/txoZV2vc3Q6pMjfaiUzzIFONTuCdTq8h6kQAJZAsB4wB38ak+NlqAT8ZN3BRPMZtksqE29CNwXIzQPTKcIAUd534mYrymkHz8JAGZnOoW41f9UmCs+/g5gynyZHjOJ1dZXKcEZc+RYSOFYq4H5HjemjCvDGKZoN7cTQK5QoCGe1aeyWI89PRx+B8fhtf7LkaCq9nJ3b5oPm4tLcOS4uw6rWPirFJdbOmL2JeVZ4OVJgESyCwCBTLGV/2cPN6Qlk8Ex0BrqcRbil+s0QKT26fiNU52zcP8ssT6ftwf6d/PW5CaMX2tR8aPV4xX28Rlqkdu9RXhk2kM90kuLclRebkIa5UnnMPxqWCZpBY8RAKzloDJLWrWssg6xQvnLkTZioVZV+/YCp/Fq7gdX5D+9uzwfBNbf26TAAlkGAHxp64OuBMX58EQGJOfuB53MdJt+ZLuurawtPR6e2UioolR7jcY4/m1+ZiX5Mn58S+1QuVnjuZNJLInQWwCveyxklSXgfLZcsrD9b7IS0yxrKAaDlPBMiybvyRAAhECSW4/kUSMkcBUEbiM87Lk1EX8LrZNVRGUSwIkkEsEDBNKE6slQzeqxHAPOdbC2NvSC74k3DdsyCV+1xc15OGdnaFe8vfFv/Vi8fsdGz54PdKLvlD8YCcOkXRqmjmaV5LE6UNH8u/IR4lH5Bon1Y6XyXBcNdrniqeRSYcxWVxJ/IoH3QkmeAl4r177MlCVj5uNfg8sZzlpbSiABHKSAA33nDyt2aGUOiH1X/H9oM/2gok+sbJDVdaSBEhgogQC0RNDIYsVRZvH5oIX/GE+hp4PGZkfvSk5DK72jDk+saMA8w8FcNUjQ2tkhdD3ZPGcmzTXgWo6pf+ayAnlyK8pwELDMaOcYFx8n38QmmoEVEbLiUtr2JEnK7PONxrBhmPTGb38hwG8r9X/Bpe4g5SFiG4wWAkfvBzQWOSh5GCBPkwmXEdLWYaF8pcESCCKQLKug6iE3CABqwmcxz9hPhbjVnzGatGURwIkkOUEro8qGDt3HZe+cS16vqZHgfcZWfxHVsIMGBYAilW3cF0+5ttCe/1/J2ljE+jbYoSeKtB9Wf221I/fyqqUH8nwmA9PXkP/Mq2HWYaFlD6d/JE59lNZ5VKT+4mv5ccZtnqRGRoxetn5WF5iflPkh1dW+Bw+cQ3ezX5cki8T+dLT/ilfIeab9shbxzJDEbFaJDDjBJLfhWa8eqxArhIYwyh+hX/A5/CVXFWRepEACUyCwGVHAP92lxjoR+KF+PeLQb8ygL4vhLybxKdQ9+Rhca02PEY8y7x/wTxVcG9xPm7zF+LG6lCa9yoCeHtZAO/cfz1o8M9vKsDy9ohxn0jS+9/VzHYZ2754ncnQnEQZM2T/woP5wUm9xur49l7HlQdlHoCsxnlzTyFuP1SQwC++lssilsY6ME4CJBAhYPgIFtnJGAlMNQF1hdTl+Dw+mRVe5qeaBuWTAAnEEljaXgRtEcrYQylvz9kkbiDtAXzQAbz3koxfP5Ckr0rGaC85UITFj4fGeauj99Rl5G8oC3moGa/Q693XMKoNM7mxsVBd6T7rwg3rCnC7UoCADPm5pk52lT9FOBQtkgWWTHvYE6g4SZYJpHI3CZCAEKDhzmYw7QTUyajqpNQv4VvTXjYLJAESmE0E8nBrYwF+XXoN1w9ew2//P5lQuSq5/vnikWZeus66xA/7O7bQkJqihgIsyYDx6sm1TH60UCbyWmEcTIhl8qrxKAnMegJJuh9mPRsCmAIC6rQydULqamzmCqlTwJciSYAEYgiU5KPMHXrUvXeX9L4nGRcfkzPlzSuPB4KuJ/Nk/PdtO/hYTRkcE5IACaRNgHeYtJExw2QIXMRP5Av0XNwmvmQYSIAESGA6CBSUF+C2TvVxp+DSFwL40ELjffgZP4bF60x+dT6WyfhvPlSn44yyDBKYvQR4j5m9537aNf8YV/ELvCETUrdMe9kskARIYHYTmLO+AMvEV3q+eKV5Z4EY2/2T53Flux9X9gPzmmVs+IECFExeJCWQAAmQQFICNNyT4uFBKwn8HK8He9pvRDJHyFaWSFkkQAIkECFQuFoM7JFCLGrKx9zJznwVsXO25GNpXxFKxfc7AwmQAAlMBwHebaaDMsvAe/BiAGfFY/uXSYMESIAEZo6ALHa0aGsB5qXjJSVBbT/5UAGKyxIc5G4SIAESmAICNNynACpFxhM4ix+I0f7/yPh2K9bljpfPPSRAAiRAAiRAAiSQ6wRouOf6Gc4A/Qbgwcf4EMvEbzsDCZAACZAACZAACZDAxAjQcJ8YN+ZKkcB1XBOz/ThseFjWMcy+lQRTVJPJSIAESIAESIAESGDKCdBwn3LEs7uACziJYtwiKyB+enaDoPYkQAIkQAIkQAIkMEkCNNwnCZDZExNQ3T+ew49ksaX/N3EiHiEBEiABEiABEiABEkiJAA33lDAx0UQI9OAEPoV7sED62xlIgARIgARIgARIgAQmR4CG++T4MXcCAh/gMn6DN3E3/iBBCu4mARIgARIgARIgARJIhwAN93RoMW3KBNQJqZ/GA5iDT6SchwlJgARIgARIgARIgAQSE6DhnpgNj0yQwGX04n1ZbmkFfn+CEpiNBEiABEiABEiABEgglkBh7A5uzzyBwPAF/LD1F1jz8EMoS2l1v1GcO/Mmfn7uN/jgY6n/DYtgK/9dlK8qmXZlFCiyPuqrMiH1IRSAzWvaTwALJAESIAESIAESyFkCtKwy6dSO9uPY/zqALU8ekVrZ0TUyvuHe316PnRt3o0PTw263oaPDE9py1MD919UoXzJ9p/k3+Jegwa5OSmUgARIgARIgARIgARKwjgCHyljHcuKSxgbw2uFdyFuwTDPaVVELUDSOxP4Tz2BZ2Gh31qHPp6C9/Sx8fW1wqnlb9mPtLTtxZnQcQRYdvoYAfoHXZbElun+0CCnFkAAJkAAJkAAJkIBOgIa7jmJmImPnXkbevFI42uejymlPvRLDJ7Hzwf1a+ir0NuzSh9XMLduAht5m7Vgj1n79KKbDdr+ATtyE27AYy1PXgylJgARIgARIgARIgARSIkDDPSVMU5eosPRL6PUOQTl+CIf++jk4UioqgBPf/qY+PMYpRvuKmNEwhSv+IxqC3e4isHEbGk4PpyQ5nUSKIiPa5U8NfvjwK/xDcGx7OjJyMW0gEMDHH6uTDRiMBK5fv46xsTHjLsY1AlevXtWvJUKJEFCvI/V6YogmwHtMNI/wlvo8Uq8lhngCPp+P95h4LFCfS2E7xuRwRu6i4T7Dp6WwuAQrShbqtSjWY0kio27UHdTGscvAlC32lSaJi2HfUqXv3/tCG6w2mdQbZG9vb7AMdYXUUqxBMRdbwqFDh7Bv3z6dPSMhAp2dnbj//vuJw4RASUkJ3nnnHZMjs3tXZWUljhxR5/wwGAmoTFQ2DNEE1GtIvZYY4gmsXLlSf17HH529ey5duoSLFy9mFQAa7ll1ukKVvfyzH6MlXG/712Evi+lu146VrrGLWa+FxkacnaLxMlcxjIv4iSy29OVwafwlARIgARIgARIgARKwmAANd4uBTr24ANyvNkUVk+hDcuHS5RHDXUz90+etHy6jVuQXeEN8tt+PudLfzkACJEACJEACJEACJDA1BGi4Tw3XKZTqQ//F8DAZKeaOxZiXqDS/P2pSavub1n8OuuHmj/EufhlcJTVRNbifBEiABEiABEiABEhg8gRouE+e4bRLmGMo0VH+aenpThCKl+NB42zXjxKkm8TuRV98H3dhkyy1ZKzVJAQyKwmQAAmQAAmQAAmQgCkBGu6mWDJ55xDeiuo49yep7NSa06X3fAJFNwVwO76QpA48RAIkQAIkQAIkQAIkYAUB81mNVkimjCkiMB93VsiUU09ouEzLqUFg1xQVNY7Yxcvm4X9sbcdf9BWMk3J2Hn7xxRdnp+LjaJ2XlzdOitl5uLS0dHYqPo7Wf/M3f4NvfOMb46SanYdVNgzxBHiPiWei7rnzzjvND8zyvdnGhYZ71jXYQoycj4xxt62OuJKcblXajvTggw8+MC12zpw5KCigQW8KhztJgARIgARIgASmjUCyNSFuueWWaauHFQXRcLeCoi5jGCePfh//Km4XzUZ8f/RRMRyVW/UVTvVsaUUKsWBBJMPyuUWRjXFiI+McT/fwokWLoP4xkAAJkAAJkAAJkAAJTD0BGu5WMh59C3++bbe+omm8aDvW7Zys4R7AR1EWeJIx7mN9aNMdvgMVyxbHV4l7SIAESIAESIAESIAEsoIADXcrT9O8m2G323DlirlQj+cOpN4/bi4DWIi7N9mBjo5ggpbjP8PonnUpeVAv/8zSREK5nwRIgARIgARIgARIIMMJ0HC38gQVrsDT7WfxtJUyTWR97oFHZW/IcEdHP4ZkBaZikzMZ8P4KjXr+KtxTltBxpJ6KERIgARIgARIgARIggcwkQHeQmXlektaq2PYAqvQUB/Gm13zt1OH+Hj2VvfZhrDAx7vUEjJAACZAACZAACZAACWQ0ARruGXV6UhxIIz37X2tw6jV/scWtxyORAH76+jFt04YnnJ+PHGKMBEiABEiABEiABEgg6wjQcM+kUzZ6GRFHj1KxJHb86h1/iRpx566Gjr3VaB8IxcP/A/3H4Xg+JM1e8wI2lbC7PcyGvyRAAiRAAiRAAiSQjQRouGfAWQsExjA8cA5HDx02GO4tqP+bdgwMjyJgOhKmDE+f8mhDZjqwsXQzjp4+h4H+fnSfPIpHlm0JaWZ3ofHp9RmgJatAAiRAAiRAAiRAAiQwGQJ5ioTJCGDeSRIYO4PN89bC4LXRRKAT7pFXUF5scijQj5f378XOg7ESbKhpegFVW9en5HHGRDJ3kQAJkAAJkAAJkAAJZBABGu4ZdDImU5Wx4QF43/UFh9cUFi7A0rIloA+ZyRBlXhIgARIgARIgARLILAI03DPrfLA2JEACJEACJEACJEACJGBKgGPcTbFwJwmQAAmQAAmQAAmQAAlkFgEa7pl1PlgbEiABEiABEiABEiABEjAlQMPdFAt3kgAJkAAJkAAJkAAJkEBmEaDhnlnng7UhARIgARIgARIgARIgAVMCNNxNsXAnCZAACZAACZAACZAACWQWARrumXU+WBsSIAESIAESIAESIAESMCVAw90UC3eSAAmQAAmQAAmQAAmQQGYRoOGeWeeDtSEBEiABEiABEiABEiABUwKFpnu5kwQSEBgdOIc3/+Xn+M3QB8EUi37Hht+9txwlxQkyZPHuKdV1bBj93hEg7gosAgKX8L2H12LOkSE8sW5hFhOMrXoAF04exy9uuA8PrSuJPZhj29brOjzQjxG/CaaiIlz5l5ew9ukbMXR2D7K+xQRGce6n/4yuX76FkY9Ufeeg5LP3YuP95VgYd72Y8MiiXeo95p9/0oW3BuReIGHOghLca9+I8jJrzuJsaTOXL5zGG2/8CG9dHIKsH455i5bjgc2PYMPqHLvPjF3G6R+9gR91vYUhX1BTLL/3ATzy8AaUWLFU+qx8LgUvPQQud+P7b7iBRTY8/FB5Zq88rzCQQCoEfH1KXZVdkSYe+rPZFVs4Lr/VTW7Fn4qcbEgzDbq2VdsiLA0cdb5wKF1D2QArtTr2dTUrlfZQ27HXdqWWKUtTTYmug63jtBcodlf2c+3rbFDspteD2nYcSpN7MEtbRUy1fb1Kg/F+GqOzvbpJmbSms6HNyL06GUdblQUcY07dTG32ddYluTZsSoMF18Zsey5FzuWg4tKeT7C5lEx/9CJSccZIIBGBPqXGphns8oBxdfZpCX1Kp8upGxTOOnciAVm0fxp0HepMcgMOcbZVt2URs8RV9bpblEpD21FfTByuXGgn8TpPpa6dtYaX5hgjL/SyZ1NavfF1yqY9vc1V+r0k8gIbue+E97my/Y3W16NUmZ7DGF0ddZMyIHK+zfh7lWoDR2dllVLpjL9OcqGjoK+lOnJt2J1KVVWlyTPErnROxuKcRc+l2Pui2+Uw8K1TRmITZNh2jn14lFs7g+UETj67E/s9IbGVzb3Ys75MK2Mu1u9pQPMvPNhyxIPG3Wux8fdHsGNV9o6bmQ5dz7zyHXQIQZvDiYql8+PO19Wr87Ft131x+7NrxxiObp+HbY1AVXUV7J7ngzpnlw6p1naKdR09je88GWwxcFZWwKTFYP5nduKL2TwqYOAEHt7yfBC4vdKFg/scuH1xES51/xOe3bgN0oz0sLfi2/iy/wBWZOXTK4D2mkehaQpXy0E4Pn87ikbexj8dPYRt+w2atuxGzWsP4NBDK3TdU47MgjbT/dJ/w0EBIl8n0Lh/qz5U5Lna09j/YAWe155ZHU8exJn/chzl2fpYGjuD/+oIaoomdyO2lmsX+qHncPrl/ajYGWpNkDvsd145I8/k8pSbiTHh7HguGTUOxUe7X8bavS3xBzJ5T4a9SLA6GUbA720xDIlxKh5ffAV9ngbD22rmf2aK1yC0Z1p09XkUZ7CXyJxlorpl336/4u3tVYa08VPGHo3c63GfWl09DaGvWs4GT/Y1gxRr3FYTGjpW1WSio9+ruBzRvdEud6b3iSVQfLAtdD+1VSkek95Rb6crci9V7xP2ifX+5Xybka8WlcLHVt1qPkRzsFNx6L3xMuwwS5uL2op6miqlTcgXtT7zwaidtZHe4gnfW2fNcynmutTakdjowesuOPx3gtdcjOQp3aRXmUx+q8qAunmOfRdaxwVsVVtwl8kEmLl3rYd8+g2Fjr1ovTAW3sqq3+nQ9cL/eSHYe2h3fROrTVhmFbCklS1EyYoV+mTCojnZ2t2VVEnt4BTqGjiHF3aqvbB2fPMrq1OpTPalCVzA36mf9Cpb8O2tJjoWlmDPi62Qh6oe3n9vVI9nU+TCj/8ueD9tfu3bWG0y/7Rk/R60Vcso/3C4Moi0NZ0FbWb0/I9wRJ46r9Zsip/fr7Jbci82i+We/WEUP649gsrmV7GpzPwT070PbdbVHNFj6UVmz3PJyCWA16oflXYE1DQ1QYZ06raOMVUmxmm4Z+JZyZg6XcY/vhT5hPTY9vXmN8nCFdguXWLh8P1//GU4mkW/06FrP17aot4m5KPm3gqs2bAZTz1bjxOnuzGcne86WXR+s7Oq/T/8XvDBon4Gr1iwBpt3PYX6oyfQ3T+cnQqZ1Hqs5x+DOjY/9Qfm9xc1T8m/h4ye0YP7/CU9nj2RUZx8Ua5/eUHZnMAIU3W5748ejajkeQuX0rTcZ0ObKV69B37lUJLhUn4EHRIFSd6NW7O236AYu9x+1D+SeLiU/2pEU/s9t0XaTsqx2flcGjghw9TU8VRVraj+ajmuhnsoU+Y2cwlpuM8c+4wvOdD/UzSl2JiNPaotf3cK2WZWTIeul9u/FxyTGT7xno4WHHxyNx6ssGHRvDV45uhp0H4P0+EvMIDvPa2ObQ0HD1qOHMTubQ/CtmwR8jY/g9MD2d9i5t7xVfT2eJMas2EC4d8N994RjmbRbzEcDb3o++9JXlBEmyiPn/Yv4I60jM7Z0WbUk27e/xxqDmPnXsdurc/J1fU4ykK7s/N/YVJN8Xr9iyG97C7sXr8kbR1n5XPpcjucD+4XVpXwHJSvNoGr6X/ZSpu0dRlouFvHMuck+a68E/Xp6OYb5yXU0W9s9h3teCvNXqKEgqfpwNTrOoo3/lK9USQKHuzfVoF52+sxEEiUhvtnE4Gx7tf1SeGmerfIxLTSeTh8csD0cNbsnLsQK1aVJDXEVF0i/YrAgvgZulmh7sKyFShLxxl9aTFkZYeUw6xpM0mIBAZOYu9d24Ip6roGsSen1sIwKh7A6fq92CaOIeCow2D7HqRvts/G59JlHH50Y9BZQp37OX3Ialrvx8bTMANxGu4zAD1bipR1XQzBiVWliQdlL/53dxvSIq2HTVTGGdqYel2L4WwZwuCgV3oX3WhtqkOlwzhqV1O8cTdKv3GMPe8z1A4yqdi5qx/D0NAgvN5euDtbUVdTGTXOO1zXvfeX4ui57O95D+tj+jt6Hq3hUXv2Ojiy2HOVqX6Gned/0qpvufY9mNZCMLO7zchQpKNPoaj0fm14GdB/4dc5eS8d7T+JZzYXoWJ3aOglRvrx6/6J3ANm33Opu/5PsLdD3nVcXdiVra6GpnTqK4VnNQFvW01wprU8ReTXoSRz5BDlWWactJkIZaZ0HfG6FVdl/GJMtV2TXn4lozB76iL+/ifs+SCjNEpcmSnV1T+kuFtcBk9PmrcVu2vyC/YkVmnGj/QGPWuEdM16P+7JaPpD3lKC91zxbmHieCZZbvNjOd9mhpRWV5I1AMQffq7cTYc8rUpVjIel0PM5dG3IFwbzNpDm3lx9Lvl6mkI2ja1WiVr2wufWvL0JR3qV0TsOGMlCAvOW3AXDfLCkGhinAiVNmKEHZ0rX4pJy7Kk/C3eD7pcnSOjJ6leNg48ylBqrNe0EChei/KE9ODvkRrXxg414c/rbM1k2Pi1VeGPdeHZbqGfRXtOWw0MfgHPfP6T1FtvR1vgYTBzPpEotki7X28zYCIawHA1NDaitNvkqJf7w/7j+TIRHFsdGLoumDzagoa7W9Ivt7oo/gRW3gZx8Lon3qurgECobWlv/BCVZ3A44VCaLT96UV/3qrxH+Oj3lZc10ATOsa/mOQ+iqEw/v4dBxCudz1A4Lq8jfSRBYWI4Dp9wwtBi0v3l+EgIzNWsAJ2r2hoxZZwN+8PSGTK3opOsV6H8Nj2ovKHXuH2BDSbJJiRMoLlfbzNwybN2zBzu27sATB+pxVvHB3VQdBahl9yF0T2QkSZSUmd8o27AVe3btwI5dT6D++Fn4vPICb/AeCnE2XHO027KK5s5zSe4j+x8OLnxWpbrWjL22omaEA5k+zYyGu2VNPPcEFc6/0aBU8qkbRZhjSBvjGSHqSGZuZIKu6x77lsxxD4fRaO8S4d38JYEwgeJyfKvBYLobZ2+G02T574Vjj+PBgzIgFdXobdhhTQ90JjIZO4fHlzmCzgCqW3pl7K0lfe3xms6CNgOZFVC+9QB6moxfMb3wDmW6ORZ/usbbM1e+2B74YU9kHRXJcLH/sqWGZy48lwbaD8p9xCNr0chaEWauNecZJvQtmIPEbjjGOyPTc5yG+/Rwzs5S/EZLwIN/S3Lj8/7qrEFH8Zub6S3fUNtgNBN0LVyJRw3dJ4ZbSWxtuU0CQQKrvrTNdMJqLuBRlyJfueV5UcWJrqEDSXx2Z7u2w6j/47uCvYHqhLkDDyX22W2FprncZox8Vm19HDX6cLIOeN7O0U+Yc1fh8bYaXXVP18+tHWaZ9c+lUbyueXTzPP9dfGPXdmzfbvzbhe2POIMLIwYhthzCH2vHN29+KiO/1Fj8LU5vO4zkAIHi5ffIeo3q0i9q8KDvitz4ysx7gq5e+W0wVfBfZTlKs6xlZYausgLnnaU6x5ivd/p+RkhAJ7CoNGi4q8stjOg7cyAy0A6HbacoYkdL318jZz36Sd9o+zNfwe5GWdS+uhX/e8+6qT95udpm4siVYPPXHdgfdOhuw+1Z15sUp1DCHSX3flnmo+0PDm21rVmG5N/HE4pJcCAHnksLwqq14IjmiCe8J/7Xg8bG8AI2DlSrD+LEDvXis0/Dniwzr6aBCIuIEFj4WTwqs1NlnSAtJGouY/jVmXBDlyUN/sM94/pkDkvMmN8M0XXgLW8IiW0tbrP27psxqFkRCwkMefW1Fio+e6uFgmdQ1Gg3dpWG/Cw3eH6Ah8oy7KlpIZrul7+Bjfula6SyCacObJoe+yAX20yiczInfBNdjtsX5W47gvgzDmu6ePmnLH/+Zvtz6d/d7YSzeD7mJ1r/4eq7ONIYNnRscFZWYD6u4t2rd2J+Jn76TtNLEJPPMgK9zQY3W1Utit9Uf69Sa9Pc0sGudFriw8y0oCndOfO69ioyKjPorspe0zmluk638Cl1kTjdyoxT3nTq2qdfn3albdD86hynupl12N+nyPCG4DXgSubabqhNXGLak7qozSzF4mvT16q52x3HXWFnjU2xu9zxAia4J+faTEIOPqWpUnsuOZuUkYTpsv+A7uZQnh8NHqs1zd3nkn7m/Z6IO0hHg+LTD2RmBJlZLdYqYwj4DA1a/LN3mdwT/H3NwQetdHootuq2jKl62hWxSFf/UI/SUFuj1NTWKZ29GjD/oOJxuxVPT1/Cm0LkxcGpeDL9zpEm3Ok0ZtOsmuXJ09fVr/S0NSg11dWKq6lT99091OtRutwepW8wQWPwRx6ozgaP5XpMv0Cv4tJ8VNe2RXlZjqqKb9Cj1NjFIBNjLAGZqPSZuDHYVRe6Zzpc0f6kjZX1+xRPS8i4b+iJvvGa3mMk72xqM0ODXsU7mLiXyPhcau7L4pda35Di7fMqQwkbu19pqdLWAknYuWZ+j1Fm+XNJv9xGov24J25Veo4ZjdBwn1H82VG43jMkhrn4UY6ptOGmIT1gbdas/xBTxvRtTl5X6eWJWiCjSun1q4y0nh+1R93mVFo80aC8ndqDXI4n7WmcPhSWluR2OfSXO0ddLhiZifGkq6uvp0Fno778Vjb3Kv6+lqh9ztqW6EVk/F5FvIdqxl8uLDAzpIiDnIjOdntokSmbapCE/mwSl7mGeprazuhrKPEZyawjIx5tERhNF7tBR6OualsI/tlro8+9vK7E32OUWdVmoq4Ze1Xc/VQZ7NK/XlY192RWA0irNiNKg+F5UulqVaI/rPkVWQNEuyaqlJ4Exn0UL+0eIy1m1j+X9FORZQsw0XDXzxwjyQh4msI3BzHeq5uUHq9X6ZMewaaaiEGWrJcsmexMOzY5XYeUOrU3MPzQlZeZrhF50BqNEu2Yo9qltLa1KnXVYYYOpaUn09/10zlbfsU3MqT0dDYoMsk5wsRWqbT1eBWfL4t7weIwTFzXEbcrwkY42Wu7lNgHbag9ORRXc6vS1lynyNSTYB5HTYveQx9XpazZMSRDGuJXD45cQ4a2o7cj9YU4axTUKzokRrvx5SO5jiG9q+RFLjqY3WOUWdVmYq8ZlaPdWa00tbQqzXXV2vVkVxo6+6LRZd3WSMzzRG0TdqXa1aS0tjYp1ZpRb69qUPoSGO2qyrG81HuMtJhZ+lwyaQQ03E2gcFdOEPB2NegGg/GBY3PWKJ190Z9ys13hievqVzpr7BFDTMavqqb4SE+LKbsQR7tS09AW05OS7QQVxThkxNhejHFHnXVjd2eS2KR0HWyLerGpcwdbjNJieCk2MlPjdrnm2nqys8c59jz5PNFfHGJ1Ndt2ZmW7ie49NdMrfp/TZBy/+T1G7jKzps0o8sWpocpwn9Vf6EKGbW1T7txPB+W5G9XxYdDVXlmb2n3A9B4zO59Lsfef4LbRcJdndqZbM3lqpeVmwUACKRIYw0C/FyOylkWRzF1fsGgplizM1dn6E9U1gP5uD67452O5bRUW6s54Ahge8OLdEZ+w9sMvbqbmL74VZSVLLPcCkOLJZLIMIRAY7ofn4hXMv/UOrCoJ+4eQFfzGhuH1vouRq2pFpcEUzcetpWVYUqw3qgzRgNWYXgKJ7jGzq80ERocxOGq4ny5YJM+jyPUzvedkKkuTZ8flQfhU14Ty4PDLfWDRoiUoTuPRm+geo64TyufSVJ4762XTcLeeKSWSAAmQAAmQAAmQAAmQgOUEuHKq5UgpkARIgARIgARIgARIgASsJ0DD3XqmlEgCJEACJEACJEACJEAClhOg4W45UgokARIgARIgARIgARIgAesJ0HC3niklkgAJkAAJkAAJkAAJkIDlBGi4W46UAkmABEiABEiABEiABEjAegI03K1nSokkQAIkQAIkQAIkQAIkYDkBGu6WI6VAEiABEiABEiABEiABErCeAA1365lSIgmQAAmQAAmQAAmQAAlYToCGu+VIKZAESIAESIAESIAESIAErCdAw916ppRIAiRAAiRAAiRAAiRAApYToOFuOVIKJAESIAESIAESIAESIAHrCdBwt54pJZIACZAACZAACZAACZCA5QRouFuOlAJJgARIgARIgARIgARIwHoCNNytZ0qJJEACJEACJEACJEACJGA5ARruliOlQBIgARIgARIgARIgARKwngANd+uZUiIJkAAJkAAJkAAJkAAJWE6AhrvlSCmQBEiABEiABEiABEiABKwnQMPdeqaUSAIkQAIkQAIkQAIkQAKWE6DhbjlSCiQBEiABEiABEiABEiAB6wnQcLeeKSWSAAmQAAmQAAmQAAmQgOUEaLhbjpQCSYAESIAESIAESIAESMB6AjTcrWdKiSRAAiRAAiRAAiRAAiRgOQEa7pYjpUASIAESIAESIAESIAESsJ4ADXfrmVIiCZAACZAACZAACZAACVhOgIa75UgpkARIgARIgARIgARIgASsJ0DD3XqmlEgCJEACJEACJEACJEAClhOg4W45UgokARIgARIgARIgARIgAesJ0HC3niklkgAJkAAJkAAJkAAJkIDlBGi4W46UAkmABEiABEiABEiABEjAegI03K1nSokkQAIkQAIkQAIkQAIkYDkBGu6WI6VAEiABEiABEiABEiABErCeAA1365lSIgmQAAmQAAmQAAmQAAlYToCGu+VIKZAESIAESIAESIAESIAErCdAw916ppRIAiRAAiRAAiRAAiRAApYToOFuOVIKJAESIAESIAESIAESIAHrCdBwt54pJZIACZAACZAACZAACZCA5QRouFuOlAJJgARIgARIgARIgARIwHoCNNytZ0qJJEACJEACJEACJEACJGA5gULLJVIgCZAACWQAgbHhAbw74p90TYoWLEXJwrlBOYGBk9j/9T/HGxcX4LHa72DPphWTlp/RAobPof7bzfjcvmqsW2L+uBjrP4nD9a/iozsfxuM71iNEylqtAsMX8MPWX2DNww+hLKUCRnHuzJv4+bnf4IOPpS43LIKt/HdRvqokrYpdPv0y/ut3B/HN557A6uIUs44No987AsThKgICl/C9h9dizpEhPLFuYYoCMzdZYKAdB1/6DbZW7cCKVPlkrjqsGQlkBwGFgQRIgARykIDHZVfkLjzpP1ttl07HHSWzSun164dyLuLtrFNsQX5OpWswsaIRJnala8RiDCN9SnNtpXYOU5Pf11an2A3n3W63RdqAo0ZxJ9EluvaDSq0t1H6cDT3Rh5JstVUbyjPUI9IWHUrXUBIBWXTI723VWNuVZk+OKJVF/FnV2UmAQ2Wy4/2KtSQBEkiLQADeS1eicjirauCqq0Od/NVWO6OOOaprZb8LtbU1qK6KPrZ8rvSUzrLQfWwfSu/fDY+9Br3+V2J62wMIBCJAiuYs0DZKESEVwOjoWCRRurGxAbx2eBfyFizDliePaLkXGOSbC+w/8QyWbdyNDvWwsw59PgXt7Wfh62tD8Ky27MfaW3bizKh5fuPe0TOv4klPaE/jznpcMOhsTBcVHz6JvzyoZYo6ENmwVe9BDnS2BxUqLNmE9iE3KoX4Ftsi1J++HFGUMRIggakhMDvfV6g1CZBAbhMYUeocod5Se3WzMuiL1tbf0xDphZVe0TpPTAJfn1LnDOV3uNx6Zp+3U6ly2BWbzaG4Wnv1/bkU6W2u0thUKbFYFF+PUqX1Itdq+o946kLpnU1KkOJQl1KppalsTr2nOszQFz43jiqlymn8auJQ3Ml69Ic6DT3t8V9D/L3NkXMudU0mShFNmrTzL0/eYL7qVm+4igl/3S5HMK3N4VQqKyvj/pzOKqVV3iZyLgx2Kg6NU1NPcrI5pzsVIoFpJoBpLo/FkQAJkMA0EBhRGoKGuxh7JnaSbmxqxobLbfKZv68laIQZDfdpqPiMFjHU5dKMW5vS3GsGrstgHEOpaVON2V5FerOVqtZBRfFHDHvV4DUOM0pVMf+IV+n1aufD59YNQiCZ4e5XWg1DVMyHtkibMBjjriTjVfx9BiNfayOwuxTRMHHweYIcpKs//oUnca6cORJpOzK0yuRyyhlFqQgJzDABDpWZmg8ZlEoCJDDDBEYuSgWcTthSmsxoUtmy9aiV3RcnMeLDRGrm7hrrxp6KvcH6Oeoa8MgKE3DFd+MJVxVk7Hsw7N9YiqeO/gJ3qjsu/QOeWnsXnteO2R1VqP3K3dpW6j+FxSVYURKZuJnSnMdRN+r0ISo2bLGvNCmwGPYt8r1AC3tfaEOiU9tZ/6KWqgqtra5QvGMvXk0yxubC/3kBjZLS7vomVpug0wTm7M/CdTshL0YSGlGx52WkMBopZ1lQMRKYSgI03KeSLmWTAAnMEIFiPPJCExp23hvv3CPlGi3EV1rr8HXbjSnnyOaEp488HTQ8pWcb1VvLE6hSjE17DuGs4seQtwetTbV4Y5sD+2VY9/M7t+GNChc6PX3w+WVs+fFD2DRNrkYu/+zHaAnX2P512MviXLoEj5ausesvHWhsxFkz6zI4Tr0jmN5eux2bNv0RajTZuw+9nsDY78dLW0Jj8Tv2VmDNhs146tl6nDjdjeFEbwfh+ubMbzEc39RechrFiD89nDOaURESyCQCNNwz6WywLiRAApYRKFm/FTs2lE1K3opNu7ArxuXjcH83jh3ehzV5u9BtYpSNDpzDa/VPYfOuoyEjTyZath89jF3bN2Pz5g3ytwsvt18w1GsM59qP4qld27HrmcN4dt927Hv2GC6YGZV6rkAwz77tG7BmzRps2CByt+9C/WunJ9bTOXoGB/dqpq/zq1iTUjd3EW6Q+hinYobiAfiMs1f1Ok9VJAD3q01RwhPNIy1cujxiuIupf/p8vHHZ/f0jocmtkvIJp/opYQm2NsmofTU01uJH/fHSL7d/DwdDKYL/PR0tOPjkbjxYYcOieWvwzNHTCQx+Q6ak0TGcPvYsNq/JQ15e6G/D9n2of7keT+07jHMm7VB8T064jQxfEBef0g7XaGXl5Ukbk/Jebu9OqsfCdV9G+JvG3oPfn1hbTMqBB0mABDjGfYbHKrF4EiCB6SeQ0hh3Q7V8gz1KS12N4tDcA8qjQ8aCi1s/fR7eiNLVXKdUOgyuAJ0NisfdHDUmPJQvNNmxqqVP5kD2KDX20LbxWCheo0iK+ODrVWq1ibeQSbJVlU6pi0GGrSqp+8Z4gYrSp09IhVLZnGzS7ZDSortnDJVZ3dyq1AiX4K9RF5tz8i4CZYy7On4+pF+iMe6RicjBdJXNoUmyZoqOGMfMQ3HURSYeB5PLGP3wxFoY5Yx06WPtbTVtMZJl7LxRb72+4Xprv846xZvYq2aMTOPmUGRsvrizbPP0Kj3ulkg9o9qhlm/CbcSndLrC7jdl3oKrSWlpaVAqje3e4UqqR1tNZEKx6TwJo2qMkwAJpE2AhnvayJiBBEgg2wmka7h7GioVR1WNUu00GObGyZKqAe5wKPawgRP+VY04MWAbWjoVd1erUp3AwKtyNSvuHnk5cEUb4UHj3gjb36tUa7IdtW26geofjHhySWr0G2XpceOkTbvSmsy6FAPW6CO9Kmjk9wWNyODkVJmoGvY6o9ZjIpNT9WqpkRQN99BE5JCB7KjzRImI3hjSvQ2p9YudeNzXUq2/BNXFuLDp1A3SeD/s/pEhZXBQJtX2uJXWppgXOKMhb3wZiK5Ywq1InRxKj9HwVz38BNtCzAvNhNuITyb4ho1up9LmNUxOjvLYo77wJGYc8UoExdmQOF1ChXmABEggKQEa7knx8CAJkEAuEkjXcNcZRHkbiTGY1EQxBo7qijLKwYb0+EZ6kFVD06G0xnhv6TIY73bD4k+q+C7N3SDCrhfVnVrQ3ShqhmLynvNwLvkVbyh6L7PxZcSQRI8avMbUNIeMMp9Hc60pRmnQrpSXiJBBKT22E3AHqZelRlIy3Pv0l5mgMR7bix4lMOxtSDPyDa4+FcUb/HIQfPGx1cZ5kDF6mknFIB3xuhVXpfFFL1RmbVdS3zRRtVU33HUhF5Oqt5pYh5RDXbXShuxRbjIn2kYGO2v0l5amHoPRHqxRNDd7FLfoKkddWybtNDo1t0iABNIlwDHucpdmIAESIIGUCCz9dGghn0SJ530CpfoxB57b/wgW6tsSKb4DGx2RHbVdDTKBM9oFyZovbdQTdJz4GfRR2KOn9XHolY7VwNgwhofDf6Pwz1uk51Mj53sGorYTbQTevYguw0G/IR4XLVyFQzIxVQx0PP2I1EHC+Z+0hZIdaYRHHZe/ZB0OnfXD5/Pj0COrQsem9P983CljycOh5dRgOJrW7/CZY8FJtmqmqmcelZHt0aGw7D9CevaDoXHnd8ddkKm4pBx76s/C3RAe9R3K+2T1q2mN/S5CeMJBI/7i5dNRlVq45gHYcQX6OZtwGxlA3Tf3h2Q7G/CfVkW3SWm4+PKfahNPJVXFshuj6mHcKL71bqmTFhp/jPOm4+/DCfhLAiSQLgEa7ukSY3oSIIFZTEA3kVJjEJe8GHdtiFjuZouy+v0fRWQvgO4V5/KbP9I9pxzZYsM8MdQXLQr/LcCCZRG5qoCO/T+NGP0RiXEx35V3DBNMl2J+ZPnTuLShHYV6ndRt/0deLd1IxICUFHPnmnt20RJb+FOIkfORKbK21VGvSimWM4qWQ3u1tJX42pfKTPKJ15Q/VR2EquF5vPSP/aHoOP/LdxxCl6zmpYeOUzifdOKxnjIYKZoT2T6yUzzWbH8Gp/s1AXPL8cORU1ir2fYTbSOj3a/rLy2Oe236q0KkZHkfW78Hft8IRkb8OPDQCuOh6Hix8eX1XVyNuwaik3OLBEggPQLTdWdNr1ZMTQIkQAI5SmD+nHAPagoKjkTSvP1zt7ZhQ13bEdx7k7mF7Q8aSvJv/q2mBlhEohYzinGUY1lsZ2tchugdd3zpCVRX3oF5n3em6I0mOv/ktwqxQF5wwmG52dtQ+GDMr4539Jc4rjphl2B3fS2hH/aF6x9FNZ4MepA5+OwJVIvXoVTO5rrHvoXK3Y0IOYyUryOholL6v+or++Dc2ai56hQvPo37USF/jqo6PPPUY1i9JFKDibaR0auRl8X71t2WsF6Fc4tRnGb7MDavhIJ5gARIIGUCNNxTRsWEJEACJDBzBBYvWyuFqy4bpXd5yRqUT8UqP2LJxjs7TK5z8apNOFC/KXmiKT0awEe6Ba4WlMQsHutDm4pQCxXLFodixetw3O/DmChfODeZZVqGA5JufxCSfFUICxrvt3AlHpWZyUcOdgRTpmXMFpejwdsJlN6vG++qkJbndwf/XG192KO5PZ1oG7n4s3Zdg+6eS8C62IFC+mFGSIAEZpgAh8rM8Alg8SRAAiSQCgHxjq4n6/cO6fFJR4x2bkcrLqYxjGPSZVsiYCHu3qSPqkbL8Z+lPIa8/DNLIzUonCvDe+ZGDQOKHDTEtHTpDQUqRMmdpboQI3J9Z5JIYcl6vOL3ornGMORGS7934zI8cyK0LsCE20ikwx3et99LUpNUDkW/lqSrayolMA0JzGYCNNxn89mn7iRAAllD4P2+X+p1Pfjs6+MYpwGcrD+M9v7xZwYWLzdMJtRLyK7I5x54NFLhjn4MJfhsEPD+ytBrXYV7ylLuM4/In2Bs4C1vKKdtLW6LjG4ZV9rY5Qu4cFnOY2EJHnn6Ffi8btQGF4aKZN3/4FGoU5En2kZuu+c+XVjH/u/gTNKXt1GcPnESlxMxHvKmOWdCL5oREiCBFAjQcE8BEpOQAAmQwEwTWL5uQ6QKHbuTLik/0H4Q9+/ei99EOukjeWNjC38HFfq+Ebw3vq2vp86USLHtAX3FTsgI9De95lblcH+PXmV77cNYMW2DRS/gdW2YjP2RL6JEr8X4kV82rMTKQ2f1hHPFW80Tr5xFT3O1vg9w420xtifaRubeZPQS04I/ez4ydMZQSDDa/fLXUfHgd3DJHDF8l/ojhrs9/TkTseVxmwRIIJoADfdoHtwiARKYhQSO/zoVC1cFEz0MYEKoDF5C5ow/MEMvYuHaL0H8rethb8UX8fLpeJeP/ScPo3SjuPZzNuEP49z66dkNkVJUiOP1UOjAz98eNhyb6WiKvAtX4GsNTr2yL7aEJ/LquyQSwE9fP6btsOEJ5+eNByceD1xG95kz6D7Xj0TvPBeOvSB+aNTghOvx9WmVVXSjeAs62BLsUTdmXPVIDVr08xY6MtE2UnzXJpl0Gwkd+zdi++H2GH3GcPrlfbDJRFln039POIEXiIy7sdtl0nJELGMkQAIWEKDhbgFEiiABEsguAl73qagKb74tRfPiXeNQCxERZ1cWGYawyHiIuOOA9y2ZXKqFUx5vOKr/Fhn9/4m3FF2E+FDf1xQxTtVJqjsrSrFh32GcOHkaJ9uP4ZntG7DsftWtoQ2ttV9NcfJkIdb/4WN6+W+++W96fMYjo5cjvbdqZXQY8TVbveMvUaO9f3TsrUZ7zDtNoP84HM+H2NtrXsCmEiu62wN47fFbYFu7Fra7lmHemu14rftyVOUGTtZj5ZaQ2e7q+qskBm9UNsOGOq7mIP7iaLdhnxo11n85blab8ETbSGEZvtlWEyW/ce9G0WcXDh9+Brt27cP2DfNQsVP0sNfir7auikpr3HjzjeP65n/eel9ULfUDjJAACUycQLorNjE9CZAACWQlAb9PGRrsU7qaXYpMZdRXiZS7pwKbU2lqcyvewSHFZ1xWXlfUr4wM9SpN1eFVLEP5qxo6laFwBv+I0llXGSW3psUTWk00KMev9HU1RZdtr1G6vCN6Kb6RPqWpKrzsvFqGTanr7DXUaUhpqoype6wust2Q5uqcUauG2l3Rq73qtZu+iF89V96eON6VdW2Kd2hE8ZueI6nfiEep0nk4lKauHsXb16d4OpsU6bcOnRvRL3YF0olr5lPkXSrqnKvtyVHtUlrbWpU6vb04lJaeqDV0Uy7SU+fU5Veq7U2U90tb87S6FHlPCR6r7TSuxjrRNuJXumLab/DaCHML/lYpnkhzNdGhN8I/A9qRSQW5iwSyngCyXgMqQAIkQAIpEBhxu3QDKN4giRhfLne8geVpiBhPZnn/R8tLSWQ7lR4xtMwMvLAsZ0OP4uttSCrDrRtMI0pbAgPL5qxV3IOJrNrkkLyt1Xr5zb0Tk5G8hBSP+twRIzvKaIycIxlyokR4xMj19ykNusFszGNTapo6FR1jTLaJbo70tCSpr12paWhTJnhKglVyu9QXObvisBl10eL2SqXZbTTaw1pMvI145eVS5r7qbUFvozXNinecZjHiqdPz1US9TITrxV8SIIHJEshTBciFyUACJEACJJBFBALDA+i5+LZ4LVfHjxRh8W3LUGZYjCd9VS7j8IZbsLdD+vmr23D2gGEybPrCZjzHmPDxvitzFwRPYeECLC1bkuLQoYlUPYDhAS/eHVHnSvihLoI1f/GtKCtZMumhIoExmXUqCx+pA2NGhy9jaGhERuuLTrJybllJ8lViJ95GQvoM+YIlYcEtpVhSbByaY8ZoFEe3L8C2Rjkm8ytGXtma0uJUZpK4jwRIIDEBGu6J2fAICZAACcwuAgPt2FC6EWK7o6nHh60pTW6dXYiorTmB/teewjLHQTnohHvkFZSn4fLSXCL3kgAJmBGg4W5GhftIgARIYJYSGD3zMhas3SnaV4oBVk8DbJa2g3TUHjt3DPPu2iJZbGjuPY1HVkyff/x06sm0JJALBOhVJhfOInUgARIgAYsIFJfvgLfTJdKOYO0XnkJ30sV4LCqUYrKWwNiF1/AHQaPdjuaeUzTas/ZMsuLZQoA97tlyplhPEiABEphGAsPdx/AV2xYZNiOuJftOY9M0rjI6jWqyqEkQGLtwFPNWbpO5s9Vw/+AAypMPuZ9EScxKAiQQJvB/Afgw0nyFecxQAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 3, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='conduction/conduction.png',width='60%') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure: Conduction** Plot of solution curves $T(t)$ for $T_0=-10,15,20,30$; parameter\n", "values: $\\lambda=10^{-5}$, $T_a=20$.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Demo: Conduction\n", "[lab1:demo:conduction]: <#Demo:-Conduction> \"Conduction Demo\"\n", "\n", "Here is an interactive example that investigates the behaviour of the solution.\n", "\n", "The first we import the function that does the calculation and plotting. You need to run this cell ([how to](#Running-Code-Cells)) to load it. Loading it does not run the function. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from numlabs.lab1 import temperature_conduction as tc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You need to call the function. Simpliest call is next cell. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xU9dX48c/Z2dleYQu7wFKWJh1cEUWJPfaK3VgjWNJMYokp6i95nmg0Rp/EFFvUiD0qihXUiGgQadJ7XcoWlu195vz+uLPLwhaGZWZny3m/XvO6fe65K94z93vvPV9RVYwxxpimwkIdgDHGmM7HkoMxxphmLDkYY4xpxpKDMcaYZiw5GGOMaSY81AEEQkpKig4cODDUYRhjTJeyePHiQlVNbWlZt0gOAwcOZNGiRaEOwxhjuhQR2dbaMmtWMsYY04wlB2OMMc1YcjDGGNOMJQdjjDHNWHIwxhjTTMiSg4hEichCEflWRFaJyAO++b1EZI6IbPANk0MVozHG9FShvHKoAU5R1XHAeOBMEZkM3AN8oqpDgU9808YYYzpQyJKDOsp9k27fR4ELgOd9858HLgxWDN6aGvb8z/9Sl5cfrF0YY0yXFNJ7DiLiEpFlQD4wR1W/BtJVdTeAb5jWyrbTRWSRiCwqKCho1/6rly+n+LXX2HzOORTNnIl6PO08EmOM6V5CmhxU1aOq44F+wCQRGX0Y2z6pqjmqmpOa2uLb34cUc8wxDH5nFtFjx5L329+x9cqrqF67tl3fZYwx3UmneFpJVYuB/wBnAnkikgHgGwa1zSdiwAD6P/M0mQ8/TF1uLlsumUbeww/jrawM5m6NMaZTC+XTSqkikuQbjwZOA9YC7wDX+Va7DpjVAbGQeN65ZL//HkkXX0zRM8+y6dxzKf3wQ6wbVWNMTxTKK4cM4DMRWQ58g3PPYTbwIHC6iGwATvdNdwhXUhIZv/1/DJj5Iq6ERHb+5A62X3udNTUZY3oc6Q6/jHNycjTQVVnV46H49dcpeOxxPKWlJF12Kak//jHhyfbahTGmexCRxaqa09KyTnHPoTMSl4vkK64g+6MPSb76aopff4NN3z2Touefx1tbG+rwjDEmqCw5HIIrMZE+v7yXwbPeJnrMGPJ+/yCbzzqbknfeQb3eUIdnjDFBYcnBT5FDhpD1zNP0f+ZpXImJ7LrrbrZcdDHl8+bZTWtjTLdjyeEwxU2ZwsA3Xifzj4/graxkx/QZbL/2OiqXLg11aMYYEzCWHNpBwsJIPOccst+bTfqvf0XN5s1su/Iqtt94E5VLloQ6PGOMOWKWHI6ARETQ6+qrGfLxR6Td+XOq165l21VXs/3GG6lcvDjU4RljTLtZcgiAsNhYet90E0PmziHtrruoXreebVdfw7brb6Di64V2T8IY0+VYcgigsJgYet94g5Mk7r6bmo0b2X7ddWy97HLnbWsr7GeM6SIsOQRBWHQ0vW+4niFz59Dn/vvwlJaw8yd3sOnMsyiaORNvVVWoQzTGmDbZG9IdQD0eyj75hKJnnqXq229xJSWRfNVVJF95BeHtrChrjDFHqq03pC05dCBVpWrJEvY+8yzln34KbjcJp59O8tVXET1xIiIS6hCNMT1IW8khvKOD6clEhJijjybm6KOp3bqVfS+/QvFbb1H6/vtEjhhB8lVXknjuuYTFxIQ6VGNMD2dXDiHmraykZPZs9r30MjVr1xIWH0/iRReSdMk0ooYPC3V4xphuzJqVuoCGJqd9M1+idM4cqKsjavRokqZdQsLZZ+NKSAh1iMaYbsaSQxdTv28fpe/Opvjf/6Zm3TokMpL4755B0sWXEDPpGCTMHjIzxhw5Sw5dlKpSvWo1xf9+g9LZ7+EtK8OdmUnCOWeTcO65RA4bZjexjTHt1imTg4j0B14A+gBe4ElVfVxE7gduBgp8q96rqu+39V3dNTk05a2upmzOXEpmv0vF/C/B4yFy6BASzjmHhHPOIaJ//1CHaIzpYjprcsgAMlR1iYjEA4uBC4HLgHJVfcTf7+oJyaGp+qIiyj76iJLZ71Hlq+EUPW4cCWefRfxpp+Hu2zfEERpjuoJOmRwOJiKzgL8AU7Dk4Le6Xbsoff99Sma/R42vr+uoUaOIP/004k8/ncjs7BBHaIzprDp9chCRgcA8YDTwU+B6oBRYBPxMVfe1sM10YDpAVlbW0du2beugaDuv2m3bKJs7l7KP51D17bcARAwaRPzppxN/+mlEjRplN7ONMY06dXIQkTjgc+B/VPVNEUkHCgEFfovT9HRjW9/Rk68cWlOXl+ckirlzqVz4DXg8uFJSiDvxROK+M5XY44+3x2ON6eE6bXIQETcwG/hIVR9tYflAYLaqjm7reyw5tK1+3z7KP/+cinlfUP7ll3hLSsDlImbCBGKnTiXuO1PtySdjeqBOmRzEORM9DxSp6k+azM9Q1d2+8TuAY1X1ira+y5KD/7S+nqrlyyn/fB7lX8yjZvUaAMLT0og9bjIxx04m9rjJuDMyQhypMSbYOmtyOAH4AliB8ygrwL3AlcB4nGalrcCMhmTRGksO7VeXl0/F/C8onz+fyq8X4ikqAsA9IIvYyccRO/lYYo49lvBevUIcqTEm0DplcggkSw6BoV4vNRs2Urngv1Qs+JrKhQvxVlQAEDlsGDE5RxM98WhiJk7AnZkZ4miNMUfKkoNpF62vp3rVKir+u4DKhV9TtexbvJWVAIRnZBAzcSLREycQc/TRRA4dirhcIY7YGHM4LDmYgND6eqrXraNqyVIqlyymavES6vPzAQiLiyN67BiiRo8hasxooseOxZ2eHuKIjTFtseRggkJVqdu5i6oli6lcvISq5cupWb8efH1lh6emEjV6tJMsxowhavRowpOTQxy1MaaBdfZjgkJEiOjXl4h+fUk8/3zAqQFVvWYN1StWUrVyBdUrVlL+2WeN27gzM4kcMYKoEcOJHO4M3f3728t5xnQylhxMQIVFRREzYQIxEyY0zvOUlVG9ahVVK1ZQs2YN1WvXUf6f/4DXeUgtLCaGyGHDiBwxnKgRI4gcPpzIoUNxxcWF6CiMMdasZELCW1VFzcaNVK9dS83adVSvW0vNuvV4y8oa1wlPSyNySDYRg7OJzB7cOHT17m0v7BkTANasZDqdsOhooseMIXrMmMZ5Dfcwatavo2bjJmo3baJm82ZK3nyz8SkpgLDERCIHD3YSx8CBuLOyiMgaQERWf8Kio0NxOMZ0O5YcTKfR9B5G/CmnNM5XVer37KFm02ZqN29yhps2UTb3Ezz7DqzJGJ6WRkRWFu4BvoQxIMuZzsqyZipjDoMlB9PpiQjujAynpMcJUw5Y5iktpXb7Duq2b6N2+3Zqt22ndvt2KuZ9QUnBmwes60pMJLxvJu7MJp8M37BvJq7kZGuuMsbHkoPp0lwJCUSPHkX06FHNlnkrKqjNzaV22zbqtm+ndudO6nbtom7bNiq/+u8BTVUAEh3tJCFf4ghPTyM8LQ13Whrh6emEp6XhSkqyJ6tMj2DJwXRbYbGxRA0fTtTw4c2WqSrekhInWTR8du4fr169urHO1AHcbtypqYQ3SRjhaam409MJT03F1as34b17OVch9sa46cIsOZgeSURwJSXhSkoiauTIFtfR2lrqCwqoy8+nPr+A+rw86gvyqc/Ppy4vn5oNG6j48ku85eUt7QBXcrKTKBoSRsOwd2/Ce/fG1auXM0xOJiwuzpq0TKdiycGYVkhEBO6+fQ/ZJ7e3osJJIAUFeIr2Ub+3EM/eIuqL9vqGRVSvXkN9URHe0tKWv8TlwpWYuP+TlOQbOuNhjcuSfEnNmbakYoLFkoMxRygsNpbIQYOIHDTokOt6a2vxFBVRv3evMyzci6e4GE9JMZ6SEjzFxXhLSqjPz6dm/Xo8JSWNlXFb3nkYYXFxuOLiCIuPJyw+Dldsk/G4eMLi43HFxxEWF09YXCyueN+8hm1iY60JzDRjycGYDhQWEUFYnz64+/Txexutq3MSR8OnuBhPsW+8tARvWTnesjI85c6wriAf75YtjfOoqzvkPiQykrCYGN8nGmkcjyUsOrrJsoOXxxAWHUNYrDMukZGERUUhUVGERUYiUVF2A7+LsuRgTCcnbjfhKSmEp6Qc9raqitbUOImirBxveRne8vLGcU9ZGd7KSrSyEm9lJd4K37CqCm9lJXX7ip1p30cPesLL3/glKgqJiiQssskwOso3vT+RhEVFIpEHrxuJREQ43xMRsX/cHXHQfDdhERHgdoYNywgPt6a3dghZchCR/sALQB+cnuCeVNXHRaQX8CowEKcnuMtUdV9r32OMaZ2I+E66UYSnph7x96nXi1ZXH5AwvJVVvmGFs6y6Gq2uwVvjDLWmGm/TYXV14zJPeRlaWOibV3PAkECV9hFpObk0jEe4kXA3Eh7uNK+5w51pl8uZ5w53EowrfP90w3h4OIS79m8f7nLWbVjf7VunyfgB02FhzriryTDM5XxP4zDM2S4sDFwuJ8amwyAlvlBeOdQDP1PVJSISDywWkTnA9cAnqvqgiNwD3APcHYwA6rx1lNSUBOOrjem+BIgFYmOAmEOuKsDhNiypKtTVoTU1UFOL1tahdXXOvFrfsK4OamvRunrfsLVldWhdLdTVo7W1jcu11vl462qh3oPWVkG9B+rr0fp6p/R8fT1a7wGPx5nnm984Xu9p158wkKLPPI2Bj/054N8bsuTg6xd6t2+8TETWAH2BC4CTfKs9D/yHICWHdUXruPK9K4Px1caYUAqnA85uAuoiTMHlgXAvhHmdocsDLu9BnwPWUVweCFNn2uUbhnmbz3M1mRemvunGcaV35m5uD8LRtfnnE5Eo4FzgRCATqAJWAu+p6qpABSEiA4EJwNdAui9xoKq7RSStlW2mA9MBsrKy2rXfjNgMfnXsr9q1rTGmE1EFrQNPPXg9oPUHjfuGXt989TjjXt86Xo8zTxvGvc6nYb7X22S5t/nQdfCyFr6jcdzbZNq7f7qd+vf1BvAPuV+ryUFE7gfOBz7DOWnnA1HAMOBBX+L4maouP5IARCQO+DfwE1Ut9bf9TFWfBJ4Ep2R3e/bdO7o3l4+4vD2bGmMO5vVCfbXzqasK4LAGPDXgqfON1zqfpuPe+iAckIDLDWFucIVDWLhv3A1hrhbGI5x1XOEQ4fatH+5bJ7zJ9zRZFuY6cCjOPQbCwlEJox4XtR6hVsOo8wq1XqGmYehxhtGpA4Jw7G1fOXyjqve3suxR3y/69v1k9xERN05imKmqDVXS8kQkw3fVkIGTlIwxgeT1QE0pVJdCbYXvU+4M6yr3jzf7lPuWN93GN13XxvsYh+KKgPBocEeBO3r/eHg0RMRCeC/nJOuKhPDIJuMRzrYu37zwSN90RBvjDetHNNk+4qCTuds5SfupzuOloqae8pp6Kmo8lNfUU1lb75vnaVzmzPNQXuUsq6j1UF3roarO96k9cOiPc8Ym8cSk9v7hW9dWcvhERFJVtaDpTF9SKFXVfI7gxC3OJcIzwBpVfbTJoneA64AHfcNZ7d2HMd2SKtSUQdU+qC52TvANJ/rGYUnz+TVl+8drWyj50ZrwKOcEHRELEXHgjnHGY1J882L2z3dH+07uUb7pqANP9C0Oo5xfziHi8Spl1XWUVtZTWl1HaVW1b9gwXUdpdT0lVQ3jdZRVNyQC52Rf6/GvaccVJsRGuIiNDHc+ES6iI1ykxEUQExFOlNtFdETY/nG3i2i3bzqiYdrZpmGYGO0Oyt+lreTwf8CHwJsHzT8dOAG49Qj3PQX4HrBCRJb55t2LkxReE5GbgO3ApUe4H2M6J1XnJF251znRN3wqi6Cq2Ddd1MKyfYduow6PgsgEiErYP4zPaD4vMgEi45yTe0MCcMc2SQaxIT1xHw5VpaymnuKKOooqa9lXWcu+ilqKKmoprvTNq3DmF1c6J/jSqjrKatpukhKB+MhwEqLdJES5SYgOp3+vGOIiw4mNdE70cRHhxESGExe5/8QfFxlObESTdSLDiQwP6zLvXLSVHE5Q1ekHz1TVmSJy75HuWFXn4zzl1pJTj/T7jQkJT51zsq8o8H0KoTx//3jjfN+nvrr174qIg+jk/Z+0kc4wptf+eVFJLZzsE5zmkm6gus5DYXkNBWU1FJbX+oY1jcMi38l+X2Ud+ypqqfe2fPvRFSYkx7hJiomgV0wE/ZJjSIx2TvSJjSd9NwlRByaBhGg3cRHhhIV1jRN6ILWVHNr6a9j78KZn8dRDeR6U7YGy3U0+e6B0lzMsz3N+6bckzA2xqRCX6gxTh0NsitM0E5viO9n3OjAZdJMTfEsqaurZXVLNnpJqdpdUkV/mnPALmpz4C8pqKKtu+Vd9coyblLhIkmMjGJwSR3Ksm+SYCOcTG0Gv2P2JIDkmgvionnmCPxJtJYd8EZmkqgubzhSRY4CCVrYxpuvxepwTffEOKNkBxduhJNeXCBpO/PnAQb9KxQXxfZxP72wYcDzEpTkn+9g0JwnEpjrTUYlO+0QPUFpdx+5i56TvnPx9SaC0mj0lVewuqW7xpB8fFU5qXCQp8ZEclZHA1KGRpMZH+uZFkBoXRUp8BL1jI4kIt9+nwdZWcrgTp+3/OWCxb14OcC1wRZDjMiZwPHXOCb94W5ME4BuW7HB++R/8KGR0L0jo65z4+4yFhExfImgYZjgn/S7SHh9IlbX15O6rYkdRJTuKKp3xfZXsKKoid18lpQed+EUgNS6SjMQoBqXEcnx2Cn0So8hIjKJPQhQZidGkJUQS5e55f8vOrNXkoKoLRWQScDtOSQuAVcCxvieVjOk86qqdk3/R5uaf4h0H3sCVMOckn9Qf+h8Lif2d8cQs37CfcyO2B9tXUcvmwgq2FlawpbCCLXsryN1XRW5RJXsrag9YN8odRr/kGPonR5MzMJl+ydFkJkU7J//EaNLiI3G77Jd+V9PmG9K+JHBfB8ViTNtUoXQnFKyDwvXOsGgTFG1xmoGaNvtEJUKvwdD3aBhzKSQPguQBTiJIyHSeZe/hKmvrnRN/YQVbCpwE0DBdXLm/zLcrTOibFE1WrxjOGJVOv+QY+iVH079XDP2TY0iJi+gyT+AY/1nJbtP5eOph31YoXHdgIihcf+Dz+dHJ0HsoDJjiJILGzyDniR4DOE/8bMwvZ31eGevzytmQV8a6vDJy91UdsF5Ds8/ZYzIYnBLLoJRYBqbE0j85xtr4eyBLDia0KosgbyXsWekbrnASgadm/zrxmZA6DCZcAynDnCd9UnxP+9gv1kYer7KlsILVu0tZt6e0MRFsK6psrH7tdgnZqXFMyErm8pz+ZKfFOUmgdyzREdbmb/az5GA6hqrT/r/72wOTQenO/evEpkL6aDh2OqQe5UsCQ50mInOAmnoPG/LKWbWrhJU7S1m1q4S1e8qorHXurYSHCYNSYhmVmciFE/oyLD2eYelxDOgda+3/xi+HTA4i8i7NnuGjBFgE/ENV23iLx/RIqs4TQLuWwM4lznDXUqj29Z0hLucKYMDxTjLoMxrSx0B8emjj7qTqPF7W7Slj6Y5ivt1RzKpdpWzIK2t84SsuMpyRGQlcltOf0X0TGZWZQHZqnDUFmSPiz5XDZiAVeNk3fTmQh1Od9SmcEhimJ6spg9xvIHfR/mRQnucsExekj4SRF0LfiZAxHlJHODV1TDOqyq6SapZtL2bp9n0s21HMip0l1NQ7tXt6x0Ywum8iJw9PZVSmkwiyesXYC14m4PxJDhNUdWqT6XdFZJ6qThWRgPXpYLqQ0l2w/b+wfYHzyVvp1KQH54pg8MlOIsic6FwVuKNDG28nVu/xsnp3KQu3FLFwSxFLdxRTUObcb4kID2N0ZgJXHzuACVlJjO+fRL/kaHsyyHQIf5JDqohkqep2ABHJAhp6Oq9tfTPTLahC4QbY+sX+ZFCy3VnmjoF+OTD1Tsia7Dw2avcH2lRT72F5bgkLtxTx9ZYiFm8tosJ3n2BA7xhOGJLC+P5OIjgqI8GahkzI+JMcfgbMF5FNOPWWBgG3iUgsTjeeprsp3gFb5sGWz51h2W5nfly6kwQm3+oM+4yx9wUOoc7j5dsdxXyxoZAFm/eydEcxtb4mouHp8Vw8sR+TBvVi0qBepCdYU5vpPA6ZHFT1fREZCozASQ5rm9yEfiyYwZkOUlkEm/+zPxkUbXbmx6TAoKn7P70G26Ojh6CqbC6sYP6GwsaEUF5TT5jAqMxErp08gEmDenHMwF4kx3bfwnqm6/PnaaUY4KfAAFW9WUSGishwVZ0d/PBMUHi9sGc5bJgDGz6GnYucewaRCc4LZZOmO8kgbaQlAz+UVdcxb30hn6/PZ/6GQnaVOL+d+veK5rxxmUwdmsLx2SkkxthVluk6/GlW+idO4b3jfNO5wOvAEScHEXkWOBfIV9XRvnn3Azezv/Lrvar6/pHuq8erKobNn/kSwhyoyAcEMifA1LtgyGnOuMteffHHtr0VfLImn0/W5vH15iLqvUpCVDjHZ6dw28kpnDg0hQG9e3Z9JtO1+XMmyFbVy0XkSgBVrZLAPS7xHPAX4IWD5v9JVR8J0D56rtLdsHY2rHkXts53is9FJcGQU2HoGZB9qtO/gDkkj1dZvG0fn6zJ45O1+WzMd8p4DEmL46YTB3HqiHQmZiURbi+YmW7Cn+RQKyLR+F6EE5FsoKbtTfyjqvNEZGAgvsv47N3kJIO1s513D8CpPzTlRzDsTOibY1cHfqr3ePl6SxHvr9jNR6v2UFhei9slHDuoN1cfm8UpI9Ls6sB0W/6cJe7D6Uu6v4jMxOn7+fpgBgX8QESuxXkL+2equu/gFURkOjAdICsrK8jhdHKFG2HlG7B6FuSvduZljINTfgVHne+UoTB+qfN4+e+mvXywcjcfrcqjqKKWaLeLU45K46zRffjOsFTio+zegen+RLXlPlcPWEmkNzAZ52mlBapaGLAAnCuH2U3uOaQDhThXKr8FMlT1xra+IycnRxctWhSokLqG0t2w6k1Y8bpTmgJxHi896nwYcY5Tntr4xetVFm3bx1tLc/lg5R6KK+uIjXBx6lHpnD2mD98ZlmZF6Uy3JCKLVTWnpWWtXjmIyMSDZvkedifL91LckkAF2JSq5jWJ4SkCcOO726gqhjXvOAlhyxeAOuUozvgdjLoYEvuGOsIuZVNBOW8t2cnby3aSu6+KaLeLM0alc86YDKYOS7WeyUyP1laz0h99wyic7kG/xblyGAt8DZwQjIBEJENVGxLRRcDKYOyny/B6nfcPlr7o3Evw1ECvbPjO3TBmmlO11PitqKKWd5bt5K2lO/k2t4QwgSlDUvjZGcM4Y2QfYiPtfowx0HY3oScDiMgrwHRVXeGbHg38PBA7F5GXgZOAFBHJxbm/cZKIjMdpVtoKzAjEvrqc4u2w7CVYOtMpVxGVBEdfB+OudB45tfcP/Ob1Kgs27+Wlhdv5eFUetR4vIzMS+NU5R3H+uEzS7M1kY5rx52fSiIbEAKCqK30n7yOmqle2MPuZQHx3l+Spc54yWvy888YywOCT4LT7YMS5Vsn0MBWU1fDG4lxe+WY72/ZWkhjt5urJWVx+TH9G9EkIdXjGdGr+JIc1IvI08CLOr/lrgDVBjaqnKdsDi59zPmW7nY7uT7oHxl8FST38SazDpKr8d/Ne/vXfbcxZnUe9Vzl2UC/uOG0YZ47uY/cRjPGTP8nhBuBW4Me+6XnA34IWUU+h6pS9XviUc5PZW++8pXze484wzE5ih6O6zsPbS3fy3FdbWbunjOQYNzeeMIjLj+lPdmpcqMMzpsvxp/BeNfAn38ccqfpa52mjBX91+kGISoRJM+CYm6B3dqij63J2FVfxrwXbeHnhdoor6zgqI4E/TBvL+eMy7SrBmCPQ1qOs7wJPAh+qat1BywbjvAi3VVWfDWqE3UV1CSz6J3z9d6fpKG2kc5Uw5lKIsLdsD9fKnSX8/fNNfLByD6rKGSP7cMOUgUwa1Ms6wzEmANq6crgZpxrrYyJShFMILwqnP4eNwF9UdVbwQ+ziSnbC13+DRc9BbZlT7fT8vzj1jewkdlhUlQWbi/jb55uYt76A+MhwbjphEN+bPID+vWJCHZ4x3Upbj7LuAe4C7vK9xZwBVAHrVbWyQ6LryvZugi8eheWvOPcXRl0Ix/8IMgPyoFeP4vUqc9fk8bfPN7F0ezEpcRHcdeZwrpk8gAQrZWFMUPj1xo+qbsV558Acyt5NMO8RWP6q00tazk1w3O1WzqIdvF7l/ZW7+b9PNrA+r5z+vaL57YWjufTofnY/wZggs9dBA6VwI8x7GFa8Bq5IOPYWpxJqfJ9QR9blqCofrcrjsbnrWbunjKFpcTx+xXjOGZNhJbGN6SCWHI7Uvm3w2f/uTwqTb3Oaj+LTQx1Zl6OqfLo2n0fnrGfVrlIGp8Ty+BXjOXdsJq4wuz9jTEfyKzn4+nPIUtV1QY6n66godJqPFj0DEuYkhSk/hri0UEfWJX21qZCHPlzHtzuKyeoVwx8vHccF4zPtSsGYEPGnD+nzgEeACGCQr3TG/1PV84MdXKdUWwH//St8+TjUVcCEa+A791hF1HbakFfGgx+s5ZO1+WQmRvHQJWO4eGI/3JYUjAkpf64c7gcmAf8BUNVlPbL3Nq8HljwPn/3e6X95xLlw6m+sI512yi+r5k9zNvDqN9uJjQjn7jNHcMOUgXaj2ZhOwp/kUK+qJT36xaKt8+GDu503mrOOhytmQv9JoY6qS6qq9fDUF5v5++ebqK33cu1xA/nRqUPpFRsR6tCMMU34kxxWishVgEtEhgI/Ar4KblidRPF2+PjXsPptpxjepc/DyAvs5bV2UFU+Xp3H/3t3NTuLqzhzVB/uPmsEg1Ls7XBjOiN/ksMPgV8CNcBLwEfA74IZVMjVVsKXjzn3FRA46V7nsVR3dKgj65I2F5TzwLur+Xx9AcPS43j55skcl9071GEZY9rQZnIQERfwgKreiZMgur8Nc+C9nzpXDaMvgdP/HyT2C3VUXVJlbT1/+XQjT3+xhcjwMH597kiuPW6A3Ww2pgtoMzmoqkdEjg7WzkXkWeBcIF9VR/vm9QJeBQbivJV9maruC1YMjcr2wIe/gFVvQsowuP49GBiUnlB7hM/W5vOrtz7ZLDwAABzVSURBVFeys7iKSyb24+6zhpMWb50VGdNV+NOstFRE3gFeByoaZqrqmwHY/3PAX4AXmsy7B/hEVR8UkXt803cHYF8t83ph8T9h7gNQXw0n/8ppQgqPDNouu7O95TU88O5q3vl2F0PT4njjluPIGdgr1GEZYw6TP8mhF7AXOKXJPAWOODmo6rwWHou9AKdfaYDncR6hDU5yKNwIb98KuQudaqnnPmZ9KrSTqvLW0p38dvZqymvq+clpQ7ntpCFEhFsTkjFdkT+d/dzQEYE0ka6qu3373i0iLb5yLCLTgekAWVnt7ErT5Xaaky76B4y93J5CaqedxVX84s0VzFtfwMSsJB66ZCxD0+NDHZYx5gj484b0P3GuFA6gqjcGJSI/qeqTOJ0RkZOT0yw+vyQPgB8tBZeVmGoPVeXfS3bywDur8KrywPmj+N7kAYRZHSRjujx/zoqzm4xHARcBu4ITDgB5IpLhu2rIAPKDuC9LDO20t7yGe99awUer8pg0qBd/vHScdbhjTDfiT7PSv5tOi8jLwNygRQTvANcBD/qG1ttcJzNndR6/eHM5pVX13Hv2CG46YbBVTTWmm2nPz+ahQDsb+Q/kSzQnASkikgvch5MUXhORm4DtwKWB2Jc5cpW19TzwzmpeXbSDozISmPn98QzvY/cWjOmO/LnnUMaB9xz2EKCnh1T1ylYWnRqI7zeBs3ZPKT94aSmbCsq59aRs7jhtmD2JZEw35k+zkv007MFUlVe+2cH976wiPsrNizcdy5QhKaEOyxgTZP5cOXyiqqceap7pfsqq6/jFmyuYvXw3Jw5N4dHLxpMaby8HGtMTtJocRCQKiMG5H5AMNNxxTAAyOyA2E0KrdpVw28wl5O6r4q4zh3PL1Gx7RNWYHqStK4cZwE9wEsFi9ieHUuCJIMdlQujtpTu5583lJEVH8Or0yVb+wpgeqNXkoKqPA4+LyA9V9c8dGJMJkTqPl9+/v5Znv9zCpEG9eOKqidaMZEwP5c8N6T+LyGhgJM5LcA3zX2h9K9PVFJbXcPvMJXy9pYgbpgzk3rOPstLaxvRg/tyQvg/nXYSRwPvAWcB8Dqykarqw5bnFzPjXYooqavnT5eO4aIL1X2FMT+fPT8NpOO8d7PEV4RsHWFtDN/Hhyt1c9o//EibCv2893hKDMQbw7w3pKlX1iki9iCTg1DoaHOS4TJCpKv+Yt5kHP1jLhKwknvxejt1fMMY08ic5LBKRJOApnKeWyoGFQY3KBFVtvZdfv72SVxft4NyxGTxy6Tii3K5Qh2WM6UQO1Ye0AL9X1WLg7yLyIZCgqss7JDoTcCWVddw6czFfbdrLj04Zwk9OG2bvLxhjmjlUH9IqIm8DR/umt3ZEUCY4dhVXce2zC9m+t5JHLxvHxRPt/oIxpmX+NCstEJFjVPWboEdjgmZjfhnfe2Yh5dX1vHDTJCYP7h3qkIwxnZg/yeFk4BYR2QpU4Lwprao6NpiBmcBZvG0fNz3/DW5XGK/OOI6RmQmhDskY08n5kxzOCnoUJmg+XZvHbTOX0CchihduPJas3tZbmzHm0A75noOqbgP6A6f4xiv92c6E3ltLc7n5hcUMTYvnjVuPt8RgjPGbv29I5wDDgX8CbuBFYEowA/M1Y5UBHqBeVXOCub/u5uWF27n3rRUcN7g3T16bQ1yk9ZVtjPGfP2eMi4AJwBIAVd0lIh3VAdDJqlrYQfvqNp7/aiv3vbOKk4an8vdrjrZ3GIwxh82f5FDre6RVAUQkNsgxmSPw1LzN/M/7azh9ZDp/uWoCkeGWGIwxh8+fewevicg/gCQRuRmYi/O2dLAp8LGILBaR6QcvFJHpIrJIRBYVFBR0QDid318+3cD/vL+Gc8Zk8NerJ1piMMa0m6jqoVcSOR04wzf5sarOCWpUzj4zfU1YacAc4IeqOq+ldXNycnTRokXBDqlTe2zueh6bu4GLJvTl4WljCbdy28aYQxCRxa3dz/X3LuUKIBrn1/yKQAXWFlXd5Rvmi8hbwCSgxeTQ0/31Pxt5bO4Gph3dj4cuGYvLymEYY47QIX9eisj3cQrtXYxTvnuBiNwYzKBEJLbhprfvHscZwMpg7rOremb+Fv7w4TouGJ9picEYEzD+XDncCUxQ1b0AItIb+Ap4NohxpQNvOXX/CAdeUtUPg7i/LunFBdv47ezVnDW6D3+8dJwlBmNMwPiTHHJx3jdoUAbsCE44DlXdjNOpkGnF64t28Ku3V3LqiDQev2KC3WMwxgSUP8lhJ/C1iMzCuedwAbBQRH4KoKqPBjE+04LZy3dx97+Xc+LQFJ64eiIR4ZYYjDGB5U9y2OT7NJjlG3bUi3CmifkbCrnj1WUcPSCZJ7+XYy+4GWOC4pDJQVUf6IhAzKGt3FnCjH8tIjs1jqevO4boCEsMxpjg8Ke2Ug7wS2BA0/WtZHfH2lpYwfX/XEhSTATP3ziJxGh3qEMyxnRj/jQrzcR5YmkF4A1uOKYl+WXVfO/Zr/F4lRdumkR6QlSoQzLGdHP+JIcCVX0n6JGYFpVV13Hds99QWFbLy9Mnk50aF+qQjDE9gD/J4T4ReRr4BKhpmKmqbwYtKgNAvcfLD15ayvq8Mp65Lofx/ZNCHZIxpofwJzncAIzA6cehoVlJAUsOQaSq3P/uKj5fX8DvLx7DScPTQh2SMaYH8Sc5jFPVMUGPxBzgn19u5cUF25k+dTBXTsoKdTjGmB7Gn7enFojIyKBHYhrNXZ3Hb99bzRkj07n7zBGhDscY0wP5c+VwAnCdiGzBuecggNqjrMGxalcJP3plKaMzE3nsivFWL8n0GHV1deTm5lJdXR3qULqdqKgo+vXrh9vt/yPw/iSHM9sfkjkcBWU1fP/5RSRGu3n6uhxiIqzfZ9Nz5ObmEh8fz8CBA/EV3TQBoKrs3buX3NxcBg0a5Pd2h2xWUtVtQH/gFN94pT/bmcNTW+/ltpmL2VdZy1PX5ti7DKbHqa6upnfv3pYYAkxE6N2792FfkfnTn8N9wN3AL3yz3MCLhx2hadNvZ6/mm637eOiSsYzumxjqcIwJCUsMwdGev6s/VwAXAecDFdDYQ5sV3QugV7/Zzr8WbGP61MFcML5vqMMxxhi/kkOtOh1NKzT2zBZ0InKmiKwTkY0ick9H7DMUlmzfx6/fXsUJQ1K467vDQx2OMT3S3r17GT9+POPHj6dPnz707du3cbq2tjao+3788cfJzs5GRCguLm6cr6rcdtttDBkyhHHjxrFs2bIWt9+0aROTJk1iyJAhXHXVVdTV1QUkLn+Sw2si8g8gSURuBuYCTwdk760QERfwBHAWMBK4sjs+TptfVs2tLy4mPTGSP19pHfYYEyq9e/dm2bJlLFu2jFtuuYU77rijcToiIiKo+546dSqffvopffse2Grw7rvvsmPHDjZu3MgTTzzB7bff3uL2d955J3fddRcbN24kJiaG5557LiBx+VOy+xEROR0oBYYDv1HVOQHZe+smARt9PcIhIq/gdDK0Osj77TANpTFKqup489YpJMcG9x+gMV3JA++uYvWu0oB+58jMBO47b9Rhb/eHP/yBF154AYAZM2bwwx/+MKBxTZgwocX5s2bN4tprrwXghBNOYM+ePRQUFJCamtq4jsfjYd68ebz++usAXHfddTz44IPcfPPNRxyXPyW7H1LVu4E5LcwLlr4c2BVpLnDsQXFNB6YDZGV1vTeIH52znoVbivjT5eMYmZkQ6nCMMS1YuHAhM2fOZOHChXg8HiZNmsR3vvMdxo498DWvadOmsXHjxmbb33nnnVx99dXt2vfOnTvp379/43S/fv3YuXPnAcmhoKCAlJQUXC7XAesEgj8P0p+O87RSU2e1MC+QWrq1rgdMqD4JPAmQk5OjLazfaX22Lp+//mcTVxzTn4sm9At1OMZ0Ou35hR8MX3zxBZdccgkxMTEAXHjhhcyfP79ZcnjjjTcCvm/nVu+BDn7qyJ912qvV5CAitwK3AYNFZHmTRfHAlwHZe+tycd6taNAP2BXkfXaIXcVV/PTVZYzoE8/953eO/wGMMS1r6eTbksO5cjjttNMoLCxk8uTJ/P3vf2/1O/v168eOHTuYPHky4LwkmJmZecA6aWlpFBYW4vF4cLlcLa7TXm1dObwEfAD8Hmj6tFCZqhYFZO+t+wYYKiKDgJ3AFcBVQd5n0NV5vPzw5aXU1nv569UTrf9nYzq5qVOnMmPGDO688048Hg+zZs3i1Vdfbbbe4Vw5zJ0716/1zj//fJ5++mkuvfRS5s+fT3p6+gFNSgAul4sTTzyRt956i2nTpvH8889zwQUX+B1LW1p9PEZVS1R1q6peqarbmnyCnRhQ1XrgB8BHwBrgNVVdFez9BtvDH61j8bZ9/P6SsQy2TnuM6fQmTZrElVdeyTHHHMPkyZO59dZbGTMmsEWqH330Ufr168eePXsYNWoUM2bMAOC8886jb9++ZGdnc9ttt/HEE080bvPd736X/Px8AB5++GEeeughhgwZQnl5Oddff31A4hJ/L5s6s5ycHF20aFGow2jTZ2vzueG5b7hmcha/u9AqoBtzsDVr1nDUUUeFOoxuq6W/r4gsVtWclta3B+s7QGF5DXe+8S0j+sTzq3O63esaxphuyMp+Bpmqctcbyymtrmfm9yfbfQZjTJdgVw5B9uKCbXy6Np9fnDWC4X2sJJUxpmuw5BBEG/PL+N17a/jOsFSuP35gqMMxxhi/WXIIkpp6Dz96eRmxkeE8fOlYK0VsjOlS7J5DkDz68XpW7y7lqWtzSIu3jnuMMV2LXTkEwaKtRTz5xWaunJTF6SPTQx2OMeYQOrJk96pVqzjuuOOIjIzkscceO2DZ+++/z/DhwxkyZAgPP/xwi9v7W8r7SNmVQ4BV1Xq4843lZCZG88tz7JltY7qChpLdAPfffz9xcXH8/Oc/D8q+UlJS+POf/9zsreq6ujp+8IMf8Nlnn9GnTx9ycnK44IILGDZs2AHrNS3lPX/+fG6//Xa+/DLwFY0sOQTYIx+vY0thBS99/1jiIu3Pa0y7fHAP7FkR2O/sMwbOevCwNwt0ye709HTS09N5++23D5i/YMECjjrqKAYMGADAZZddxqxZs7jzzjsPWM+fUt6BYGevAPpmaxHPfrmFayZncfyQlFCHY4w5Qh1ZsrulEt3ffvutX+sdXMo7ECw5BEhVrYc7X/+WvknR/OIsa04y5oi04xd+MHRkyW5/y28Hs0x3U5YcAuQPH61l695KXr55MrHWnGRMtxCMkt2taSjR3aC18tv+lPIOBDuLBcA3W4t47qutXHvcAI7L7h3qcIwxARKMkt2tmTx5MqtXr2bbtm306dOH1157rcXv9aeUdyBYcjhCNfUe7vm383TS3WeOCHU4xpgAalqyGwhIye7c3FwmT55MaWkpYWFhPPLII6xfv56YmBj+7//+j9NPPx2Px8P06dMZPnw4AE888QSRkZF8//vf57zzzuODDz4gOzub2NhYnn/++SM+zpZYye4j9PjcDfxp7nr+ecMxnDw8LSQxGNMdWMnu4LKS3R1oU0E5T3y2kXPHZlhiMMZ0K50uOYjI/SKyU0SW+T5nhzqmlqgqv3xrBVHuMH5znvXRYIzpXjrrPYc/qeojoQ6iLa8vzmXB5iL+96IxVjvJGNPtdLorh66gsLyG/3lvDccMTOaKY/ofegNjjOliOmty+IGILBeRZ0UkuaUVRGS6iCwSkUUFBQUdGtzvZq+msrae3188hrAwK8VtjOl+QpIcRGSuiKxs4XMB8DcgGxgP7Ab+2NJ3qOqTqpqjqjnBeMa3NQs27+XtZbuYMTWbIWnWs5sxpnsKSXJQ1dNUdXQLn1mqmqeqHlX1Ak8Bk0IRY0vqPV7um7WKvknR3H7ykFCHY4wJkI4s2f3CCy8wZswYxo4dy5QpU1ixYn+BQSvZ3QYRyVDV3b7Ji4CVoYynqX8t2Ma6vDL+fs1EoiNcoQ7HGBMgHVmyOzs7my+++IKkpCTeffddbrnlFr788ksr2e2HP4jIeECBrcCM0IbjKCyv4dE56zlxaArfHdUn1OEY0609tPAh1hatDeh3jug1grsn3X3Y2wW6ZPeUKVMaxydPnkxubi5gJbsPSVW/F+oYWvKHD9dSVevhvvNGWX/QxvQQwS7Z/cwzz3DWWWcBVrK7S1q6fR+vLcplxtTBDEmLC3U4xnR77fmFHwzBLNk9d+5c/vWvfzF//nzASnZ3OR6v8ptZq0iLj+SHpw4NdTjGmA4UrJLdy5YtY8aMGXz00UckJztP61vJ7i7mjcU7WLGzhMevGG/dfhrTwwSjZPfWrVuZNm0aL730EkOG7H/q0Up2dyHlNfU88vF6JmYlcf64wGdmY0znFoyS3ffffz9FRUXMmOE8axMZGcnXX3+N2+22kt2BFqyS3X/8eB1//nQjb952PBOzWnxR2xgTIFayO7isZHeA7Cqu4qkvNnPeuExLDMaYHseSQyse+WgdXoW7vjs81KEYY0yHs+TQghW5Jby5dCc3ThlE/14xoQ7HGGM6nCWHg6gqv3tvNb1iI7jt5OxQh2OMMSFhyeEgH6/O4+stRdxx2lASotyhDscYY0LCkkMT9R4vD32wluzUWK6clBXqcIwxJmQsOTTxxuJcNhdWcNeZIwh32Z/GmJ6iI0t2v/nmm4wdO5bx48dzzDHH8NVXXzUus5LdnVB1nYfHP9nA+P5JnDEyPdThGGM6UEeW7D7jjDO46KKLEBGWLFnCtddey8qVK61kd2f14oJt7C6p5o+XjbOqq8aE2J7//V9q1gS2ZHfkUSPoc++9h71doEt2x8XtL95ZUVHReL6xkt2dUFl1HU98tpETh6ZwfHZKqMMxxnQSwSrZ/cYbb/DLX/6SwsJC3n//fcBKdndKT32xhX2VddxpL7wZ0ym05xd+MASrZPe0adOYNm0an332Gb/+9a/5+OOPO13J7pDcdRWRS0VklYh4RSTnoGW/EJGNIrJORL4b7Fj2ltfwzBebOXtMH8b2Swr27owxXcjhlOxuuIHd9DNz5sw2tzv55JNZs2YNxcXFh12y+1DrHalQXTmsBC4G/tF0poiMBK4ARgGZwFwRGaaqnmAF8sRnm6iq8/DT0+2qwRhzoGCU7N64cSPZ2dmICA0FQ5OSkqxkN4CqroEWL4UuAF5R1Rpgi4hsBCYB/w1GHDuLq3hxwTYuPbq/9fBmjGkmGCW7X3vtNWbOnInb7SYmJqYx2VjJ7qY7F/kP8HNVXeSb/guwQFVf9E0/A3ygqs3Sp4hMB6YDZGVlHb1t27bD3v+mgnIeeHc1D148hsyk6PYfiDHmiFnJ7uA63JLdQbtyEJG5QJ8WFv1SVWe1tlkL81rMXqr6JPAkOP05tCfG7NQ4XrhxUns2NcaYbi1oyUFVT2vHZrlA/ybT/YBdgYnIGGOMvzpbjYh3gCtEJFJEBgFDgYUhjskY00G6Q8+UnVF7/q6hepT1IhHJBY4D3hORjwBUdRXwGrAa+BC4PZhPKhljOo+oqCj27t1rCSLAVJW9e/cSFRV1WNtZH9LGmE6hrq6O3NxcqqurQx1KtxMVFUW/fv1wuw/shiAkN6SNMeZwuN1uBg0aFOowjE9nu+dgjDGmE7DkYIwxphlLDsYYY5rpFjekRaQAOPxXpPdLAQoDFE5n0l2PC+zYuio7ts5lgKq2WJipWySHIyUii1q7Y9+VddfjAju2rsqOreuwZiVjjDHNWHIwxhjTjCUHx5OhDiBIuutxgR1bV2XH1kXYPQdjjDHN2JWDMcaYZiw5GGOMaaZHJwcROVNE1onIRhG5J9TxHAkR6S8in4nIGhFZJSI/9s3vJSJzRGSDb5gc6ljbQ0RcIrJURGb7prvLcSWJyBsistb33+64bnRsd/j+La4UkZdFJKqrHpuIPCsi+SKyssm8Vo9FRH7hO6+sE5HvhibqI9Njk4OIuIAngLOAkcCVIjIytFEdkXrgZ6p6FDAZuN13PPcAn6jqUOAT33RX9GNgTZPp7nJcjwMfquoIYBzOMXb5YxORvsCPgBxVHQ24gCvousf2HHDmQfNaPBbf/3dXAKN82/zVd77pUnpscgAmARtVdbOq1gKvABeEOKZ2U9XdqrrEN16Gc5Lpi3NMDT2QPw9cGJoI209E+gHnAE83md0djisBmAo8A6CqtapaTDc4Np9wIFpEwoEYnF4du+Sxqeo8oOig2a0dywXAK6pao6pbgI0455supScnh77AjibTub55XZ6IDAQmAF8D6aq6G5wEAqSFLrJ2ewy4C/A2mdcdjmswUAD809dk9rSIxNINjk1VdwKPANuB3UCJqn5MNzi2Jlo7lm5xbunJyUFamNfln+sVkTjg38BPVLU01PEcKRE5F8hX1cWhjiUIwoGJwN9UdQJQQddpZmmTr/39AmAQkAnEisg1oY2qw3SLc0tPTg65QP8m0/1wLnu7LBFx4ySGmar6pm92nohk+JZnAPmhiq+dpgDni8hWnKa/U0TkRbr+cYHzbzBXVb/2Tb+Bkyy6w7GdBmxR1QJVrQPeBI6nexxbg9aOpVucW3pycvgGGCoig0QkAucG0jshjqndRERw2q7XqOqjTRa9A1znG78OmNXRsR0JVf2FqvZT1YE4/40+VdVr6OLHBaCqe4AdIjLcN+tUnP7Tu/yx4TQnTRaRGN+/zVNx7oN1h2Nr0NqxvANcISKRIjIIGAosDEF8R0ZVe+wHOBtYD2wCfhnqeI7wWE7AuXRdDizzfc4GeuM8SbHBN+wV6liP4BhPAmb7xrvFcQHjgUW+/25vA8nd6NgeANYCK4F/AZFd9diAl3HundThXBnc1NaxAL/0nVfWAWeFOv72fKx8hjHGmGZ6crOSMcaYVlhyMMYY04wlB2OMMc1YcjDGGNOMJQdjjDHNWHIwPYKv+ultTaYzReSNIO3rQhH5jW/8ORGZFoz9tLLvc0XkgY7an+m+LDmYniIJaEwOqrpLVYN10r4L+GuQvhtorCrckvdw3iiPCeb+TfdnycH0FA8C2SKyTEQeFpGBDbX5ReR6EXlbRN4VkS0i8gMR+amvGN4CEenlWy9bRD4UkcUi8oWIjDh4JyIyDKhR1cIms6eKyFcisrnhKkIcD/v6OlghIpf75p/U0GeFb/ovInK9b3yriPxGROYDl4rIj0RktYgsF5FXANR5cek/wLmB/xOaniQ81AEY00HuAUar6nhorFzb1GicSrZROCWW71bVCSLyJ+BanMqwTwK3qOoGETkW5+rglIO+Zwqw5KB5GThvsI/AKa3wBnAxztvR44AU4BsRmefHcVSr6gm+Y9gFDFLVGhFJarLOIuBE4DU/vs+YFllyMMbxmTr9YJSJSAnwrm/+CmCsr9rt8cDrTqkgwCkHcbAMnDLcTb2tql5gtYik++adALysqh6cAm6fA8cAh6qk+2qT8eXATBF5G6f0RoN8nEqoxrSbJQdjHDVNxr1Npr04/5+EAcUNVx5tqAIS2/huOWh4sHoObO6NOmh5RZPxc3A6Czof+LWIjFLVet82VYeI05g22T0H01OUAfHt3VidvjG2iMil0HjPYFwLq64BhvjxlfOAy8XpGzsV5yS/ENgGjPRV9EzEqWbajIiEAf1V9TOcG+BJQJxv8TCcYnfGtJslB9MjqOpe4EvfDeCH2/k1VwM3ici3wCpa7lZ2HjBBmrQ9teItnGahb4FPgbtUdY+q7sC5V7AcmAksbWV7F/CiiKzwrfMndboYBTgZ56klY9rNqrIaE2Ai8jjwrqrODcG+04GXVLXFKw5j/GXJwZgA852gj1XVDu88SkSOAepUdVlH79t0L5YcjDHGNGP3HIwxxjRjycEYY0wzlhyMMcY0Y8nBGGNMM5YcjDHGNPP/ARfLLDIMtg1JAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# simple call to temperature demo\n", "tc.temperature()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After running as is try changing To = To (the initial temperature), Ta = Ta (the ambient temperature) or la = λ (the effective conductivity) to investigate changes in the solution." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5xU9dX48c/Z2dleYQu7wFKWJh1cEUWJPfaK3VgjWNJMYokp6i95nmg0Rp/EFFvUiD0qihXUiGgQadJ7XcoWlu195vz+uLPLwhaGZWZny3m/XvO6fe65K94z93vvPV9RVYwxxpimwkIdgDHGmM7HkoMxxphmLDkYY4xpxpKDMcaYZiw5GGOMaSY81AEEQkpKig4cODDUYRhjTJeyePHiQlVNbWlZt0gOAwcOZNGiRaEOwxhjuhQR2dbaMmtWMsYY04wlB2OMMc1YcjDGGNOMJQdjjDHNWHIwxhjTTMiSg4hEichCEflWRFaJyAO++b1EZI6IbPANk0MVozHG9FShvHKoAU5R1XHAeOBMEZkM3AN8oqpDgU9808YYYzpQyJKDOsp9k27fR4ELgOd9858HLgxWDN6aGvb8z/9Sl5cfrF0YY0yXFNJ7DiLiEpFlQD4wR1W/BtJVdTeAb5jWyrbTRWSRiCwqKCho1/6rly+n+LXX2HzOORTNnIl6PO08EmOM6V5CmhxU1aOq44F+wCQRGX0Y2z6pqjmqmpOa2uLb34cUc8wxDH5nFtFjx5L329+x9cqrqF67tl3fZYwx3UmneFpJVYuB/wBnAnkikgHgGwa1zSdiwAD6P/M0mQ8/TF1uLlsumUbeww/jrawM5m6NMaZTC+XTSqkikuQbjwZOA9YC7wDX+Va7DpjVAbGQeN65ZL//HkkXX0zRM8+y6dxzKf3wQ6wbVWNMTxTKK4cM4DMRWQ58g3PPYTbwIHC6iGwATvdNdwhXUhIZv/1/DJj5Iq6ERHb+5A62X3udNTUZY3oc6Q6/jHNycjTQVVnV46H49dcpeOxxPKWlJF12Kak//jHhyfbahTGmexCRxaqa09KyTnHPoTMSl4vkK64g+6MPSb76aopff4NN3z2Touefx1tbG+rwjDEmqCw5HIIrMZE+v7yXwbPeJnrMGPJ+/yCbzzqbknfeQb3eUIdnjDFBYcnBT5FDhpD1zNP0f+ZpXImJ7LrrbrZcdDHl8+bZTWtjTLdjyeEwxU2ZwsA3Xifzj4/graxkx/QZbL/2OiqXLg11aMYYEzCWHNpBwsJIPOccst+bTfqvf0XN5s1su/Iqtt94E5VLloQ6PGOMOWKWHI6ARETQ6+qrGfLxR6Td+XOq165l21VXs/3GG6lcvDjU4RljTLtZcgiAsNhYet90E0PmziHtrruoXreebVdfw7brb6Di64V2T8IY0+VYcgigsJgYet94g5Mk7r6bmo0b2X7ddWy97HLnbWsr7GeM6SIsOQRBWHQ0vW+4niFz59Dn/vvwlJaw8yd3sOnMsyiaORNvVVWoQzTGmDbZG9IdQD0eyj75hKJnnqXq229xJSWRfNVVJF95BeHtrChrjDFHqq03pC05dCBVpWrJEvY+8yzln34KbjcJp59O8tVXET1xIiIS6hCNMT1IW8khvKOD6clEhJijjybm6KOp3bqVfS+/QvFbb1H6/vtEjhhB8lVXknjuuYTFxIQ6VGNMD2dXDiHmraykZPZs9r30MjVr1xIWH0/iRReSdMk0ooYPC3V4xphuzJqVuoCGJqd9M1+idM4cqKsjavRokqZdQsLZZ+NKSAh1iMaYbsaSQxdTv28fpe/Opvjf/6Zm3TokMpL4755B0sWXEDPpGCTMHjIzxhw5Sw5dlKpSvWo1xf9+g9LZ7+EtK8OdmUnCOWeTcO65RA4bZjexjTHt1imTg4j0B14A+gBe4ElVfVxE7gduBgp8q96rqu+39V3dNTk05a2upmzOXEpmv0vF/C/B4yFy6BASzjmHhHPOIaJ//1CHaIzpYjprcsgAMlR1iYjEA4uBC4HLgHJVfcTf7+oJyaGp+qIiyj76iJLZ71Hlq+EUPW4cCWefRfxpp+Hu2zfEERpjuoJOmRwOJiKzgL8AU7Dk4Le6Xbsoff99Sma/R42vr+uoUaOIP/004k8/ncjs7BBHaIzprDp9chCRgcA8YDTwU+B6oBRYBPxMVfe1sM10YDpAVlbW0du2beugaDuv2m3bKJs7l7KP51D17bcARAwaRPzppxN/+mlEjRplN7ONMY06dXIQkTjgc+B/VPVNEUkHCgEFfovT9HRjW9/Rk68cWlOXl+ckirlzqVz4DXg8uFJSiDvxROK+M5XY44+3x2ON6eE6bXIQETcwG/hIVR9tYflAYLaqjm7reyw5tK1+3z7KP/+cinlfUP7ll3hLSsDlImbCBGKnTiXuO1PtySdjeqBOmRzEORM9DxSp6k+azM9Q1d2+8TuAY1X1ira+y5KD/7S+nqrlyyn/fB7lX8yjZvUaAMLT0og9bjIxx04m9rjJuDMyQhypMSbYOmtyOAH4AliB8ygrwL3AlcB4nGalrcCMhmTRGksO7VeXl0/F/C8onz+fyq8X4ikqAsA9IIvYyccRO/lYYo49lvBevUIcqTEm0DplcggkSw6BoV4vNRs2Urngv1Qs+JrKhQvxVlQAEDlsGDE5RxM98WhiJk7AnZkZ4miNMUfKkoNpF62vp3rVKir+u4DKhV9TtexbvJWVAIRnZBAzcSLREycQc/TRRA4dirhcIY7YGHM4LDmYgND6eqrXraNqyVIqlyymavES6vPzAQiLiyN67BiiRo8hasxooseOxZ2eHuKIjTFtseRggkJVqdu5i6oli6lcvISq5cupWb8efH1lh6emEjV6tJMsxowhavRowpOTQxy1MaaBdfZjgkJEiOjXl4h+fUk8/3zAqQFVvWYN1StWUrVyBdUrVlL+2WeN27gzM4kcMYKoEcOJHO4M3f3728t5xnQylhxMQIVFRREzYQIxEyY0zvOUlVG9ahVVK1ZQs2YN1WvXUf6f/4DXeUgtLCaGyGHDiBwxnKgRI4gcPpzIoUNxxcWF6CiMMdasZELCW1VFzcaNVK9dS83adVSvW0vNuvV4y8oa1wlPSyNySDYRg7OJzB7cOHT17m0v7BkTANasZDqdsOhooseMIXrMmMZ5Dfcwatavo2bjJmo3baJm82ZK3nyz8SkpgLDERCIHD3YSx8CBuLOyiMgaQERWf8Kio0NxOMZ0O5YcTKfR9B5G/CmnNM5XVer37KFm02ZqN29yhps2UTb3Ezz7DqzJGJ6WRkRWFu4BvoQxIMuZzsqyZipjDoMlB9PpiQjujAynpMcJUw5Y5iktpXb7Duq2b6N2+3Zqt22ndvt2KuZ9QUnBmwes60pMJLxvJu7MJp8M37BvJq7kZGuuMsbHkoPp0lwJCUSPHkX06FHNlnkrKqjNzaV22zbqtm+ndudO6nbtom7bNiq/+u8BTVUAEh3tJCFf4ghPTyM8LQ13Whrh6emEp6XhSkqyJ6tMj2DJwXRbYbGxRA0fTtTw4c2WqSrekhInWTR8du4fr169urHO1AHcbtypqYQ3SRjhaam409MJT03F1as34b17OVch9sa46cIsOZgeSURwJSXhSkoiauTIFtfR2lrqCwqoy8+nPr+A+rw86gvyqc/Ppy4vn5oNG6j48ku85eUt7QBXcrKTKBoSRsOwd2/Ce/fG1auXM0xOJiwuzpq0TKdiycGYVkhEBO6+fQ/ZJ7e3osJJIAUFeIr2Ub+3EM/eIuqL9vqGRVSvXkN9URHe0tKWv8TlwpWYuP+TlOQbOuNhjcuSfEnNmbakYoLFkoMxRygsNpbIQYOIHDTokOt6a2vxFBVRv3evMyzci6e4GE9JMZ6SEjzFxXhLSqjPz6dm/Xo8JSWNlXFb3nkYYXFxuOLiCIuPJyw+Dldsk/G4eMLi43HFxxEWF09YXCyueN+8hm1iY60JzDRjycGYDhQWEUFYnz64+/Txexutq3MSR8OnuBhPsW+8tARvWTnesjI85c6wriAf75YtjfOoqzvkPiQykrCYGN8nGmkcjyUsOrrJsoOXxxAWHUNYrDMukZGERUUhUVGERUYiUVF2A7+LsuRgTCcnbjfhKSmEp6Qc9raqitbUOImirBxveRne8vLGcU9ZGd7KSrSyEm9lJd4K37CqCm9lJXX7ip1p30cPesLL3/glKgqJiiQssskwOso3vT+RhEVFIpEHrxuJREQ43xMRsX/cHXHQfDdhERHgdoYNywgPt6a3dghZchCR/sALQB+cnuCeVNXHRaQX8CowEKcnuMtUdV9r32OMaZ2I+E66UYSnph7x96nXi1ZXH5AwvJVVvmGFs6y6Gq2uwVvjDLWmGm/TYXV14zJPeRlaWOibV3PAkECV9hFpObk0jEe4kXA3Eh7uNK+5w51pl8uZ5w53EowrfP90w3h4OIS79m8f7nLWbVjf7VunyfgB02FhzriryTDM5XxP4zDM2S4sDFwuJ8amwyAlvlBeOdQDP1PVJSISDywWkTnA9cAnqvqgiNwD3APcHYwA6rx1lNSUBOOrjem+BIgFYmOAmEOuKsDhNiypKtTVoTU1UFOL1tahdXXOvFrfsK4OamvRunrfsLVldWhdLdTVo7W1jcu11vl462qh3oPWVkG9B+rr0fp6p/R8fT1a7wGPx5nnm984Xu9p158wkKLPPI2Bj/054N8bsuTg6xd6t2+8TETWAH2BC4CTfKs9D/yHICWHdUXruPK9K4Px1caYUAqnA85uAuoiTMHlgXAvhHmdocsDLu9BnwPWUVweCFNn2uUbhnmbz3M1mRemvunGcaV35m5uD8LRtfnnE5Eo4FzgRCATqAJWAu+p6qpABSEiA4EJwNdAui9xoKq7RSStlW2mA9MBsrKy2rXfjNgMfnXsr9q1rTGmE1EFrQNPPXg9oPUHjfuGXt989TjjXt86Xo8zTxvGvc6nYb7X22S5t/nQdfCyFr6jcdzbZNq7f7qd+vf1BvAPuV+ryUFE7gfOBz7DOWnnA1HAMOBBX+L4maouP5IARCQO+DfwE1Ut9bf9TFWfBJ4Ep2R3e/bdO7o3l4+4vD2bGmMO5vVCfbXzqasK4LAGPDXgqfON1zqfpuPe+iAckIDLDWFucIVDWLhv3A1hrhbGI5x1XOEQ4fatH+5bJ7zJ9zRZFuY6cCjOPQbCwlEJox4XtR6hVsOo8wq1XqGmYehxhtGpA4Jw7G1fOXyjqve3suxR3y/69v1k9xERN05imKmqDVXS8kQkw3fVkIGTlIwxgeT1QE0pVJdCbYXvU+4M6yr3jzf7lPuWN93GN13XxvsYh+KKgPBocEeBO3r/eHg0RMRCeC/nJOuKhPDIJuMRzrYu37zwSN90RBvjDetHNNk+4qCTuds5SfupzuOloqae8pp6Kmo8lNfUU1lb75vnaVzmzPNQXuUsq6j1UF3roarO96k9cOiPc8Ym8cSk9v7hW9dWcvhERFJVtaDpTF9SKFXVfI7gxC3OJcIzwBpVfbTJoneA64AHfcNZ7d2HMd2SKtSUQdU+qC52TvANJ/rGYUnz+TVl+8drWyj50ZrwKOcEHRELEXHgjnHGY1J882L2z3dH+07uUb7pqANP9C0Oo5xfziHi8Spl1XWUVtZTWl1HaVW1b9gwXUdpdT0lVQ3jdZRVNyQC52Rf6/GvaccVJsRGuIiNDHc+ES6iI1ykxEUQExFOlNtFdETY/nG3i2i3bzqiYdrZpmGYGO0Oyt+lreTwf8CHwJsHzT8dOAG49Qj3PQX4HrBCRJb55t2LkxReE5GbgO3ApUe4H2M6J1XnJF251znRN3wqi6Cq2Ddd1MKyfYduow6PgsgEiErYP4zPaD4vMgEi45yTe0MCcMc2SQaxIT1xHw5VpaymnuKKOooqa9lXWcu+ilqKKmoprvTNq3DmF1c6J/jSqjrKatpukhKB+MhwEqLdJES5SYgOp3+vGOIiw4mNdE70cRHhxESGExe5/8QfFxlObESTdSLDiQwP6zLvXLSVHE5Q1ekHz1TVmSJy75HuWFXn4zzl1pJTj/T7jQkJT51zsq8o8H0KoTx//3jjfN+nvrr174qIg+jk/Z+0kc4wptf+eVFJLZzsE5zmkm6gus5DYXkNBWU1FJbX+oY1jcMi38l+X2Ud+ypqqfe2fPvRFSYkx7hJiomgV0wE/ZJjSIx2TvSJjSd9NwlRByaBhGg3cRHhhIV1jRN6ILWVHNr6a9j78KZn8dRDeR6U7YGy3U0+e6B0lzMsz3N+6bckzA2xqRCX6gxTh0NsitM0E5viO9n3OjAZdJMTfEsqaurZXVLNnpJqdpdUkV/mnPALmpz4C8pqKKtu+Vd9coyblLhIkmMjGJwSR3Ksm+SYCOcTG0Gv2P2JIDkmgvionnmCPxJtJYd8EZmkqgubzhSRY4CCVrYxpuvxepwTffEOKNkBxduhJNeXCBpO/PnAQb9KxQXxfZxP72wYcDzEpTkn+9g0JwnEpjrTUYlO+0QPUFpdx+5i56TvnPx9SaC0mj0lVewuqW7xpB8fFU5qXCQp8ZEclZHA1KGRpMZH+uZFkBoXRUp8BL1jI4kIt9+nwdZWcrgTp+3/OWCxb14OcC1wRZDjMiZwPHXOCb94W5ME4BuW7HB++R/8KGR0L0jo65z4+4yFhExfImgYZjgn/S7SHh9IlbX15O6rYkdRJTuKKp3xfZXsKKoid18lpQed+EUgNS6SjMQoBqXEcnx2Cn0So8hIjKJPQhQZidGkJUQS5e55f8vOrNXkoKoLRWQScDtOSQuAVcCxvieVjOk86qqdk3/R5uaf4h0H3sCVMOckn9Qf+h8Lif2d8cQs37CfcyO2B9tXUcvmwgq2FlawpbCCLXsryN1XRW5RJXsrag9YN8odRr/kGPonR5MzMJl+ydFkJkU7J//EaNLiI3G77Jd+V9PmG9K+JHBfB8ViTNtUoXQnFKyDwvXOsGgTFG1xmoGaNvtEJUKvwdD3aBhzKSQPguQBTiJIyHSeZe/hKmvrnRN/YQVbCpwE0DBdXLm/zLcrTOibFE1WrxjOGJVOv+QY+iVH079XDP2TY0iJi+gyT+AY/1nJbtP5eOph31YoXHdgIihcf+Dz+dHJ0HsoDJjiJILGzyDniR4DOE/8bMwvZ31eGevzytmQV8a6vDJy91UdsF5Ds8/ZYzIYnBLLoJRYBqbE0j85xtr4eyBLDia0KosgbyXsWekbrnASgadm/zrxmZA6DCZcAynDnCd9UnxP+9gv1kYer7KlsILVu0tZt6e0MRFsK6psrH7tdgnZqXFMyErm8pz+ZKfFOUmgdyzREdbmb/az5GA6hqrT/r/72wOTQenO/evEpkL6aDh2OqQe5UsCQ50mInOAmnoPG/LKWbWrhJU7S1m1q4S1e8qorHXurYSHCYNSYhmVmciFE/oyLD2eYelxDOgda+3/xi+HTA4i8i7NnuGjBFgE/ENV23iLx/RIqs4TQLuWwM4lznDXUqj29Z0hLucKYMDxTjLoMxrSx0B8emjj7qTqPF7W7Slj6Y5ivt1RzKpdpWzIK2t84SsuMpyRGQlcltOf0X0TGZWZQHZqnDUFmSPiz5XDZiAVeNk3fTmQh1Od9SmcEhimJ6spg9xvIHfR/mRQnucsExekj4SRF0LfiZAxHlJHODV1TDOqyq6SapZtL2bp9n0s21HMip0l1NQ7tXt6x0Ywum8iJw9PZVSmkwiyesXYC14m4PxJDhNUdWqT6XdFZJ6qThWRgPXpYLqQ0l2w/b+wfYHzyVvp1KQH54pg8MlOIsic6FwVuKNDG28nVu/xsnp3KQu3FLFwSxFLdxRTUObcb4kID2N0ZgJXHzuACVlJjO+fRL/kaHsyyHQIf5JDqohkqep2ABHJAhp6Oq9tfTPTLahC4QbY+sX+ZFCy3VnmjoF+OTD1Tsia7Dw2avcH2lRT72F5bgkLtxTx9ZYiFm8tosJ3n2BA7xhOGJLC+P5OIjgqI8GahkzI+JMcfgbMF5FNOPWWBgG3iUgsTjeeprsp3gFb5sGWz51h2W5nfly6kwQm3+oM+4yx9wUOoc7j5dsdxXyxoZAFm/eydEcxtb4mouHp8Vw8sR+TBvVi0qBepCdYU5vpPA6ZHFT1fREZCozASQ5rm9yEfiyYwZkOUlkEm/+zPxkUbXbmx6TAoKn7P70G26Ojh6CqbC6sYP6GwsaEUF5TT5jAqMxErp08gEmDenHMwF4kx3bfwnqm6/PnaaUY4KfAAFW9WUSGishwVZ0d/PBMUHi9sGc5bJgDGz6GnYucewaRCc4LZZOmO8kgbaQlAz+UVdcxb30hn6/PZ/6GQnaVOL+d+veK5rxxmUwdmsLx2SkkxthVluk6/GlW+idO4b3jfNO5wOvAEScHEXkWOBfIV9XRvnn3Azezv/Lrvar6/pHuq8erKobNn/kSwhyoyAcEMifA1LtgyGnOuMteffHHtr0VfLImn0/W5vH15iLqvUpCVDjHZ6dw28kpnDg0hQG9e3Z9JtO1+XMmyFbVy0XkSgBVrZLAPS7xHPAX4IWD5v9JVR8J0D56rtLdsHY2rHkXts53is9FJcGQU2HoGZB9qtO/gDkkj1dZvG0fn6zJ45O1+WzMd8p4DEmL46YTB3HqiHQmZiURbi+YmW7Cn+RQKyLR+F6EE5FsoKbtTfyjqvNEZGAgvsv47N3kJIO1s513D8CpPzTlRzDsTOibY1cHfqr3ePl6SxHvr9jNR6v2UFhei9slHDuoN1cfm8UpI9Ls6sB0W/6cJe7D6Uu6v4jMxOn7+fpgBgX8QESuxXkL+2equu/gFURkOjAdICsrK8jhdHKFG2HlG7B6FuSvduZljINTfgVHne+UoTB+qfN4+e+mvXywcjcfrcqjqKKWaLeLU45K46zRffjOsFTio+zegen+RLXlPlcPWEmkNzAZ52mlBapaGLAAnCuH2U3uOaQDhThXKr8FMlT1xra+IycnRxctWhSokLqG0t2w6k1Y8bpTmgJxHi896nwYcY5Tntr4xetVFm3bx1tLc/lg5R6KK+uIjXBx6lHpnD2mD98ZlmZF6Uy3JCKLVTWnpWWtXjmIyMSDZvkedifL91LckkAF2JSq5jWJ4SkCcOO726gqhjXvOAlhyxeAOuUozvgdjLoYEvuGOsIuZVNBOW8t2cnby3aSu6+KaLeLM0alc86YDKYOS7WeyUyP1laz0h99wyic7kG/xblyGAt8DZwQjIBEJENVGxLRRcDKYOyny/B6nfcPlr7o3Evw1ECvbPjO3TBmmlO11PitqKKWd5bt5K2lO/k2t4QwgSlDUvjZGcM4Y2QfYiPtfowx0HY3oScDiMgrwHRVXeGbHg38PBA7F5GXgZOAFBHJxbm/cZKIjMdpVtoKzAjEvrqc4u2w7CVYOtMpVxGVBEdfB+OudB45tfcP/Ob1Kgs27+Wlhdv5eFUetR4vIzMS+NU5R3H+uEzS7M1kY5rx52fSiIbEAKCqK30n7yOmqle2MPuZQHx3l+Spc54yWvy888YywOCT4LT7YMS5Vsn0MBWU1fDG4lxe+WY72/ZWkhjt5urJWVx+TH9G9EkIdXjGdGr+JIc1IvI08CLOr/lrgDVBjaqnKdsDi59zPmW7nY7uT7oHxl8FST38SazDpKr8d/Ne/vXfbcxZnUe9Vzl2UC/uOG0YZ47uY/cRjPGTP8nhBuBW4Me+6XnA34IWUU+h6pS9XviUc5PZW++8pXze484wzE5ih6O6zsPbS3fy3FdbWbunjOQYNzeeMIjLj+lPdmpcqMMzpsvxp/BeNfAn38ccqfpa52mjBX91+kGISoRJM+CYm6B3dqij63J2FVfxrwXbeHnhdoor6zgqI4E/TBvL+eMy7SrBmCPQ1qOs7wJPAh+qat1BywbjvAi3VVWfDWqE3UV1CSz6J3z9d6fpKG2kc5Uw5lKIsLdsD9fKnSX8/fNNfLByD6rKGSP7cMOUgUwa1Ms6wzEmANq6crgZpxrrYyJShFMILwqnP4eNwF9UdVbwQ+ziSnbC13+DRc9BbZlT7fT8vzj1jewkdlhUlQWbi/jb55uYt76A+MhwbjphEN+bPID+vWJCHZ4x3Upbj7LuAe4C7vK9xZwBVAHrVbWyQ6LryvZugi8eheWvOPcXRl0Ix/8IMgPyoFeP4vUqc9fk8bfPN7F0ezEpcRHcdeZwrpk8gAQrZWFMUPj1xo+qbsV558Acyt5NMO8RWP6q00tazk1w3O1WzqIdvF7l/ZW7+b9PNrA+r5z+vaL57YWjufTofnY/wZggs9dBA6VwI8x7GFa8Bq5IOPYWpxJqfJ9QR9blqCofrcrjsbnrWbunjKFpcTx+xXjOGZNhJbGN6SCWHI7Uvm3w2f/uTwqTb3Oaj+LTQx1Zl6OqfLo2n0fnrGfVrlIGp8Ty+BXjOXdsJq4wuz9jTEfyKzn4+nPIUtV1QY6n66godJqPFj0DEuYkhSk/hri0UEfWJX21qZCHPlzHtzuKyeoVwx8vHccF4zPtSsGYEPGnD+nzgEeACGCQr3TG/1PV84MdXKdUWwH//St8+TjUVcCEa+A791hF1HbakFfGgx+s5ZO1+WQmRvHQJWO4eGI/3JYUjAkpf64c7gcmAf8BUNVlPbL3Nq8HljwPn/3e6X95xLlw6m+sI512yi+r5k9zNvDqN9uJjQjn7jNHcMOUgXaj2ZhOwp/kUK+qJT36xaKt8+GDu503mrOOhytmQv9JoY6qS6qq9fDUF5v5++ebqK33cu1xA/nRqUPpFRsR6tCMMU34kxxWishVgEtEhgI/Ar4KblidRPF2+PjXsPptpxjepc/DyAvs5bV2UFU+Xp3H/3t3NTuLqzhzVB/uPmsEg1Ls7XBjOiN/ksMPgV8CNcBLwEfA74IZVMjVVsKXjzn3FRA46V7nsVR3dKgj65I2F5TzwLur+Xx9AcPS43j55skcl9071GEZY9rQZnIQERfwgKreiZMgur8Nc+C9nzpXDaMvgdP/HyT2C3VUXVJlbT1/+XQjT3+xhcjwMH597kiuPW6A3Ww2pgtoMzmoqkdEjg7WzkXkWeBcIF9VR/vm9QJeBQbivJV9maruC1YMjcr2wIe/gFVvQsowuP49GBiUnlB7hM/W5vOrtz7ZLDwAABzVSURBVFeys7iKSyb24+6zhpMWb50VGdNV+NOstFRE3gFeByoaZqrqmwHY/3PAX4AXmsy7B/hEVR8UkXt803cHYF8t83ph8T9h7gNQXw0n/8ppQgqPDNouu7O95TU88O5q3vl2F0PT4njjluPIGdgr1GEZYw6TP8mhF7AXOKXJPAWOODmo6rwWHou9AKdfaYDncR6hDU5yKNwIb98KuQudaqnnPmZ9KrSTqvLW0p38dvZqymvq+clpQ7ntpCFEhFsTkjFdkT+d/dzQEYE0ka6qu3373i0iLb5yLCLTgekAWVnt7ErT5Xaaky76B4y93J5CaqedxVX84s0VzFtfwMSsJB66ZCxD0+NDHZYx5gj484b0P3GuFA6gqjcGJSI/qeqTOJ0RkZOT0yw+vyQPgB8tBZeVmGoPVeXfS3bywDur8KrywPmj+N7kAYRZHSRjujx/zoqzm4xHARcBu4ITDgB5IpLhu2rIAPKDuC9LDO20t7yGe99awUer8pg0qBd/vHScdbhjTDfiT7PSv5tOi8jLwNygRQTvANcBD/qG1ttcJzNndR6/eHM5pVX13Hv2CG46YbBVTTWmm2nPz+ahQDsb+Q/kSzQnASkikgvch5MUXhORm4DtwKWB2Jc5cpW19TzwzmpeXbSDozISmPn98QzvY/cWjOmO/LnnUMaB9xz2EKCnh1T1ylYWnRqI7zeBs3ZPKT94aSmbCsq59aRs7jhtmD2JZEw35k+zkv007MFUlVe+2cH976wiPsrNizcdy5QhKaEOyxgTZP5cOXyiqqceap7pfsqq6/jFmyuYvXw3Jw5N4dHLxpMaby8HGtMTtJocRCQKiMG5H5AMNNxxTAAyOyA2E0KrdpVw28wl5O6r4q4zh3PL1Gx7RNWYHqStK4cZwE9wEsFi9ieHUuCJIMdlQujtpTu5583lJEVH8Or0yVb+wpgeqNXkoKqPA4+LyA9V9c8dGJMJkTqPl9+/v5Znv9zCpEG9eOKqidaMZEwP5c8N6T+LyGhgJM5LcA3zX2h9K9PVFJbXcPvMJXy9pYgbpgzk3rOPstLaxvRg/tyQvg/nXYSRwPvAWcB8Dqykarqw5bnFzPjXYooqavnT5eO4aIL1X2FMT+fPT8NpOO8d7PEV4RsHWFtDN/Hhyt1c9o//EibCv2893hKDMQbw7w3pKlX1iki9iCTg1DoaHOS4TJCpKv+Yt5kHP1jLhKwknvxejt1fMMY08ic5LBKRJOApnKeWyoGFQY3KBFVtvZdfv72SVxft4NyxGTxy6Tii3K5Qh2WM6UQO1Ye0AL9X1WLg7yLyIZCgqss7JDoTcCWVddw6czFfbdrLj04Zwk9OG2bvLxhjmjlUH9IqIm8DR/umt3ZEUCY4dhVXce2zC9m+t5JHLxvHxRPt/oIxpmX+NCstEJFjVPWboEdjgmZjfhnfe2Yh5dX1vHDTJCYP7h3qkIwxnZg/yeFk4BYR2QpU4Lwprao6NpiBmcBZvG0fNz3/DW5XGK/OOI6RmQmhDskY08n5kxzOCnoUJmg+XZvHbTOX0CchihduPJas3tZbmzHm0A75noOqbgP6A6f4xiv92c6E3ltLc7n5hcUMTYvnjVuPt8RgjPGbv29I5wDDgX8CbuBFYEowA/M1Y5UBHqBeVXOCub/u5uWF27n3rRUcN7g3T16bQ1yk9ZVtjPGfP2eMi4AJwBIAVd0lIh3VAdDJqlrYQfvqNp7/aiv3vbOKk4an8vdrjrZ3GIwxh82f5FDre6RVAUQkNsgxmSPw1LzN/M/7azh9ZDp/uWoCkeGWGIwxh8+fewevicg/gCQRuRmYi/O2dLAp8LGILBaR6QcvFJHpIrJIRBYVFBR0QDid318+3cD/vL+Gc8Zk8NerJ1piMMa0m6jqoVcSOR04wzf5sarOCWpUzj4zfU1YacAc4IeqOq+ldXNycnTRokXBDqlTe2zueh6bu4GLJvTl4WljCbdy28aYQxCRxa3dz/X3LuUKIBrn1/yKQAXWFlXd5Rvmi8hbwCSgxeTQ0/31Pxt5bO4Gph3dj4cuGYvLymEYY47QIX9eisj3cQrtXYxTvnuBiNwYzKBEJLbhprfvHscZwMpg7rOremb+Fv7w4TouGJ9picEYEzD+XDncCUxQ1b0AItIb+Ap4NohxpQNvOXX/CAdeUtUPg7i/LunFBdv47ezVnDW6D3+8dJwlBmNMwPiTHHJx3jdoUAbsCE44DlXdjNOpkGnF64t28Ku3V3LqiDQev2KC3WMwxgSUP8lhJ/C1iMzCuedwAbBQRH4KoKqPBjE+04LZy3dx97+Xc+LQFJ64eiIR4ZYYjDGB5U9y2OT7NJjlG3bUi3CmifkbCrnj1WUcPSCZJ7+XYy+4GWOC4pDJQVUf6IhAzKGt3FnCjH8tIjs1jqevO4boCEsMxpjg8Ke2Ug7wS2BA0/WtZHfH2lpYwfX/XEhSTATP3ziJxGh3qEMyxnRj/jQrzcR5YmkF4A1uOKYl+WXVfO/Zr/F4lRdumkR6QlSoQzLGdHP+JIcCVX0n6JGYFpVV13Hds99QWFbLy9Mnk50aF+qQjDE9gD/J4T4ReRr4BKhpmKmqbwYtKgNAvcfLD15ayvq8Mp65Lofx/ZNCHZIxpofwJzncAIzA6cehoVlJAUsOQaSq3P/uKj5fX8DvLx7DScPTQh2SMaYH8Sc5jFPVMUGPxBzgn19u5cUF25k+dTBXTsoKdTjGmB7Gn7enFojIyKBHYhrNXZ3Hb99bzRkj07n7zBGhDscY0wP5c+VwAnCdiGzBuecggNqjrMGxalcJP3plKaMzE3nsivFWL8n0GHV1deTm5lJdXR3qULqdqKgo+vXrh9vt/yPw/iSHM9sfkjkcBWU1fP/5RSRGu3n6uhxiIqzfZ9Nz5ObmEh8fz8CBA/EV3TQBoKrs3buX3NxcBg0a5Pd2h2xWUtVtQH/gFN94pT/bmcNTW+/ltpmL2VdZy1PX5ti7DKbHqa6upnfv3pYYAkxE6N2792FfkfnTn8N9wN3AL3yz3MCLhx2hadNvZ6/mm637eOiSsYzumxjqcIwJCUsMwdGev6s/VwAXAecDFdDYQ5sV3QugV7/Zzr8WbGP61MFcML5vqMMxxhi/kkOtOh1NKzT2zBZ0InKmiKwTkY0ick9H7DMUlmzfx6/fXsUJQ1K467vDQx2OMT3S3r17GT9+POPHj6dPnz707du3cbq2tjao+3788cfJzs5GRCguLm6cr6rcdtttDBkyhHHjxrFs2bIWt9+0aROTJk1iyJAhXHXVVdTV1QUkLn+Sw2si8g8gSURuBuYCTwdk760QERfwBHAWMBK4sjs+TptfVs2tLy4mPTGSP19pHfYYEyq9e/dm2bJlLFu2jFtuuYU77rijcToiIiKo+546dSqffvopffse2Grw7rvvsmPHDjZu3MgTTzzB7bff3uL2d955J3fddRcbN24kJiaG5557LiBx+VOy+xEROR0oBYYDv1HVOQHZe+smARt9PcIhIq/gdDK0Osj77TANpTFKqup489YpJMcG9x+gMV3JA++uYvWu0oB+58jMBO47b9Rhb/eHP/yBF154AYAZM2bwwx/+MKBxTZgwocX5s2bN4tprrwXghBNOYM+ePRQUFJCamtq4jsfjYd68ebz++usAXHfddTz44IPcfPPNRxyXPyW7H1LVu4E5LcwLlr4c2BVpLnDsQXFNB6YDZGV1vTeIH52znoVbivjT5eMYmZkQ6nCMMS1YuHAhM2fOZOHChXg8HiZNmsR3vvMdxo498DWvadOmsXHjxmbb33nnnVx99dXt2vfOnTvp379/43S/fv3YuXPnAcmhoKCAlJQUXC7XAesEgj8P0p+O87RSU2e1MC+QWrq1rgdMqD4JPAmQk5OjLazfaX22Lp+//mcTVxzTn4sm9At1OMZ0Ou35hR8MX3zxBZdccgkxMTEAXHjhhcyfP79ZcnjjjTcCvm/nVu+BDn7qyJ912qvV5CAitwK3AYNFZHmTRfHAlwHZe+tycd6taNAP2BXkfXaIXcVV/PTVZYzoE8/953eO/wGMMS1r6eTbksO5cjjttNMoLCxk8uTJ/P3vf2/1O/v168eOHTuYPHky4LwkmJmZecA6aWlpFBYW4vF4cLlcLa7TXm1dObwEfAD8Hmj6tFCZqhYFZO+t+wYYKiKDgJ3AFcBVQd5n0NV5vPzw5aXU1nv569UTrf9nYzq5qVOnMmPGDO688048Hg+zZs3i1Vdfbbbe4Vw5zJ0716/1zj//fJ5++mkuvfRS5s+fT3p6+gFNSgAul4sTTzyRt956i2nTpvH8889zwQUX+B1LW1p9PEZVS1R1q6peqarbmnyCnRhQ1XrgB8BHwBrgNVVdFez9BtvDH61j8bZ9/P6SsQy2TnuM6fQmTZrElVdeyTHHHMPkyZO59dZbGTMmsEWqH330Ufr168eePXsYNWoUM2bMAOC8886jb9++ZGdnc9ttt/HEE080bvPd736X/Px8AB5++GEeeughhgwZQnl5Oddff31A4hJ/L5s6s5ycHF20aFGow2jTZ2vzueG5b7hmcha/u9AqoBtzsDVr1nDUUUeFOoxuq6W/r4gsVtWclta3B+s7QGF5DXe+8S0j+sTzq3O63esaxphuyMp+Bpmqctcbyymtrmfm9yfbfQZjTJdgVw5B9uKCbXy6Np9fnDWC4X2sJJUxpmuw5BBEG/PL+N17a/jOsFSuP35gqMMxxhi/WXIIkpp6Dz96eRmxkeE8fOlYK0VsjOlS7J5DkDz68XpW7y7lqWtzSIu3jnuMMV2LXTkEwaKtRTz5xWaunJTF6SPTQx2OMeYQOrJk96pVqzjuuOOIjIzkscceO2DZ+++/z/DhwxkyZAgPP/xwi9v7W8r7SNmVQ4BV1Xq4843lZCZG88tz7JltY7qChpLdAPfffz9xcXH8/Oc/D8q+UlJS+POf/9zsreq6ujp+8IMf8Nlnn9GnTx9ycnK44IILGDZs2AHrNS3lPX/+fG6//Xa+/DLwFY0sOQTYIx+vY0thBS99/1jiIu3Pa0y7fHAP7FkR2O/sMwbOevCwNwt0ye709HTS09N5++23D5i/YMECjjrqKAYMGADAZZddxqxZs7jzzjsPWM+fUt6BYGevAPpmaxHPfrmFayZncfyQlFCHY4w5Qh1ZsrulEt3ffvutX+sdXMo7ECw5BEhVrYc7X/+WvknR/OIsa04y5oi04xd+MHRkyW5/y28Hs0x3U5YcAuQPH61l695KXr55MrHWnGRMtxCMkt2taSjR3aC18tv+lPIOBDuLBcA3W4t47qutXHvcAI7L7h3qcIwxARKMkt2tmTx5MqtXr2bbtm306dOH1157rcXv9aeUdyBYcjhCNfUe7vm383TS3WeOCHU4xpgAalqyGwhIye7c3FwmT55MaWkpYWFhPPLII6xfv56YmBj+7//+j9NPPx2Px8P06dMZPnw4AE888QSRkZF8//vf57zzzuODDz4gOzub2NhYnn/++SM+zpZYye4j9PjcDfxp7nr+ecMxnDw8LSQxGNMdWMnu4LKS3R1oU0E5T3y2kXPHZlhiMMZ0K50uOYjI/SKyU0SW+T5nhzqmlqgqv3xrBVHuMH5znvXRYIzpXjrrPYc/qeojoQ6iLa8vzmXB5iL+96IxVjvJGNPtdLorh66gsLyG/3lvDccMTOaKY/ofegNjjOliOmty+IGILBeRZ0UkuaUVRGS6iCwSkUUFBQUdGtzvZq+msrae3188hrAwK8VtjOl+QpIcRGSuiKxs4XMB8DcgGxgP7Ab+2NJ3qOqTqpqjqjnBeMa3NQs27+XtZbuYMTWbIWnWs5sxpnsKSXJQ1dNUdXQLn1mqmqeqHlX1Ak8Bk0IRY0vqPV7um7WKvknR3H7ykFCHY4wJkI4s2f3CCy8wZswYxo4dy5QpU1ixYn+BQSvZ3QYRyVDV3b7Ji4CVoYynqX8t2Ma6vDL+fs1EoiNcoQ7HGBMgHVmyOzs7my+++IKkpCTeffddbrnlFr788ksr2e2HP4jIeECBrcCM0IbjKCyv4dE56zlxaArfHdUn1OEY0609tPAh1hatDeh3jug1grsn3X3Y2wW6ZPeUKVMaxydPnkxubi5gJbsPSVW/F+oYWvKHD9dSVevhvvNGWX/QxvQQwS7Z/cwzz3DWWWcBVrK7S1q6fR+vLcplxtTBDEmLC3U4xnR77fmFHwzBLNk9d+5c/vWvfzF//nzASnZ3OR6v8ptZq0iLj+SHpw4NdTjGmA4UrJLdy5YtY8aMGXz00UckJztP61vJ7i7mjcU7WLGzhMevGG/dfhrTwwSjZPfWrVuZNm0aL730EkOG7H/q0Up2dyHlNfU88vF6JmYlcf64wGdmY0znFoyS3ffffz9FRUXMmOE8axMZGcnXX3+N2+22kt2BFqyS3X/8eB1//nQjb952PBOzWnxR2xgTIFayO7isZHeA7Cqu4qkvNnPeuExLDMaYHseSQyse+WgdXoW7vjs81KEYY0yHs+TQghW5Jby5dCc3ThlE/14xoQ7HGGM6nCWHg6gqv3tvNb1iI7jt5OxQh2OMMSFhyeEgH6/O4+stRdxx2lASotyhDscYY0LCkkMT9R4vD32wluzUWK6clBXqcIwxJmQsOTTxxuJcNhdWcNeZIwh32Z/GmJ6iI0t2v/nmm4wdO5bx48dzzDHH8NVXXzUus5LdnVB1nYfHP9nA+P5JnDEyPdThGGM6UEeW7D7jjDO46KKLEBGWLFnCtddey8qVK61kd2f14oJt7C6p5o+XjbOqq8aE2J7//V9q1gS2ZHfkUSPoc++9h71doEt2x8XtL95ZUVHReL6xkt2dUFl1HU98tpETh6ZwfHZKqMMxxnQSwSrZ/cYbb/DLX/6SwsJC3n//fcBKdndKT32xhX2VddxpL7wZ0ym05xd+MASrZPe0adOYNm0an332Gb/+9a/5+OOPO13J7pDcdRWRS0VklYh4RSTnoGW/EJGNIrJORL4b7Fj2ltfwzBebOXtMH8b2Swr27owxXcjhlOxuuIHd9DNz5sw2tzv55JNZs2YNxcXFh12y+1DrHalQXTmsBC4G/tF0poiMBK4ARgGZwFwRGaaqnmAF8sRnm6iq8/DT0+2qwRhzoGCU7N64cSPZ2dmICA0FQ5OSkqxkN4CqroEWL4UuAF5R1Rpgi4hsBCYB/w1GHDuLq3hxwTYuPbq/9fBmjGkmGCW7X3vtNWbOnInb7SYmJqYx2VjJ7qY7F/kP8HNVXeSb/guwQFVf9E0/A3ygqs3Sp4hMB6YDZGVlHb1t27bD3v+mgnIeeHc1D148hsyk6PYfiDHmiFnJ7uA63JLdQbtyEJG5QJ8WFv1SVWe1tlkL81rMXqr6JPAkOP05tCfG7NQ4XrhxUns2NcaYbi1oyUFVT2vHZrlA/ybT/YBdgYnIGGOMvzpbjYh3gCtEJFJEBgFDgYUhjskY00G6Q8+UnVF7/q6hepT1IhHJBY4D3hORjwBUdRXwGrAa+BC4PZhPKhljOo+oqCj27t1rCSLAVJW9e/cSFRV1WNtZH9LGmE6hrq6O3NxcqqurQx1KtxMVFUW/fv1wuw/shiAkN6SNMeZwuN1uBg0aFOowjE9nu+dgjDGmE7DkYIwxphlLDsYYY5rpFjekRaQAOPxXpPdLAQoDFE5n0l2PC+zYuio7ts5lgKq2WJipWySHIyUii1q7Y9+VddfjAju2rsqOreuwZiVjjDHNWHIwxhjTjCUHx5OhDiBIuutxgR1bV2XH1kXYPQdjjDHN2JWDMcaYZiw5GGOMaaZHJwcROVNE1onIRhG5J9TxHAkR6S8in4nIGhFZJSI/9s3vJSJzRGSDb5gc6ljbQ0RcIrJURGb7prvLcSWJyBsistb33+64bnRsd/j+La4UkZdFJKqrHpuIPCsi+SKyssm8Vo9FRH7hO6+sE5HvhibqI9Njk4OIuIAngLOAkcCVIjIytFEdkXrgZ6p6FDAZuN13PPcAn6jqUOAT33RX9GNgTZPp7nJcjwMfquoIYBzOMXb5YxORvsCPgBxVHQ24gCvousf2HHDmQfNaPBbf/3dXAKN82/zVd77pUnpscgAmARtVdbOq1gKvABeEOKZ2U9XdqrrEN16Gc5Lpi3NMDT2QPw9cGJoI209E+gHnAE83md0djisBmAo8A6CqtapaTDc4Np9wIFpEwoEYnF4du+Sxqeo8oOig2a0dywXAK6pao6pbgI0455supScnh77AjibTub55XZ6IDAQmAF8D6aq6G5wEAqSFLrJ2ewy4C/A2mdcdjmswUAD809dk9rSIxNINjk1VdwKPANuB3UCJqn5MNzi2Jlo7lm5xbunJyUFamNfln+sVkTjg38BPVLU01PEcKRE5F8hX1cWhjiUIwoGJwN9UdQJQQddpZmmTr/39AmAQkAnEisg1oY2qw3SLc0tPTg65QP8m0/1wLnu7LBFx4ySGmar6pm92nohk+JZnAPmhiq+dpgDni8hWnKa/U0TkRbr+cYHzbzBXVb/2Tb+Bkyy6w7GdBmxR1QJVrQPeBI6nexxbg9aOpVucW3pycvgGGCoig0QkAucG0jshjqndRERw2q7XqOqjTRa9A1znG78OmNXRsR0JVf2FqvZT1YE4/40+VdVr6OLHBaCqe4AdIjLcN+tUnP7Tu/yx4TQnTRaRGN+/zVNx7oN1h2Nr0NqxvANcISKRIjIIGAosDEF8R0ZVe+wHOBtYD2wCfhnqeI7wWE7AuXRdDizzfc4GeuM8SbHBN+wV6liP4BhPAmb7xrvFcQHjgUW+/25vA8nd6NgeANYCK4F/AZFd9diAl3HundThXBnc1NaxAL/0nVfWAWeFOv72fKx8hjHGmGZ6crOSMcaYVlhyMMYY04wlB2OMMc1YcjDGGNOMJQdjjDHNWHIwPYKv+ultTaYzReSNIO3rQhH5jW/8ORGZFoz9tLLvc0XkgY7an+m+LDmYniIJaEwOqrpLVYN10r4L+GuQvhtorCrckvdw3iiPCeb+TfdnycH0FA8C2SKyTEQeFpGBDbX5ReR6EXlbRN4VkS0i8gMR+amvGN4CEenlWy9bRD4UkcUi8oWIjDh4JyIyDKhR1cIms6eKyFcisrnhKkIcD/v6OlghIpf75p/U0GeFb/ovInK9b3yriPxGROYDl4rIj0RktYgsF5FXANR5cek/wLmB/xOaniQ81AEY00HuAUar6nhorFzb1GicSrZROCWW71bVCSLyJ+BanMqwTwK3qOoGETkW5+rglIO+Zwqw5KB5GThvsI/AKa3wBnAxztvR44AU4BsRmefHcVSr6gm+Y9gFDFLVGhFJarLOIuBE4DU/vs+YFllyMMbxmTr9YJSJSAnwrm/+CmCsr9rt8cDrTqkgwCkHcbAMnDLcTb2tql5gtYik++adALysqh6cAm6fA8cAh6qk+2qT8eXATBF5G6f0RoN8nEqoxrSbJQdjHDVNxr1Npr04/5+EAcUNVx5tqAIS2/huOWh4sHoObO6NOmh5RZPxc3A6Czof+LWIjFLVet82VYeI05g22T0H01OUAfHt3VidvjG2iMil0HjPYFwLq64BhvjxlfOAy8XpGzsV5yS/ENgGjPRV9EzEqWbajIiEAf1V9TOcG+BJQJxv8TCcYnfGtJslB9MjqOpe4EvfDeCH2/k1VwM3ici3wCpa7lZ2HjBBmrQ9teItnGahb4FPgbtUdY+q7sC5V7AcmAksbWV7F/CiiKzwrfMndboYBTgZ56klY9rNqrIaE2Ai8jjwrqrODcG+04GXVLXFKw5j/GXJwZgA852gj1XVDu88SkSOAepUdVlH79t0L5YcjDHGNGP3HIwxxjRjycEYY0wzlhyMMcY0Y8nBGGNMM5YcjDHGNPP/ARfLLDIMtg1JAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# setting different values \n", "# (note this uses the defaults again as written, you should change the values)\n", "tc.temperature(Ta = 20, To = np.array([-10., 10., 20., 30.]), la = 0.00001)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example Two\n", "\n", "\n", "\n", "Suppose that the rock in the previous\n", "example has a $\\lambda$ which is *not* constant. For example, if that\n", "the rock is made of a material whose specific heat varies with the\n", "temperature or time, then $\\lambda$ can be a function of $T$ or $t$.\n", "This might happen if the material composing the rock undergoes a phase\n", "transition at a certain critical temperature (for example, a melting ice\n", "pellet). The problem is now a *non-linear* one, for which analytical\n", "techniques may or may not provide a solution.\n", "\n", "If $\\lambda=\\lambda(T)$, a function of temperature only, then the exact\n", "solution may be written as\n", "$$T(t) = T_a + \\exp{\\left[-\\int^{t}_{0} \\lambda(T(s))ds \\right]},$$\n", "which involves an integral that may or may not be evaluated\n", "analytically, in which case we can only approximate the integral.\n", "Furthermore, if $\\lambda$ is a function of both $T$ and $t$ which is\n", "*not separable* (cannot be written as a product of a function of $T$ and\n", "$t$), then we may not be able to write down a closed form for the\n", "solution at all, and we must resort to numerical methods to obtain a\n", "solution.\n", "\n", "Even worse, suppose that we don’t know $\\lambda$ explicitly as a\n", "function of temperature, but rather only from experimental measurements\n", "of the rock (see Figure [Table](#lab1:fig:table) for an example). \n", "\n", "| i | Temperature ($T_i$) | Measured $\\lambda_i$ |\n", "| - | :------------------: | :-------------------: |\n", "| 0 | -5.0 | 2.92 |\n", "| 1 | -2.0 | 1.59 |\n", "| 2 | 1.0 | 1.00 |\n", "| 3 | 4.0 | 2.52 |\n", "| 4 | 7.0 | 3.66 | \n", "| 5 | 10.0 | 4.64 |" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AeydD1xU15n3f4P8V1RU1GAMGk2raRi3ullNtrqFpH11sxvc1DR9I/YTty24aVdxt4nFbcwuthpsWsU3TcFug28EtwnubjCbxeYt2GKa4maxFbqBNhAhBqKgEGeUGZzB+557Z+bOvfMHhmGAGfidjzjnnj/Pec733Hvuc8899xyDJBzoSIAESIAESIAESIAESIAEwppAVFhrR+VIgARIgARIgARIgARIgAQUAjTceSKQAAmQAAmQAAmQAAmQQAQQoOEeAY1EFUmABEiABEiABEiABEiAhjvPARIgARIgARIgARIgARKIAAI03COgkagiCZAACZAACZAACZAACdBw5zlAAiRAAiRAAiRAAiRAAhFAgIZ7BDQSVSQBEiABEiABEiABEiABGu48B0iABEiABEiABEiABEggAgjQcI+ARqKKJEACJEACJEACJEACJEDDnecACZAACZAACZAACZAACUQAARruEdBIVJEESIAESIAESIAESIAEaLjzHCABEiABEiABEiABEiCBCCBAwz0CGokqkgAJkAAJkAAJkAAJkAANd54DJEACJEACJEACJEACJBABBGi4R0AjUUUSIAESIAESIAESIAESoOHOc4AESIAESIAESIAESIAEIoAADfcIaCSqSAIkQAIkQAIkQAIkQAI03HkOkAAJkAAJkAAJkAAJkEAEEKDhHgGNRBVJgARIgARIgARIgARIIJoISGBUCNh70d5hGkJ0DOalpSJ+iFSMDoSAFZ3N5/H2m2/ixR17sLG+B9tXJgeSMYzTiDq1vou3f34Ce1+8itK3SrAyKYzVpWokEOEE7L3NePXHJfjnXTVYUbgZfafeRuL6jfjrrV9CespQPXUE90HWXjS/cwYVZYfw4X1FKHkiPaQtaTV34t133saJ0r24+JkyHMsNrXydsqINS75XgT/amY8V0V24bLLpooM5iJk+D3Mtb2P/Tz7A43lPYAn74WAwhi6PREcCISdgkSrzMyRxlg7xly3Vm0Je+OQSaGuRirKNXpyL6nsiloOto1bKz/I8f7KkOp4rEdumVDz8CZiayiWj0mcbpYLiIilL139nSw0WP3WI4D6oo7ZUys7Q959ZRfV+KjrcYItUW5wvZRj198GMkMn31qejttjZhtlSXZdNaijy7Ef1ugx9j3akNxbWSbaOKilDOScypIqGyL2/eFOLvBBOlQndMxAlqQTi8fC+GkiSBS21pRA3A53LLqpGl8Um4o9xBFVHJpiD6fj05oOorSzy4hyMtHDIY0cs7vnikyjOF6aDy2Xcjzs5yuOiwV8SCDGBduxfvhkNQmp+1Uk8k7sdJ1oqNGWUob7NrDnWeiO3D4qZeQceeGwThEE6Ki529j148pliaHoyrP/0wlEpq/HETixYtw0NGQVosR3D6hSg49JVXVnZeQUoKi5GsfgrzM/WxWXlF4rwIhQWFiA/Tx+3OD4G0anrUdNTjxycxqPGWSg5263Lz4MxJBB5zxrUOLIIWKTSLO1TfpZU72/kZsQVM0l11bVSx6jJH7GCoyhAzzn0I+7jwNZU5xzhEedPVrHEAfdRPH0oOsQExuF6GUENOqrynW/txFtQTf/ZVlWojOAac4qlriHlj3YfNKQCQSdoKMpS31qGbsTdrU69Rn7RKLxmbqnIc+qfp3kzYpKKnffejPwKqUvTrrJmtqZStc7C5JSKPV+pWNqk4mzHvVvHpKtWfRtT3sRe2d3KY+fjiPsYPiRNzqJ8zK/zERQKNs3Hv4k1D3wDF0dJfih0HD0Z8TBu0I7rhLakcWEbE4MFrmoM9bmEKx1/SSAMCIzL9RJ0ve3475+94cwtRtU1/Wfa+qdxXpJwviQXYgB3CDe6fdAQhY8sOm50X+fF6OTbR6arR+7es4ex9NFDItSIipb9SNd8ihCnpM3C83s2wfMTBYutXyep32bRHSM+DbnfqdSHyUcpa1FaV6SEb17+JM72eidhyOgSoOE+unwpfYwImBuPYvnmI6K0xYgZozLDrZgYjM7Nh2zDraWpTzgTiLzrxYKPLsiTZEbuRqsPGrlmE1SCtRHb1+xQKpdVXIpNSzRWuwg1XRD/ZWfDqA8OHEbaWhSK1Bes+izJq7eiVJlNU4Y124/C3yQqfS4ehYoADfdQkaSccSNg76zBFuNWZ/lJiEkYN1Uip2C7HVbxJ/4N6saVbfQkeAQLsB0GbSRGhg2Bcb1egqbQgXPqwOoY9p889322mN1qFf3yEB2zM+fZI8+gTPFnIf/xlR7ykrDphXKUbr0XwS8fmIwvVBXjSeMML9lZ33CMuqNMGPEcdvfgM7qHNNxHly+lB0pAXo7r7Ekc2LkRhi1HIT/gWzvPoWR3LjJXrMAKwwpkbtmNmlb9e7nuxhP4/IIHoN53RDf2zJ4DOHzgAPYeOI52r/7Pjuaa49i5JRMrhNzMzExs3JKLkpNn/Y4a2MVSXmdOHEamwYCSZqGZtRmHczORmbtbyNmCE40OnXo7m3Hy6F6hay4a5XLFslxH9+4UxwZs3LlT5F+BLXuPo3WI4Yne1rMoEfnkehtEnhUrZB134qjQsderPoECdqTrbjyFvbmCsZiGkiD+YmIMShmyXp0esofL1t7djOMHHHqvEFwzMzcid28JzrYPUWFrJ04e3q3wVeoreK3Yshenan/vt00CqrXdjOYzJ7F740YcbXQMGXU31uCwOKc2ijC57XP3HtW1h1Wug9Bly8ZcHC7Ziy2C+4kzrYMWF0y9h9MO7sKtOHviADaukNvM8Zcp9Cs5WoLdOw9DPjXFSYcTon65O3dj9275byd2ym2rCunG8b3aeHEOi/P4pI+TMtDz3iV62BzCtX3GoC+ytp919HXOdjQYMrHzQAmOHtiNAycHP99cvL1/e8X5UYJcuW+TryGlf9so2v8oznr0m3Jea/sZHNh7QPyVoE4V1oCX9jv6zwMH9uJASY3SF6vRIfAEde6P0bmiVC8uUfz0okb05Rsz5f7X8bdldwkauz06SQ8enedOKvcW+fpcIfLK7br36Cn8/toQfaC9G6dEeZni2o5JSBD9coxyja/I3ILjZ91Xr6448zns3+G882V/ESt8vHBNXfs4nshM02Ub7sGS9aK/WL/EK1vy6oeQ5wzdsf/VkfXVXtIZMCiBsZtOz5ImJwGT98epmu9Z5KX/8jyX/ssulmqrinQfzoiT2HlslKo6bCrKpnLXRzmueO1vhn4JQUuLVOj6UNaYJeXlZOvLMOYpS2g5hFukpuoKKT9Hu5yWUSqqrJREZ6XPt/ph6S91S35lSaUVrmW5PNIqebOlWk0d1MqIzy+rCt06ZeQUSKXlxVJOhlZGllTZ5HsproZid15fH6fWaeLziyulprY2qa7c9VGaKCOjSOpwKyMNh22L+IjN1UZZOTliiTWtzpDySusld6u5C7G0VakfOsGYI5VXVUuVpYXuj1IFL2WJuozAP041tdVJxQU5zmXRHHoU1zZIlQXattTqlye1CZWaKgrUOrjq4vrNr5JTeLtg6j3cdnCU2iOJV9MO/bIKpOqGFqmpvlLKUc9F13KZJqmlvlYqytEucae5Dmw9Un11pVSoi4fkPl+Gcd5nl0uu792GwyFc22es+qKeevdHgQXltVJLW5NUWZSjnnvBLBdoaqmSstVzIUMs51gqFRe6ZcrncVZBpaTtORqK3R9kus5zr99hfhQe6j5orM4Vrd7G7DwpR9efa/sKSKX1vj7TtYi+280zp7BcqlauM+8+x32tOfuTnjq17YxZ+VJlXZPU1lIrFWj60MJabc/syNemfpAKKaeixbtzGiLE1FCsnnNyu3vpNUR+Obpa06dWtLh6gwAyMsmICIgl+ehIYDQJDG64S6YWYahpjFNth5mRJ5VX10m1FW6jULmxaAwGm2wNitVHstSbljBgeuRAm2RTIp11E2sN5ztlZxVWqwaHratOY/zIHXSBYsRJlnrReWdIWWrnqTWEjDrDEvdskp7Jc3fa6s3PmC0VV1RKVcKId99UXTcBZzkqepNUnuOKE1/46zpqk9e6+MV13jcP7c3HsxO2aFYQyCioVUuVPVoDPa/SbaAGyrZNsyJFdZur87ZJdaV6wyG/Sn/zca8LLOotHtZ0NbI06W5cGIbh3lCaJ2V4Pgw6z4/sglKptr5eqirVPLCo547QQ5xzFbX1ilGsb7N8x3mhIRdMvYNpB7nItkqXvllSk/YJSHDKU85rsVqT5oFYPn+114QuTqlDh1SgudbU82U4573zOhwuh7Btn7Hoi+R+yHm+5ZTrja0mpyGmW8FDc77585oa3A8C8nWkHROwtFTq+yphiOuuM1moaHP3ue5xHvkr1E94qPugsTpXXHo71rF39MPGrDxJLJ0oBpbc/bKjb9cPHsn3Gq0B69k3t6jXrkOOeq0pDHukYvUeIx4K3N2vvOyLZpDIs/8R91XXgzwydINZfprGKzgUhrt7NRtI2aUNXmUwYHQI0HAfHa6UqhIYwnB3prN4PP1nFVapxrWcpKtaMxoqjDjtyFEgN54613JcGqPfpaLWmJI7Zt3oha7zlDtecWOTC7d1SBWF+VJOnhj9bJEtpibdA0BGXoVeR3G7LPUY5Syodt9C2yrdbw4yCvWGtUPPLqlI08EDOXoDTiRy3XzkOuhvDpKkXY4MgoHOxtPc+L1G+4a6qWuWbCz1XE5MtKD75iKzy5NaVKNTe8PSL0HnqK8k9dRpHtiGYbi78tdpRsAgbm6em4bUa95AyMw8zzlJLHvmNmgypFrtSRdkvYNth3p1dDRb91ZErquDU4aX4e7W3Zcxpr8uPc8XvdEwyHkfJAdZ73BsH1mvUe2LLA1qP1FYpz2h5JJ7pCLxMOV1DcpRfl2LxrjzOEedebpqNdeR3L+VN+mlDXWN61MPejQqfZAocVTPFSFfq7fcV5Q3uPtmcUZI1bq+RFwPeZXqG8Seevfb4exiX8Zrj1So6bv115pJqhUDDY4HAmG4N2h7Zu016nqj5sSvOY+Ue5I226At5I4MheGuk+Hj3uoujb5QEuAcd3HF0I0/Ac0KZEKZLOzZvh7aD+FT0v/UvUnG6bdwYYgpg7oamc+qcwFzstLF5M5e9Pa6/sywJczSJX+vSTOnMHoBVoihS5fLFxsdrUwWR9Gp2PT0PpQcfAaZyv7PC3CfJt3Gv/5fkJO5XQqe+OEr6pxAOXxP6RvOeYHtKMmSl/OSXQa+vXWtw6v7PwU5RcWakCM4+Frgc2EXfvp+Na8xfYlu/RntN6Cna94Z1lzFc6X7xXYcssvDqtttMKtce2G22jB/jlqs8JxHe6/j2Nz4KrY5MiKjMAcrtY3tzJL8ift0G5doJQXiT5zhnvSZVVSETen6Frn7/s+4xWQUofRp/TmHlHvxgNqmp/GbC07lRa5g6x1sO7hX6yjDPx0969Zb+JJXPCjOmqvaVfx08UEdBHjeB8tB1ikc20fWa1T7ovj5uE/Mw5DdrjUFOKubM52MjK8YcfqaXgMlsZ//2k/+BGrPUfBPWKs/xZVcKWv/BqXqeQwc2VyCVrsfgaMYHOy5L6s0mueKZ5Wzip7H4+naxS/jkfl0KcSa6G53qAINyjclZrxasMMZnoGcL4r7i5dLxp+t12bWJrDiNwfVFsSS2919FqBdZaESv33PfdOzX76g+S7B85zVyh9df9L8u9335bJf4j3Hp0SjWyilg4Y7T4LwJOB570qa6V7Te1imJdD9zpvqx6tHHjUiQRjqs2a5/qZj+iJ9p3p6z6/Fp0m+XdpivZHvO5UItfm4M0YvQ26pmJXsch39kFOZxQej+11hmI6pPoxYOTo+fT3Ea3bVHSk7EzCJlLV/h46GetTVNeDn21c7ZVjRfq4GPzj4sioTJrd3aF8nfv6TSmeyQzDOEixVrrMwPWE6NrjuSUqq0/jV+zJZK372wjZV/MYH71H9Ok/CVN0Dhi5u2AeeJ5TgefsfuR8Mpsf5WHnBO4+j2GDrLS+BHFw7xDgWZFaKP7J1jfLxrvrRb/xK/KfpLazS3vOHzWfwDL7P++A5eJfmzXo82sdbLxHiqdoI+iJYL+K1Iw3OYg5hzdxV2Hvc/WF8+pNnYXpqlU81vAPNOP2SpueYMdU7iRKShM9v0/Ych/DzJrcR6CdTyIODPfe9FfFskJFcy97SMz+z2DtQDMN8Uews6nZleEcY0tbW17HN1QVmPIZ7fDw4yXm0Dx5uGbIvBU++1Yb6ujo0tLyiPnhZe9tRc/wHeNklW6R03C0cuS1XP1J2uXUczUPieC3AlTRVc1++jD7vpnGoyP9DSiD4VYJCqgaFkcDoEbj4u3qncCOKq4/g3pm+ezmb0umI/xLn+zUY+30Z5MNQfdGq+0Rqeb15h5MvQJ02xvux0K8BloYN4p3r/l3OoWqTtit3SfT3G43U9JVIlaPtvWKVnGN49tEdztFyf3mGCDdfwttOG0TsrIgj37gXMT47bhtsNrmWYgT+E3LlLLh+eQjZYxGd4B7HHtYDS9D1lisVXDss+8JOZG8tcy79BjSU7cEa8ZeVV4y9u7+C9BS/J01ISPo870fEIQC1xqV9AtBrJEnEQ9ZeMX+sUrSlwzVgz+Y14i8LxVV78ZX16UgK8q686p75fjVLXb1BjIy63o4JI3CE/ZjfggaNCO7cH1SkKzLYc8WVP4Df5LsfVB70Xba0wrBv5A9A0UlpWLk6TdGgt/UMjr3wLHYccvbx/vTS3jSyVmKRn8Eef9lHK1yr1miVQbnyXYSOBCY4gdmL5BEsubsVVmbKCqzUbi03xnW3iXETT9fWeM4d1PAxLPIwvJ8rc+aM6e60/pPp0rgPzDh7/EfI2bxLGa3JEEZfgzD67rpahoTlrnXw3amH9Ile2mUuNlyOwwrxYBDQ/cPehT+47n5DFhKGCYKtt1qVINohaSVKO2qBBetU410WV3lom/JXVN2G7SNc9k1VL1DPiDkEWtAw04WrXs5qpD9RilrxZmvdDpfxLkdUYtsG8ZddhLbS7Ujzc/3rSFg78GvNddRz3WPnS21i8fZK33NoI8fSH8S5P5bqDVZW0l2QN6eu1DDv+H3zYDkCjjOL5UF/9O0c7CqTR0IyxENcg3iIuwuvbknAZu1p4kuiOJd8vN/1lZJhE4QAp8pMkIZkNfwTsIsRXpdr7+hxecPiV+5wFyxbqdHlXVxzq6sJd3hv/6NMd9iw7sTdKNk4HWucRnthVQtqDuaKkdpoMRru/TDhLiRA34WLCJis5Qre1YkNxErRZQifg+HUW9E6+HaITl2LY7YOVBRke9V/xwOLsPdU4N88eAkYacCwOYy0wADzh6Ve0Vi7/Rg66srh1ZJlO7Bo1d7A5qDHz8NKzSy/C23X/EOJX4jMDP/RYxMT/Lk/NvoNXYpmxpqSePrCZe5Moj8OpifrPntYTNdc4zDaswrRYqkR66anC1nimyF/A/raN5unq4b3zZdb4xD4xFOyxmnV0gTTG2ICNNxDDJTixpuAawzYrce1NreZuP/A60PMC7fjTMlh1LSP0lc22p5txW3OEWut4VyJhg5/vTVwuekdd8UCHmmxo2bvY+pcTLGqBJ72saGGW7A/nwdbURdV04Y9OHFOPfIpwN4uNj86egbWpDt1RkTNW+728Zkx3AKDrbcYFwu2HazdrWjtFuek/FH0M8dg6ahHYbZRR2bPBu1GS7qo0TkImsPoqKNKDRu9PK4XRUErWpvblU2NUlc/jmOSCfUVhdC1pLiWjtdqPpBXK+bpEWai6ANcrvKdZv+bJVkv4Z0hZl+45IzOb/Dn/ujoE4xUO/pV3llYfVcycFPzsFRZhXcH7wK9C+08hQfX7HCG56Hpp09jiea1peeDgktA0mLNR6GuwHH4tfd0hMdc+3Go+3gWScN9POmz7FEgUIb3PTrPxas1o9Sntw26PXNnzX6s27YDHwwy6j0SpX/7xitq9sIvrVVGaJIWr3Z/JCliXz7p35DtM7krl/XYvR4r16ii9R57C17f47prZ+Cxz2lGiURK3ZiJGDXy7zzYJulH8XZ8s9TvR71AO/Y//AB2vHZRiI9HnKacyh0/9TPCqNFMk96/fmMUE2y9R9AO75YuxdKD59UKxqeuxNPHzqOpIl8NA+px0X16aMKFAalB6YjwCtCkD9AbLIcAxQedLGz08rhe5AqZz2Pp8kV4R22nJKzc9DTOmxog9plQ3enfXVL9/j1J+KONmiH3sldxvtdPaluf+yFbjPN/RjY6x9KN4NwfSzUHLav3d3hF7UYzcae4rOJnztBkqcRLP/Pz1ktjgWs/g299+99Vw9dY8JdYpjHaNYK9vcl3YI0aasLHozTOpBbhx2O51K7qj4zwmWvvR90JE0zDfcI05SSuiHaETZjAd87Ss0he9Xlo1nLBjjWfxVEf20i3nzmMBQ/sgVjnHF/y24MG9jI0LsZHOrFF9fdVA7oA2audN8/k1dgudsNxudO7XkCjz464W7OKSwa2P7LSlcXrV1e+pQ8X1BSn8TtlZRc1AJcvtLsPxKiRalPIoYOyTcFDX9WQPb0Dn809ik7PCZfWdhzesgh7GoDy5x4RZnsS1nuscvH3Pzjj1sHps3c0uudzX7jmfzTRK2egARrjdVgPBkHWewTtEDNDGGj7K+E5DrtsUwEqxQ5MXk7XbmIFDI+hQGvrm3it0p0rLka79Jw73O3zcT6LFTGCa3+31MF9Y9w+gysTWKyOu3dfJPayVx7Sq37l0ZJJ6Sg4WaEfeQ+gxNX/e7smTyVeeLXRZ67e3/5SzKJ3uIwCsfyqr5cBPnMGHxiyPiggFYI9V7yF6/TWRDdXlakf8xc9v0Wc/eIbH8+Vvh79e9R0azIpXisaq8vUwK4b7s6976r7K/2G07/TD3zI3wK5O27o9VqANep1L/r0i/6e2NRih/S89n4wo1Xut8UZGXfpFrAcskAmCJ5AKBeFpywS8CZg8tg4SLP9uiaxfhOkbMlrL5+eWs0OgGJDGdcGnbIMsUmSMB8lcRUof9lFtfK+qVJDhbzbpGOjoqbybDXelS4jr0iqqhU7s1ZXSAXZrq2pPXfFs0hi/V41r/emKa5KaDfLgGTMqdBtICW2kNJtRlTkufmK2PZamGZqOUaxgZO2inIp2o1UsorrXQU7f8VmRxo9s7WbrJi0u2jKZWQ5dgdtatBtta5wMeZL9WIL9orSKscGUkOxNbs3lHFxleUXlldJdXW1UkVxgdpuxvwqddMSsReouoOkK5+8AVKXc4MmeavzfM2mJXKavKJiqaLaY/MYDwraQ+2mKlm+NkbpqJKEyetkLs45dXMolxQ902Lt5ii6DVBcMoao9wjawVWXnHLvDV6E4e6sg36DK/2GXdlio7AeyWLqkGrLNZuZOeufkV8utSg7DrvrHtB5HwwHZxGuOsltGxbt49RrVPsis2uX0jzvPq6tUr3+8yr1u6q6WsXXr25TLxgl763nuzQbAHls5CMLtGj7ngxJsy+cr+IGCdNfLyHrg0SJo3quCPlahr42wDM1lbv7CrH5krZv7lB3jnb1A9lSZZNrAyeT2EHateuxM17szlxaXiE1ietNW658HWQXVkgNTU1SQ12lc0dkl0x546x6qaWuQqpscGzc1VM31MZPgzSViGoq1d8Tve5Jg2dXYrU7xpa3aKkEkJlJgibAnVODRseMgxGwmHqkjpYGsbuoftt7uXPKyCmUqutbpK4ek2LI2UxtUmmey3B2dFSFVU2SxWlI2Sxil9J8fXxeaZ2m87RIFer2z+6OTi4rp8Jl6PVI5Tn6ODne86+0ztXhivuZqUuqr9TvOghjnlTb0iV087Ty9Ia7LNeYXSBVVVdLVZUVOiM0T9VJT9DksT15RkGF1OXsC9vqStUbhzG/Urfzqc1mkpqqi9V4pU4ZBVJ9R4/TUBZ8Bql7XoF75z43D9fD0dBsTQ3lXhzdcpyMc0q9tlq3tVWpRr1Xeh9t40iTr9l9Vc9Pe2Rqq9U9zEHwaOhx31jkc67c45zLFzdGdQNCm0WSmYvv+dS6GUUdWjQyhl/v4NtBa7jklNZKPeL8k9u9oapIbffCWve5K7NoKve+9lTO2YVSaUGWWjdHuGPr9OGd95I0fA4iT1i2jxgDGO2+SLtLqdyXtMnXqE0ydTVIRdnOB7CMIq9rRXtue/tNUqWufxQP5q6dPy2ib1V3bBa7BzepZ7gixiLqW+FxHhjziqUmue/w7OK8C1ZDRrMPGotzpUO7M7e45rPzi6TKqmqprqFBqtYY3hkF+r7XAcAmVXswVK8zTf/hGSY/nFlaKjyuQXd/I9Z6lfI0gzGu/BnqIESHJF7UOvKLc8ZzH161cbQe0a/1dLVJdRVFur5NkW3Mlsqr66WOLvGAH1Dba3btDbR8rS70B02AhnvQ6JjRPwGTVO6jw3F1PO5fMfre5TkarOm4xGh5Q4drhEob7uqsilVDy9sINEoFFZ6jkyaputi3MWMUhky9a7hXrpgYSdSOgLt19i7bwcHDcDdmeXeMYiS6tK7DPzY5pqdJKsrRP6S4y3bUSdenCj3FyhSDdP5ORuIGXqzewB3pjdn5YhRWvpHbpCrtjd+YI1W3uW/wgbC1tFVLYkNIH3oYpcKKeucDhI+q9zRI4iNLr3zG7CKpoaXW0QbihlJUXi21uZ5ifIhxBw1uHGeXigfCllKv8tyMs6UmYRAPdv5q33YMu95BtkN9kXxOZEhZvhhn5EgV9Xqj3cHDottO3VXHnEKH8dGgyDRKeYXlUl1Th+NBeNjnvbOkgNs/jNtHGNX+r/kQ9UWmOqVfyMjyfY3niBHXDt0F7j6zh/I1iYc47YOmq73lX6/+TQjzHHHVpnf4s6V6dzfgv/hR64O6Bh1wCPW13FJdLuWrb149+jJxjZXXtflnIGIaxCCP+w2eK7/o/6oapLpix0NytnjLW13fphl0Eu8ePQddxHWeX1rtuLd5DG7kFDnDnZpoR/srWoY+cUz17lF67/Z26QypqH7oxwBTQ7HajxZ4DBoMCoqRIyZgkCWIBqQjgcgnYDejvb1LrN2RgLlpqX43MrH3dqJJLBNnU77Yi8HshYuQNuINbMw4KpZb3OqcSFraZMETS22KPmJ0XnwcOB2LlqQGts65aAlzdyvebXwPvTfFgfibOm8R7lmxDMmBfrzkpzXN3Z0wy+okzUJKkl6Yubsb1uh4JCcneS9rFhBbOzqbm3BRbNkupvIiJnE2Fi1N89sOWhXN3e3ouiomx4t8CbMWIFWpqNyeZiwQbelrhrU2//j6h1/v4baD3Sq+PIh3tIu5txs9PSZl7ebohFlIS3V+K+EPgrUX8jKodkFx1oIF4hxy0LQKObaklIDax59offjwOejzj9bROOjl93qxK0v8Jcm7LIk27e7pgcm5ccOsBWkjvr4hym1tehfvdbjmPE/FouX3YFnaEOfIaKH3IXe4574PEaMaJF9rvc52kbvuhNniGksJkJ+z3eXZ4jHR4j60wHEfsor+rSde9Gv+dtcS+Tq7xDUuvjWZJcrS9czyeWK2istfXKu6CBlDNw5nzsWO04Axvxrn92kWYhhVSmYc3zLdsca8+CbMdOxxdU+PUS2WwhUCNNx5IpBASAjoDXcxYoHtKwPs7ENSPoWQAAmQAAlMOgKdNchc8IDy4Wy5GDB63O/CCqEj035yNxZl7RcCs1FvOjYmHzuHTvvIl8RVZSK/DVkDEiABEiABEiCByUggNROV9aVKzTcv34EhttMYMSFr8wmn0W5ERcuPabSPmOjwBdBwHz4z5iABHwTE5hy60PCe3KFTlQckQAIkQAIRSyBp5RPoqC0S+h/Bqs/sRqNuTd/QVcvaehJ/vvxRITADFU1vYZN2t6jQFUNJQxCg4T4EIEaTQEAE7B/irUp3SqtNzNemIwESIAESIIExIJC6djt6GiqQ0bAfxukrcCrEu39bW48jYWkWTmfko76nBpuWjcFmAGPALRKL4LBgJLYadQ4jAla0N76DypeedW8WJLTbtWYr4iu24TP3GGFcFu4fV4YRTqpCAiRAAiQQFIHk9E2oMbXh5Ovncdc8ry9Zg5LpyhQ9fRnKK+vwlw+v5oeoLijj9MuPU8cJPIudIASsjdi5OhsXjEavzszc0YALd+3CWyX84n6CtDarQQIkQAIkQALjSoCG+7jiZ+EkQAIkQAIkQAIkQAIkEBgBznEPjBNTkQAJkAAJkAAJkAAJkMC4EuAc9+HiVzYzMcF7Rxixc4z9El5+ZBXijvTg6dVcw3u4aJmeBEiABEiABEiABEjAPwEa7v7Z+IypKfgsHtjf4DPOEZiFuk/QaB8EEKNIgARIgARIgARIgASCIMCpMsOB1nsG3xnUaJe3Hd4ODrYPByrTkgAJkAAJkAAJkAAJBEKAI+6BUHKmOXfs+8q2wsasbKyZl+iVs68vEZtz7/cKZwAJkAAJkAAJkAAJkAAJjJQAV5UJlKBY9m9LglGs1Z2NBssxpId2idRAtWA6EiABEiABEiABEiCBSUqAU2UCbPjW/3hB2WAno+gbNNoDZMZkJEACJEACJEACJEACoSPAEfeAWLZjt2ER9jvTGjOy8ND6DVj3Z/dj9Yp0JHP0PSCKTEQCJEACJEACJEACJBA8ARruAbDrrtmLuQ/s8ZPSiILyI3jq8dWg/e4HEYNJgARIgARIgARIgARGTICG+5AIzTiaOR1bTw+RMLsYHaW5SOXnvkOAYjQJkAAJkAAJkAAJkEAwBGi4B0DNbu5Fr9UC09VLeO/cO/j3V1/EkUofa7nnVMBSsokj7wEwZRISIAESIAESIAESIIHhEaDhPjxeampz5zmU/tNW7DiiN+AL67rErqkparpQeG7duoXr169DkiQvcQaDAdHRHOb3AsMAEiABEiABEiABEhAEBgYGINtSnk62oRITEyPKjqLh7tmKwzw+d3QnVm095M6VUQxTTS6S3CEj9j333HPIz88fsRwKIAESIAESIAESIAEScBO477778Pbbb7sDwtzHodoRNtDKJw6irv8K1mwrc0g6/RbeM+diZSgtdyF52rRp+PDDD720DYcR9+rqanznO9/B6dNDfQjgpT4DBIGXX34Zb775JsrKnOcQqQyLAPkNC5dXYvLzQjKsgAMHDqCrqwvPP//8sPIxsYMA+Y3sTNixYwcWLVqEnTt3jkzQBM/tb8R98eLF6O3tjaja03APQXOt/so/IEcY7kcUWWbYQiDTU4RsoM+YMcMzOCyO4+PjlddM8usmuuETIL/hM9PmID8tjeH7yW/4zLQ5YmNjIf+x/9NSCdxPfoGz8pWS/HxRCTxMtq0izXEDplC0WPRSPJafoUqKUX30kAAJkAAJkAAJkAAJkEBoCNBwDwnHaKR+YoEqaTRG3FXh9JAACZAACZAACZAACUxKAjTcQ9TsnX/ocEgyrsLCEM9vD5GKFEMCJEACJEACJEACJBDBBGi4h6TxWvH6fseHmRmbPovUkMikEBIgARIgARIgARIgARJwE+BykG4Wvn32bjQ2XAQSZ+OuZWk+N1dqPbETSx+Vl4TMRoPlGNLjfYsKNlReDnLfvn0wmUzBihjVfHa7HVarVVn5ZlQLmqDCb968CZkhP24LroHJLzhurlzk5yIR3G9/f7+yPnRCQkJwAiZ5LvIb2QlgsVgQFRWFuLi4kQmapLk/9alP4Y477kBVVVXEEOCI+6BNZcfJp+bCuGoVjMsXIWHFFpxs7Nbl6DxT4jTagaK6H4TcaNcVFqYH8gZQ8nKVdMER4IoUwXFz5SI/F4ngfskvOG6uXLLBRKPdRWP4v+Q3fGbaHPK5R6NdS2R4fvmhR/6LJBdZ2o45WTuuX9EU2lCGLONcbNx9GKdqTqFk90YsWLdNJMhCZVMPtod4x1RNyfSSAAmQAAmQAAmQAAlMcgI03Ac9AeLxl/9QKcxyvavcvwMbHtiAbftNKCitRpftNTy8LFmfiEckQAIkQAIkQAIkQAIkEEIC3IBpCJhJyx7Ga5INvZ0duGyyiNQ22MR6j4mz5yMtNQUEOARARpMACZAACZAACZAACYSEAO3OgDBGIzk1TfwFlJiJSIAESIAEgiJghakkH1derEHUmq9gXtF2JIT4Y/+g1JpAmW71duLGb34B8yv/jL7Lj2Hxa7mYEvH1s6K/9V1c//kJfPziVcx7qwTTuCxzxLcqK+CbAA1331wYSgIkQAIkMNYE7B24/uIh3GqA+NuB7s89hDs2LRlrLSZkedaaw+h4YAckbe2yHtMeRZxf6jyDziefhaXSsRyzowJZ+jpGXK2oMAkMToBz3Afnw1gSIAESIAESiHgChqmfwKzaWiTlZLjrEp4rDLv1G8InIRZxX3wSSfmaL9Ey7kccR9uHIMfoSCZAwz2SW4+6kwAJkMBEIhC9ANOezEOU0YjonCKk/MVojbabYa45g37rRII3eF3iVq9H8tq1SNk5uqPsA61nYWrsHFyZEMVGpa7GnMc3YV5+PlRjZvqMCTD1J0SAKGZCEuBUmQnZrKwUCZAACUQigXhMzz0o/kZX977j38TlzXWYZzqPuEk2hz5qwb3Kogr20UBsbUbH0jWwFdZhevoYfhQWE6MY67fkOkX4W4TRaBbKnFgE1IfUiVUt1oYESIAESIAEvAkMNB5F5+YjImIxDN7REz8kBqNUbzOufG05bgqCU+JFIXQkQAKjQoAj7qOClUJJgARIgATCjYDUWYOLxq1OtZJgSAg3DcNQH7sd8ki2QYzTG/xaDHaYDmzBx2VO/eMSx7Yi0XxQGFvgLG08CXDEfTzps2wSIAESIAE9AWsvbpw5gYsbDfjgaKM+Tj4S8X1nT+KjnRvRsuWoYlTe6jyHy7tz8f6KFWg1rMD7W3bj49ZeXd6bjSdwYcEDcE8RKUP3ngO4dOAAOg8ch9UdoeSTuptx5cBOh8zMTLyfuREf7C2Bud2sk+s+sKO/+Qwu7cxEy0aHXpZTh0X+jejYm4v23SfUsu2dzeg5ulfomosbcrm9zejeu1McG9C2U5Qp6tC+9zgs/opSCu2F+UQJPtiSqeRrFXWXdby49yjMHnV36xi472bjKXTmCsZiGsr74q81xoAWp179Ola96Nn9eXTtqlSF27d9Cx8dPoyP9u5F95l2NdzlGT5bZ05rJ3oO7xZ8HLrIvFq37EVv7e+5kowLLn8nPAGDJNyEr2WEV/C5557Dvn37YDJx8l6ENyXVJwES8EnAir4zb4oR25fQd8RtAEYX1WPR9pVKDnnpvw/F0n/92qX/sosxd3M/ujbs8CHViNkd9WL/Dccwcd/xnWKKzCEf6eSgDDHfvQZJztVILKcOoGPDLiVtdE4ODO8dgU2z4mBcaT1uf2KlMuXkVmcjek/8C67t2K88RCiZcoox+75mXN2qLy/+H5+C/d++B3uDkkr8l4UZFRtgenSbH8MzG3M7SjHdWQdXroHWU/hw6QaxHaDsMpBY/GVMufZrmHfJU4AcLrqgErc/87D3JoHWc2hPWOXIm1GMxTXe67ibS7bg8jbH8HlCcSWS16/AwK9KxHcB+x3CM4qwsGY74sTRwLnDuLDKF39H0igx3/3Op1c7DsT/w2GrZhKeW+2n8MGiDY6HH2MOZhY+hqhL/42Pt+5SuctTnyQ/ddLKop8EXATS09Nxxx134I033nAFhf0vR9zDvomoIAmQAAlMcALW93Dl2ZeAJf7nnRuSUjF142OIzXCyMIrfsm0Ooz0jDzOr6zC3olADqgFXd72qGnUJXzyIpaY6jSGbhXk9NiwVO2Mvsb2pGu3WU7udRns25rRZsKikBGk1NswrzVFl929dhc5TjpVTbv73a7hWU6eWA1mvI9sUo92QIR+43UBnPGIzNUsXohLXZKPdmI2kikrMriiGftJHGboW7Id28Rt5jv4Fl9EuHlwW2mqQmvsE5j1dgjtbKtXVVex7stC2sUSZc+7WYGjfreajqtEeVVCLBbkPIzEtDUmP70NqeZ5DwOkd6DrpGEmfsnK7YChhfrG7XtFFdUrYErHN+GKN0T5cti5tpc5TaHMZ7aLOd5wvwZz1mZj1xNO409KEROc5wVFIFzH+TmQCNNwncuuybiRAAiQQCQTixahXzWtIffogkvP0xq6qftISYajl4vaiYkeQc9Q6urAKd9YcxJzM1Zi+6WncUV2gZkGHWTWolfnZYsqHPCrrcoZoeTRenrvtGJWH+Sw6NzhGlWc0/Bgz01xLzkQj6YkizMh25RQjxxu+B4uYMhL/8DO487UaLKhwGrVOvaKK67Gk5jwW1lUgQYzaJxZX4/aSAqQefE6sPu52UXkVWHT+GOZtehjJm3KRJnVhRo6WwR701HQ7M7SiU52jn4G5h3MR51RdThC15GHcXqt5eKnchkvHm92FBeDre/M1NdWtP1zEgHok6pq+Qj2ytV1V/bLHAO3i6Y7HD5mryjsIto4CetGVvcHZjtmY/+NcHT/EL8Pc/Zo667QKzcHA1au4/NWvouvrX9cJ7BbTmuRw+0cfqeEfiylCcpjl7bfVsBuvv66EmY8fV8P6f/c7JaxHvE13uVvXrythcn6tu/KtbynhtrY2NfiaeKCU0/X94hdq2I2f/UwJM5WWqmE3//AHJezqs8+qYZJ4oJLzyn+y3+XkNHKYnMflZFlymCzb5eQy5TBZB5eTdZPDZF21Tg6T/+S6hYvr/cEP8NHGjbj0+OPYefEivvyb3yj+jx59FNcrKsJFTb96aC55v2kYQQIkQAIkQAJjQiBuhWy0qnNJvMrUj6pmYc729eoos5w4Nv1PlWNlacDTb8FqzsU0rU3pJdEdcL3UNd0lD4m32zDQa1GnsBgSohE9x50WOI/+XiAhxREW90m3UQtjvhgFX6lExK3ehAXiz+0WIEEMTt90zghK/Ov/pXkLIKdKQcoPX4H1yHL0OzP1lb6BgcwnYDv5EzUsquCfMD3ZLdXli137N5iRtQvXnPJvbi6BRbxtEOoH5GI/fb9I58hsSF+iWxPdoHkdcKvmHQyIaUxTApIKBMt2oPFVmE87CokqzME017OUptzoT9ynMNRNvdfEj9QbNXMmZom14jFFX9uZeeJhTXy8O2WO+8SY9sUvYupDD2HKvHlqsfGf+Qxi774bUTNmqGExS8SDqJBpiHdXyJCY6ChHTeXwzHjySUAY2NGpqWrMVGF4Jj74IKakOE9AERO/Zg1ily5F1PTparpoMQ1E0T02Vg0ziAdYJUyEyH6Xmy4MbNy8iSkLFriCMPUv/gIJ69YhSlPH+JUrEbNwIQzTpqnpZN0UmRp5cqRajqhbuLh+YajPfv55RE2diqPnzmGBqO8Xvv992N5/H9dPnMA0YcCHswvwUg7nKlA3EiABEiCBCUPAZa0GWiF5wNBt+wBJM91remPQrzs9SuiE+SdOaxeH8NGsQx7xnoen0fd+L2amOKxnSTWpRbrFaR5TXjzzao5tPszN6GWYLabmdG51zlnv6BcPEGLTqJccbwPk3FEzpmqEaL1JmL4tXxjurrSHYGoqQEJ6YE8vsWv/DgsbHsTNvhjErUh3CrbCeu5t9Ja87C7I5PYO7QuWbQI+fmGbKj7xwXtUv86TMNU9sq+LCM2BQRjssqHt6WLEFCJPFz1/vmcQpiQnK3/aiKiEBPGGRC/TEBXluxxhfHu6aPnBQPNwIMdPEQ8G8p/WRYkHA89y5Hif9RHGuKeTHwy0DwdyvPxgoH04kMMM4sHAp0yPOsppx9vJnGV9o2+7Db3iQSNJMJL99g8/1D3IjLee/sqn4e6PDMNJgARIgAQmDwHzJfQ7B/oN4uPSud+4Fwb3LAINB5uYXiCPUtoQ8wk/xvCwjFqNaI03ftV94shpuAufOuXEmSb2Hm8D0ZU9bvUG8dbB9fZAfLDp6+HAldjrNxpx6SuVD09h74XpxDFceXSHOuXIK3kgAUGzteDW5UAKYBoSCI7AnRYLZt64EVzmccpFw32cwLNYEiABEiCBMCIgbHGXcSxdjsNUYbyO50dguhF8GZO1AxbXCwFxOHDd4h+eGIGWdVemC/lPNUiMGN0//iN0bd6lTBWKyivGbbu/goSrZXh/+dZB8vmJCpatvUudUuRHMoNJICgCN5uaECPeZJjF25R41zcuQUka+0zj2S+NfW1ZIgmQAAmQAAkMReDCRedSi0MlHLt4KX4e4sTceJcbaLvm8nr/xi9EfIZ3cGAh3bi8cbpY+tFhtE+tasGdB3MxNSVajNwPdx6TjxKHw9ZyxaMdONbogyiDhkngZnMzTEccb7O6xZSZ63Fxw5QwvslpuI8vf5ZOAiRAAiQwLgQ8prmIaTHqh68Ne9B7bvD58VJ7DS4dPTOCUe0hKq2dprPiNjFvXxitmik49nea/ZdtFdN+nB90DlGKR7QdH+99DGbnyH5seRNuW6+fh+2RIbDDYNkm3al7ALG+9W5g5TEVCXgQkAbc6yPJHwRP37ZNWfnnk2KazKLeXsU/0NMjXmW503mICJtDGu5h0xRUhARIgARIYOwIlKFfa5sn6Uepr3+zVN3p1Fundnz08AO4/tpF76gQhdx44xVV0tQvrRXTeJKQuFEz5F72Km70qkn0Hluf+yEE2Zh2l+MDWn0iH0f2Fpj3uCz+DEz/3DJdItdUIiXQvXCJLo3Pg6DZxsOgKce+46fKEpzeZbhXRoEmvXc6hkxGAn1vvom+//xPterJTz8Ny//7f+gTmy79sVim8lNdXYq/Tyx5Oe2xx9R04eqh4R6uLUO9SIAESGAyEhjNt9bakV+xa2ncLC3gFMz4ao47QGwy1J57FP2ei75Y23FpyyL0iQ9ZZz73iO958MMwHg0xPqZ/mM+hRzWgCzBrtcPwTvrf29V5+PKSjT2vNrr11fjsv/2l+tARVSCWUNS+XNAy8NTT0qdZt/00rGLVHK27eaHdfVhZpZbhCNQ+BbmTOXzBsk3CDLFCjtsdwuUfnHEfOn1SR6N7Ss2Fa5o6eCVlwCQjYP3v/8b1ykrIS3K6nLxc55wDBzD7u99FuViZ541PflLxp4j13eP/5E9cycL2l4Z72DYNFSMBEiCByUbAjv7zwiJ2uTjNSKozzBCjteyTxPJtrsTOX8sNveGmjU9I1Bjalbh65IwYmbbjxondaDHkQnr4G7rNfaQjW3ExZiM+On5K7M10BldL9uL9hEW4XiY+ZM2vwuxl7nUodaPRJnn5xsDc9Rd+5jHlpRvdT65SjeJpdd9wrPAii0vJxLwi96i7bVs2rrZaPQoS+Z/d5QzLQkreWl281NGgykblOdz0fDDRpL6+ZiuunjmHvuZG9IjNnj7Mci0xKRIZ74atvRlXj55S5EXNXqzmtO84CFO3HVJvIzoMBrSLTaASHgmObfz6XCSoksWy6bvWoe3AKVXvgXaxadbXNrtTNOzC5cMluFrT7A6jb1IRGBBTX1wuWixxOfeHP/RajtMVH4m/NNwjsdWoMwmQAAlMMAKSXawVfvZVmA65DXf7iy/B1NqrGsGSuV0Yzy9ral4G0y/EXG+n8SlZO3H1e89qDOFK9P70rPs4ehGmZruz23asQ6uw/D96dD9iK3YicVo6FjSUuxMovkrc2LwBl9esQ++2PQ5ZOaVYuG+9Y/Rb6H2z/RwuP/OiO58Yrf9IzH+/abaqursj9T7pyKO4sGUvemtq0HvyBDoy5+KaeDCQXVxFE+Y7R9sdIcC07cfEpjYZzsMG9C79Eq42OndWFW8DunMfxA1ltksGkpuOIUkdbbdjoLsZXQcPukSJ3yPofe0c7FYnwKS7kaR56SCP6veuW4XO5Ub07DiCuALn7rCyhIb9uLRoOXq3FsMqnh3iP32vRm4ZuubGoHWWERbkIeURMeVG7I47bLaKxDSktlVpHrhk430DPogxiIctAy4sWgOLa3aPU4P+HdvQ+8DLfqbVaNSkd8IRkEfXu+UNq5xOWe/edTBBfmm4T5CGZDVIgARIIGIJWBuFIZaAD9dsdo8Gy5VpOISupbPQurEEA9ZzaJ++CNcO6a20GxuW4/2YXNzoPIcPEhagd78+vn/rGryfKfIrcOIx6zt6I1AMHSOxogF3bHLM556S/jjubKtGrNEXTSOmVtRjSckT6sj8jZ98DR8sWoUble4HDjln/9Z1+GB6Ai6fc4/++ZIIYxYMZXtw9YEHcDXrUacRmoUZdR1Y6NRJny8Js/bVILWqyGnMCuPaOFcxYlvE24BrRxpgyC7E/K43xRsB1WpH39GtuDB3OcwiXuv6Hl2FtoQYoac81SUes4vahPGur7whOx9zWkxY+Mz3MFt9aBDJjTmY03ZM2c3UsOQRzC7I0oqGIasAt/UcRKLzxcRw2bqEGdLW486eBvHQpddLjjdkF+G2llrH7rNGMZ+/vBq3d1mwVNoX8G6xrnL4G/kE7B98gJTDhyO/IoPUwCAJN0g8o8KAwHPPPYd9+/bBZDKFgTZUgQRIgAQinIDdDGt7lxgNT0BsWiqm+JhmLsZ10d/chJvXbMp0HEPibMQvTfOTdjg8zOgWyy1ec67cMqPJgpSlNkWfW2Jbe8RMR/ySVN0Is1/poh6WpnfFEu+uh4OpiFt+DxLTAvwY1a9gsbhGdyfsQh1D0izEJjktb2f6ge5uDETHIyZZTFXykDHQ3Y6bJrvYWXMu4lLcDw76ZMGzVeRfFW8IxBSoqFkLEJcs6ya3pxlxoi099dGXy6OJRsDW2gp7ZycS1uqnhAVaz/T0dNwh1nN/Q3yoGinOZ3cVKcpTTxIgARIgARIYNoHoJGEc+zMqXdLEDqLL0t3zy13BIf4d6BMbKUUnB6CPj4JFPRLSV4s/H3EjDJqSIh5o/MiYkpIySFwaElL8ZFSDg2c7JcWXfNGeaUO1p1o4PROEwM1338XVb38bc8RHpZPJ0XCfTK3NupIACZAACZAACZBAhBKQbt2CIco5y1vseDrv2DFETZ0aobUJTm3OcQ+OG3ORAAmQAAmQQBAE7O6PZZXcHD8LAiKzTEIC/b/5Dbr/9m/Vmsd+4hOTzmiXK0/DXT0F6CEBEiABEiCBUSZg/xBW5/x2uSTJ5lzRZZSLpXgSiHQCJjG6PuOrX430aoxYfxruI0ZIASRAAiRAAiQwFAGx3GXjGVx6aod7syCR5YZYK/3SiVO43tw55NKRQ5XAeBKYSARu3biB/v/5H7VKc55/HnGf/rR6PFk9NNwna8uz3iRAAiRAAmNHwPoeurO/AeuVBYjJztb8JcH6otg06OAvPKbQjJ1qLIkEwo2ATSzreFlcJxBz2l1OndvuCpikv5xcN0kbntUmARIgARIYQwJiA6KF58+PYYEsigQil8CAWOJRXi0mZrF7R97IrU1oNeeIe2h5UhoJkAAJkAAJkAAJkMAwCMh7A/SKqTAuF79mDY12FwyPXxruHkB4SAIkQAIkQAIk4J/ALXMnrtecQMeWFWgvafSfkDEkECCBK089hZilSwNMPbmTcarM5G5/1p4ESIAESIAEAiBghamkAFde3I9bDe7kUfeK7VXpSCAIAvKOp9GpqUrOOYcOYcrMmUFImXxZOOI++dqcNSYBEiABEiCBYRMwzL4HM54phnbEL+HTC4cthxkmN4GB3l50/c3fwC4+QHU5Gu0uEkP/0nAfmhFTkAAJkAAJkMAkJxCPpE2PY/amXMwpylJZGKbGq/5QeAZaz8LU2BkKUZQRpgSs//VfmPaFL0Cex043fAI03IfPjDlIgARIgARIYNISMMQlaeoewg2krM3oWLoG3VUXNfLpjXQCks2G66+9plYj8XOfQ+KDD6rH9AyPAA334fFiahIgARIgARIggZATMOPK15bjppA7JT4m5NIpcPwIeE6L4XrsI2sL7VS1kUlibhIgARIgARIgARLQEJCsViA6Ggbx59/ZYTqwBR+XOVPEJfpP6oqx25UNqwxixr1hMNGu9PwdUwLyrqdRU6cqZSb/3d8h9u67x7T8iVwYT/eJ3LqsyOOlQwAAQABJREFUGwmQAAmQAAkESaD/3El0HTyE/rLTMGQYIZ2ejcTSpxF3zTy4RLtYk7usGL0H9+hWoDFkZGPG/kLMWe1YScQhpBc9u7+Anv2nVZn2bd/CR/2ZwLVriP7sl5GyNk2Nu9l4CldeKEbfkUo1DDAipmAX5uc/jrhJYtXIhnG3+MDTlxu4cgVzf/ITRN92m6/oUQ2Tbt7Ex//n/yD+3nuRsG6dUhaN9tAinySneGihURoJkAAJkAAJTFwCVvQe+BKu7nIYx7GF5Zj+x9NguesQbmzdgL7BKt57Fu2z1kBeJNKQlY9ZR76MxDnd6PnaOvSdLsPHa8pgq+3AbWsdxvvAuWM6o90huhI3djjKjir8vGq4m0u24PK2MiVJQnElktevwMCvSnB5837Y9mzGxdNXsLBmO+IG02+CxA10dUGSJMzet8+rRh8fPIj+3/xmXAz3vp/9DFGJiYj/0z/10osBoSFAwz00HCmFBEiABEiABCYAATs+3vvnuLrHMQKeVNeFeatTlHrNzHwYlod2oyNrv5969uLyFxxGu5xgetE+zFIGy5ch9c0mXIxZjn4RfmPdC7BK+yCvRzNl5XYslbbjeslGXNrmMNaji+qwaPtqSGI6jDzNRna3mo+qRntUQS0W5K5VwpG2D1NgQefmQ8DpHeg6mYWFD7tH6B2JJub/hpgYxCz0Xo5zrEfa+8+fR9yKFQrkhMxMdYrMxKQ+/rXix6nj3wbUgARIgARIgATCgoD93Iu44jTaY4obVKPdpVzCw09haobryPM3GglfznMHmjRTaqIXIF5dRfJd2DRRcgYDtCvVOD5OlefFG5zS+t50r0py6w8XMeAuBfHpDqNRDrK1XdXETB7v9X/913Gp7NVnnoH5+HG1bNe8djWAnpAToOEecqQUSAIkQAIkQAKRSMCMqwU7nIpnIPmL6T4qkYxp61UL3CPeij4xJ97hMhB3u9YYT9CkrUTfex6WuybWlzf20/erwYb0JWKU3e0MmkVobtW8ozPq3akmtm/K/PljVkFpwP3YFCfmss/e7+8NzJipNKkK4lSZSdXcrCwJkAAJkAAJ+CZwq/V1mF3ffGY8hsRk3+miZmgNcm2aFMx7qw3T3r0Ew5w7MdWZ/1ZvO0xVr7hliywShrf+e+zav8PChgdxsy9GTMtwPVBYYT33NnpLXnYrYXJ7J5MvYYzmlN94/XVEzZ6NhPsdD1LTHn54MmEOi7rScA+LZqASJEACJEACJDDOBPqGNwruS1tDUhqmrXbMMbe3nhErwDyL64cc8+V9pQ88LBpx6SsdH57ae2E6cQxXHt2hLAkZuIyJlVKyWCDvQurpbl2/7hkUkuMbp06hr6YGs7/znZDIo5DgCNBwD44bc5EACZAACZDAhCLQ//vmkNRnoP0sur6dgxtlDUJeBpKqGjB3/V24uiXBvVZ7UCWZxXzqH6Fr8y4xYg9E5RXjtt1fQcLVMry/fGtQEiM1U/SCBYhdvhy+5rbLa+eHalUXeWnJKXPmKJji7rkHU9evj1RkE0ZvGu4TpilZERIgARIgARIInsCUhcvcmafLH4wO3908exgfrHHOk88qxIKfPo0EefkYmDEwogH9blzeOFedbjO1qgW3rV+iKDhwSV6rZnI5Q2wsZu3ZM6qVNpWWKstKphw+rJQTffvto1oehQdGgB+nBsaJqUiABEiABEhgYhO4ec1dv8oqDHvmTOcpXHQZ7chDqmq0O8QGb3DIS1Q+phrtseVNqtHuVpi+UBOQR9s5LSbUVEcuL/jraORlTxAJdjSeOoGjR4/jbKfY2pmOBEiABEiABCKQwJSZMzRaV6L3Z62aY41Xs8ORAe4X95a3/12ZwiKnNBT8JRKVkXZNvmC99haYnUtUylNvpn9O82ZALksrV7wpoAuOwM2mJshrsrtc8lNPIWo6gbp4hMsvDfcRtkT3mR/AuOFRbN26Gb+8aBmhNGYnARIgARIggfEhMCV9PbSLNt589O/xcbenLlZYqsvUwIEb7gGrW1cvq+HS6d/p142xd+HmBTUahhi3we8IHWQejaVPs8TjaVjf73ULEr6bF9rdx+JNwfDWq3Fnncw+y69+JTbd2oPoVMeOtpOZRbjXnYb7SFrIfBZfW7dLlRCvWUtWDaSHBEiABEiABCKCQBrmVOVrNK3Elblb0NPsst7Fx6FHC3QfmPY9uw/dx0+gr9cOSTvVXOxi2nHgBG40N+PG2ZO4uGopLPK3qk7X3/geLGdPoKfRYYRHzV7sioJ9x0GYuoW83kZ0GAxor2hT42TP9TVbcfXMOfQ1N6LncC4+1O7karwbtvZmXD16iga8jpr3gbIzrTM4ato0zC8rw5QUxy653qkZEi4EDJJw4aJMZOlhxtEt07HVPfCAovoebF/pZ+HbEVTuueeew759+2AyTdIFakfAjllJgARIgASGQ0CeT75J7J5aOZxMiKtswYJP/QbvL33Ud76sPLGU4yH0e4iNEruz3pmbDqn1OFqXbvaRV8yVt+yHZUcCeo/4iBZBcQV56N/j2vjJlSYL8y2vYVqopuu4xE6QX0ttLW5UVWHOJN88KT09HXfccQfeeOONiGlZjrgH2VTNx7+pM9qDFMNsJEACJEACJBBGBKIx85nXcFtloX7uuKKhEVPF0o7zirOUo5i8Isypb8OdYvxv4cNLELVkE26vLvbIl4GE0mosfu0gFhZVQWt0xBZVI00Y7bIzLHkEswsccpUAOSyrALf1HBRz5eMxu6gNSTlGV5Tya8jOx5wWExY+8z3Mzs9wxxlzMKftGI12NxEvn/nYMUz/yle8whkQ/gQ44h5EG9nbT2LVoiw0iE6lPPNDbN7hGAbgiHsQMJmFBEiABEggPAnYzbC2dymbHBmiExC7IBVTxNT0W93tsMUvQFyS5zx1ZzVEvv4uMWc9JgExKck6Yx1WM26arZiSlIIpPkbDB4Tsmya7+ChyLuJSvHdoHejuhN0mjPqkWYhN0gsY6O7GQHQ8YpKTPB4ewhPvWGo1cO0abvX0IGaxe0rSWJYfrmVF4oi7n6suXBGHg17t2P+wMNqFKpUv5uNTb24NB6WoAwmQAAmQAAmElkB0EuKXeBvPUSlpjh1M/ZUm8sWleudTkscnIVb8+XNThOyEQaZZT0kRDw9+Msvzs/3F+ckyKYL7/+d/0PMP/4A5zvXYJ0WlJ3AltW+tJnA1Q1e1Mwe2Yo+w2nPEOrIPp0ajT/sxTuiKoSQSIAESIAESIAESGDGBgY8+QsoLLyBGzOWmi3wCNNyH0Ya9Yke4dbtOA1mleP5x/TqywxDDpCRAAiRAAiRAAiQwKgRsFy/i4x/+UJWd+OCD4K6nKo6I99BwD7QJzeewXdkRLgt1pU/A/4u+QAUyHQmQAAmQAAmQAAmEjoC8UOCVv/1bxH7qU6ETSklhRYBz3ANqDjOOP7kKZSJtQfWLWB36FR+H1MJut+PHP/6xV7rZs2fjkUce8QpnAAmQAAmQAAmQwMQnIN26pXx4OmXOHKWy815+mTueejT7L3/5S/zhD3/wCAV6e3uV5SC9IsI4gIZ7AI3TemIPNgur3ZhfhfzM8dlVbGBgAL/4xS+8tE1LS6Ph7kWFASRAAiRAAiQw8QnYxfz1q9/+NpJ37YJsuBvEhlWG6dMnfsWHWcNmsRFYrVi73tP19fV5BoX9MQ33IZpIXvrxkUfljR3y8G8F6zFewOLi4lBeXj6EtowmARIgARIgARKYLAQsYiR5+hNPIPYTn5gsVQ6qnrm5uZD/PJ28HGSkOc5xH6zF7K6lH42oaPkelviw2mM0+ePEmrV0JEACJEACJEACJDAaBG5ZrbjxH/+hip72xS8iYe1a9ZieiU/Ahyk68SsdaA3NDZXK0o8Qq7aXHfg6Kj1fqSSKmCNlqrgXn/ka3pK/WjWbsfCLz2EfV55R2dBDAiRAAiRAAiQQPAF5Lvvl7GxM03zXZoji+GvwRCMzJw33ANut8ohjd9TBkjdUlikbM8lpMjL3DJaUcSRAAiRAAiRAAiQwJIFbFguiEsQbffGt2+zvfhexn/zkkHmYYOISoOE+SNsmzL4HeVnZuDIvEWJw3ae7XHcElfI2qsIZRdo1Im1f32UsTPWXw5GW/5MACZAACZAACZCAPwK3xFv+jw8dwrS/+ivELl8OQ0wMjXZ/sCZROA33QRo7Oi0TB1/LHCQF0Hy0D5VbHdNlntz7Y+Smxw+anpEkQAIkQAIkQAIkMBSB6z/9KaLnz0fMMm74OBSryRRPw32ErW3rdwvot1nEAQ13NxH6SIAESIAESIAEAiXQ39CAOKNRSS5/eBo1bVqgWZlukhDgVw2TpKFZTRIgARIgARIggfAkIH942r1jByzV1aqCNNpVFPRoCHDEXQODXhIgARIgARIgARIYKwKywS6vDCOJD1ATP/95TH3oobEqmuVEKAGOuIew4eJCKIuiSIAESIAESIAEJiYBSZJgfvVV2FpalApGTZ1Ko31iNnXIa0XDfYRI03OPQb4A5b/clckjlMbsJEACJEACJEACE52A+dgx3PztbxGzePFEryrrF2ICnCoTYqAURwIkQAIkQAIkQAKeBAauXMGUOXOU4ITPfhbTv/xlzyQ8JoEhCXDEfUhETEACJEACJEACJEACwRP4+IUXcO1HP1IFxNxxh+qnhwSGQ4CG+3BoMS0JkAAJkAAJkAAJDIPALZMJsNsx85vfHEYuJiUB3wRouPvmwlASIAESIAESIAESCIpAv5i/bmtvV/IaxFrsM/PyEJWQEJQsZiIBLQEa7loa9JMACZAACZAACZDACAjceP119BYWqvPZ5eUe6UggVAT4cWqoSFIOCZAACZAACZDApCQg2WwwxMQodZ8yfz7mvfyyejwpgbDSo0aAj4GjhpaCSYAESIAESIAEJjqBGz/7GT4+eFCtZvy999JoV2nQE2oCNNxDTZTySIAESIAESIAEJgWBgY8/xo2TJ5GUnT0p6stKjj8BTpUZ/zagBiRAAiRAAiRAAmFCwPLrX+O62NXU82NSeaPFhD/7M8T/8R8rmsprsstp5v7wh2GiOdWYDARouE+GVmYdSYAESIAESIAEAiJw/ZVXMPXP/xyGpCRdeslqRc+zz2JKcjLmHj2qxBni4nRpeEACo02AhvtoE6Z8EiABEiABEiCBiCFgmDIFUWI0PX7lSp3OtgsXlLnrKUeOKMa7LpIHJDBGBDjHfYxAsxgSIAESIAESIIHIImD9r/9C7/e/ryodnZaG6Hnz1GN6SGCsCdBwH2viLI8ESIAESIAESCDsCUj9/bian4/oBQvCXlcqOHkIcKrM5Glr1pQESIAESIAESGAIAvKa7LKT7HbMF/Pd5Y9Q6UggXAjQcA+XlqAeJEACJEACJEAC40rA/C//goHubsij7beuXVN0sXd2Kr9yGG7dGlf9WDgJ0HDnOUACJEACJEACJDDpCVjOnEF/fT0SH3oIvXv3IkqsHqN10o0bSHjwQW0Q/SQw5gRouI85chZIAiRAAiRAAiQQbgSi77gDc55/XlFrOjdUCrfmoT5OAvw4lacCCZAACZAACZDApCMwcOUKuv/2b9V6x4gVY+hIINwJ0HAP9xaifiRAAiRAAiRAAiEn8PHhw0j8/OdDLpcCSWA0CXCqzGjSpWwSIAESIAESIIGwITDQ26tunjRz507VHzYKUhESGIIAR9yHAMRoEiABEiABEiCByCdw/d/+DaZ//me1IlM8Pj5VI+ghgTAmQMM9jBuHqpEACZAACZAACYycwC2rFZZf/ALTv/rVkQujBBIYRwI03McRPosmARIgARIgARIYPQKuNdgNU6ZgTlERp8aMHmpKHiMCNNzHCDSLIQESIAESIAESGBsC8gh7t5jDbr90SSnQEBMDg8EwNoWzFBIYRQI03EcRLkWTAAmQAAmQAAmMPQHrW28h/r77EL9y5dgXzhJJYBQJcFWZUYRL0SRAAiRAAiRAAmNDwN7VhSkpKcrIumy0R02dOjYFsxQSGEMCHHEfQ9gsigRIgARIgARIIPQErO+8g+6cHHU6DI320DOmxPAgQMM9PNqBWpAACZAACZAACQRJwHr2rPLxaZDZmY0EIoYADfeIaSoqSgIkQAIkQAIk4CJgPXfO5cWMr38dMWlp6jE9JDBRCdBwn6gty3qRAAmQAAmQwAQlcOVb34L1179Wa8cVY1QU9ExwAvw4dYI3MKtHAiRAAiRAAhOJgGSzIfbuu5G0ZctEqhbrQgIBEeCIe0CYmIgESIAESIAESGC8CAz09qL/t79VipfXZJ/+5S+rH6KOl04slwTGgwAN9/GgzjJJgARIgARIgAQCImC/fBldW7ciKikpoPRMRAITmQAN94ncuqwbCZAACZAACUQ4AfuFC5j9/POIWbIkwmtC9Ulg5ARouI+cISWQAAmQAAmQAAmEkEDf6dOQbt5UJMatXo3YpUtDKJ2iSCByCdBwj9y2o+YkQAIkQAIkMOEImH/6U5j/7/8FxFx22XHFmAnXxKzQCAjQcB8BPGYlARIgARIgARIILYEps2dj7o9/TIM9tFgpbYIQoOE+QRqS1SABEiABEiCBSCRwy2SC+V/+RVU98XOfg7xyDB0JkIA3ARru3kwYQgIkQAIkQAIkMEYELssrxsyYMUalsRgSiGwC3IApstuP2pMACZAACZBAxBGQ7HYYoqMhSRJm792rbKgUcZWgwiQwDgQ44j4O0FkkCZAACZAACUxWApZf/xqW2lql+vKHp/IuqHQkQAKBEaDhHhgnpiIBEiABEiABEhghgZvNzbj2wguI+/SnRyiJ2UlgchLgVJnJ2e6sNQmQAAmQAAmMGQHp1i0YosRYoZgeM++ll2CIixuzslkQCUwkAhxxn0itybqQAAmQAAmQQBgRkDdR6j1wAJLVqmglb6REoz2MGoiqRBwBGu4R12RUmARIgARIgAQig8C1H/0IhthYRCUmRobC1JIEwpwAp8qEeQNRPRIgARIgARKIJALyKLtsrMtualYWYhYtUvz8jwRIYOQEOOI+coaUQAIkQAIkQAIkIAj0/+Y36C0sVFnQaFdR0EMCISEQ1oa7ub0R51p7Q1JRCiEBEiABEiABEhhdAr3f+x6mPfbY6BZC6SQwiQmE9VSZd0qy8cD+BpQ3mfD4sqSwaKbu1rN444038YcLPbAIjRJmLcaDGzchMz01LPSjEiRAAiRAAiQwlgQGrl7FlNmzlSLn/uQniEpIGMviWRYJTCoC42e4i13TrOLPnxMrRiFlZaaIbsDmb/0rHnntCcT7SzwW4dZ2HM3fiq2HTnuVtn/PDhjzyvHzg48jxSuWASRAAiRAAiQw8QjISzzKa7LHLluGxM9/XqkgjfaJ186sUXgRGHPDvf3sCZS88CL2l3kbwH7RmPqV0e1xM9ztrdidsBT7nQpm5+Qhse88jmjq0HBoMx67bQlqnl7ttxqMIAESIAESIIGJQqD/t7+FZLEgIVMeZKMjARIYCwJjOse9+8wBLFrz6PCMdpnC1X6M+ROGhn7jT/5RMdoz8svRYZFwrOQgSo7VwNRRhzyjO+HpXftxzuw+po8ESIAESIAEJhIBqb8ft4SxLruYxYuRvGsXDPIrcjoSIIExITB2hrsYtd63btfwK2XMQ9UrWzBuM9ytzXhhWxmM+VV4c9/jSNUM+yelrsbBn9ciS1Mrm8ZPLwmQAAmQAAlMFAL2jg5c/spXAElSqjQlOXmiVI31IIGIITCGhvs1XJCxZBehqUN82GmziWu/B6Wy1ZtTAYvoCGwiTPkT/o66YgVi9q5crF82fp2D+b03cQR5+LeC9b5H/VPuxUat5a5ozf9IgARIgARIYGIRuP6v/4oZTz7JzZQmVrOyNhFGYMwMd2tbMyphRO3h7ViWmox45dVaMh7aXgAceRHviFUfo0WY8icgpq7ORV1RFso2L8fR5vGbf5KUvh026SCW+H0TaEO/2uh3Y/64vRpQlaCHBEiABEiABEJCwNbersqZnpODhPvvV4/pIQESGHsCY2a4x8+eL2o3G7EeBnDKukeRg9NY971T8FxjZoa1UiFysORXXnFjicpDZV3R1ubXsc2hJorqnkKaLpYHJEACJEACJBCZBEwvvQTTj3+sKh8Vr5krqobSQwIkMJYExsxwR9JMMRf8NF44fk6pn91qddQzehm+UZwN7N+Ap040a+puR9vHGcpxw/k/QAzIh52zd57BjuWbFb2K67qwffX4TekJOzhUiARIgARIIKIJ2C9dQnJ+fkTXgcqTwEQjMHaGe/xC3C/s8LJtq2AwGBAjNmgwbDyATkE0/fFvKB94Hnp0OTbuLkHNmRoczl2FDfudS0aersHF8Zst46PNzThzfDdiFqwT898drr31fTgfRXykZxAJkAAJkAAJhDcBSeyt0v+736lKztq9G1FTp6rH9JAACYw/AYMk3FipIS8HOVe3skwG6kw1WC3mhTce3QLj1jLfqmQUw1STO34ry6ha9eLU4QJs2HFIDdF5sorR9VpuyDdheu6557Bnzx7ce++9uuLkg7vuugtHjx71CmcACZAACZAACQRK4FZfH7q//nXMyM1F/Jo1gWZjOhKICALf/e538Z//+Z9eujY0NGDdunV44403vOLCNWCw6dsh1zll7dNoqujH8kf3OGWvwBznzsjpT7yIyj80IGt/g1e5hf/0SBgY7UItqwk9WIzS8lJ0/e7XKN9/ROzrqnGV2/C1knvxWu5KTWBovDExMfjHf/xHL2FJSfwa1gsKA0iABEiABIZFwPb73yNpyxYa7cOixsSRQmDjxo34kz/5Ey91c8QH15HmxnTE3QXHbu5Ge1cfZi1IQ7LuWxc7Gk/+BAdeqkKHSDw96W789dM78XB6iitrmP1ace54AVZtdu2pKquXjQbLMaTr6jV8teWtpG/8x38oGf/1xAmcEH//8tOfKsexYpQ9dvny4QtlDhIgARIgARJwErC1tiJq1izI67HL02S4kRJPjclGID09HXfccQdH3Idq+OikFCzxOVAcjfSHc3FM/EWGi8fKx/ehCRYs3+yaPtOBjh470lNH9jLDXF6ufM0/7a/+CtN6enC7MOTtopOV3ZVvfAOLPvggMhBRSxIgARIggbAjYHn7bXx84ADmv/KKohuN9rBrIipEAj4JjN3HqT6LHzyws2Yvco82Dp4oDGKXPf4UCowuRU6jIQRf0kpi1Z0Z27Zh5s6deO8zn0F5bKzil49jONrugs1fEiABEiCBIAgMXL6MuWK5R0NcXBC5mYUESGC8CIS14d78qz04crAK3eNFJ+ByU7HxSdf2qUbcOd85cT/g/EMnTBq7b4iHVoYpSIAESIAEIoqAMv2yqkrVWX6bO0VMk6EjARKILAIjm8/hWVdrI3Z/6RlcnDcPiSIuMVH+X3YJEKs/BuwSROKeD+txSFlrcRd+2f532JQWWlUDVibQhHGuuT+LceesEU5w9ygzzmzG9ywW9J8/j7gVKzxieUgCJEACJEACgxO48vd/j5glSwZPxFgSIIGwJxBaazh+PuabKv9/e/cDH0V55w/8E9iQBEgwgYAGERC1YMtyBiloxXaxVWh7rqeiPVisaA3UehBbhYsttIYeGG0PwlkbaDVcTbhisEewvdBqkjagDbWhZfEnqYYStImSQCJZyB92yfye2T+zs8km2U1m/2U+4wt3/jzzzPO8Z7P73WeeeQZb3E8S1ar2L5TW4N4187XKLgT5dOLYH4tc+Vruw7WeGF6jI3WJkWOeFk+s++JPf4qJBQUa5cpsKEABClBALwJjvvIVjP7iF/VSXdaTAsNWQOOuMum4/RvaD61TufZ51Doidw5amxvR2Nz3s1sdp36N5e4nMZX88L6QDF350YgRmCBuJPJM3Z4nz3pW8JUCFKAABSjgFrCLAQzaf/c7xYNBu0LBGQrEtIC2Le6C4prPfUn8fycsucV47CszEe/miRfdZk7umAWzc/AVE/JLvgfTp9Jht9t7A4qdmt56GUtWy4nNKLP+AJN7pwrLms7aXUibtdJ1LFM2SvOf8h2esvkwnpy21Lk9u+S4Zl164qdNQ5O4ObX9wAHME0+yyxVdZZrFaDLydKmpCW0vvogxS5Yg/uqrnev4PwpQgAIUoIAs4BDfEWfWrMGEH/+YIBSgwDAT0DxwN0ydB7nNfcZdd2O+z2DmjSirEBtMuTheugEzB+pOMjsTNWjH3NU78b/HnsHi2ZGRt7e3eQ9cuQ1m4zaYLDn4xtJbMeqjKixdLY/hbkJhVSEeXDjVm3aIc6O/9CVM/v3vnbm885Of4CfvvYdviSd/ydPIcePgaGjAmSeewBW/+pVzHf9HAQpQgAL6FpAuXULcyJHobmtD+o4dMIj7zThRgALDS0DjrjIyzmQ8VlaKL47vAWX7GAfEY0Zz1j08cNDu3jVz8U3OuZ0//wNsPbIL12Ky8V4UZpt8DldZtAXLzUtE0F6NvOJyNNkrNA3aPQeLnzIF8r+Oyy7DadFVxrM8IiXF+QCmCds8Y8cDEked8bDxlQIUoIDuBM6XlOBSs2sMtlHXXMOgXXfvAFZYLwKat7gD4iFKi+/s7efuMzN18kBN7d5dHY5RroXKQ6jvXDXkp5F6cw5izpCBB7dWiK4/rWiydYgd7aJ7jxgxJyUN6amB1yWIIwacNF487cszXdi3D0kLF2LkhAmeVXylAAUoQAEdCNheeQWd4oFKY+65Rwe1ZRUpoG+BELS49wEqgt0UselQTX0fCXqvrvmNZ8xZG9r9dIXvvUfo1hiSU5GRkSH+TcXUqVMjHrT3rGn89OloWrUK8qVSThSgAAUooB+BUZ/6FNLFFdg4cWWWEwUoMLwFwvdXnjwFN4unixatNGL7wVMDqDpwZPfjWLC2yJXOeDOujmzj9gDljfzmhH/6J6R+97uQLlyIfGFYAgpQgAIUCJmAfPNpa16ekj+f76FQcIYCw14gfIE70mF53vVBs/bWaZizYhMOHK5Fs60T8kiPDkcnWptP4fD+HVgxJx5zl3v7b2PBTKQO+1Mx9AomZmYiToz5Lk+d1dXgkJFDN2UOFKAABaJN4OyTTyJh7txoKxbLQwEKhEEgjIE7kLHw2yjPc93oaS3aiCULZmFiShLi4+IQH5+EtInTsMC8GkXiJlbvZEb1M3eKnvOcAhGIE5bOadQoNGdlQfI33GYgGTENBShAAQpEjUC36mrqeNHaznHZo+bUsCAUCKtAWAN3+cbVRet+h5rinAAraUbp8Zcxn83tAXp5k8mt72OXL3cOG+ldyzkKUIACFIg1gQuvvYYLv/mNUmzD5Zcr85yhAAX0JRDmwF3GNSBz2WbYW46jOC8botu7n8mEnIIyMcziPtw54IDvfnbnKqfAmDvugEHcUCtP9hMnIHV3O+f5PwpQgAIUiA0Be309LpSVYczixbFRYJaSAhQIqUAEAndXfQypM7Fs3VYclexoaWpAfYN4GmhLExoaWmCXKrB51WKks3/MkE9+nOgyI0/d58/jzHe+A8kh31HAiQIUoAAFolnA0zVmxNixSH/+ecjP7+BEAQpQIGKBu4veAVtrq7g5NR4pSYmIT5KHXExlf/YQvC/lUQcSZs/GxWPHQpA7s6QABShAAS0E5ID9jLj5VH76qTzJz+bgMI9ayDIPCgwPgcgE7p2NOLDjKSyKEwF72kRMnDgRaWkpSEqKR9ycu7BpVwWa2TCs+Tss5aGHYBDjvcvTpZYWzfNnhhSgAAUoMDSB83v2QB7e13DFFUPLiHtTgALDUiDsgXvz4V2YkzQZS1ZvQaU/UmspNq68DRPjF2H3Edfjm/0l47rBCYy87DLnjpfOnHGOA8x+74Nz5F4UoAAFtBK4dO6cktWYf/kXJIuBBThRgAIU8CcQ1sDdcWo/Ji5YCZ/RHv2VyrmuEsvnTsSzBxm890k0hA3x117rHCqy8803h5ALd6UABShAgaEIdBw8iLNPPaVkMTKVw6gpGJyhAAV6CYQxcLehaK25RwHMyCsug7WuAW0dHbDbO8QNqg2oKS9Glmu4d6y/9ds4YuuxGxeHLCCP9572ve/BMGWKMy+pq2vIeTIDClCAAhQITuDCr3+NtJxAh0gOLm+mpgAFhp9A+AL3zvexr9QLaMmvQoe0D+uWLcbsGRlITkyEwZCI5NQMZC5ahh0VdlQXWMQORXjip4e9O3JOU4H4adOc+V365BO0/eIXmubNzChAAQpQoLeA/e9/V1aO37IFhiuvVJY5QwEKUKA/gfAF7omXY5G7Fd2YXYrCNQuR2F/JxNgy81dtR4FopK888Few0b1frCFvHJmejq4//xnt5eVDzosZUIACFKBAbwH5nqKzGzagy+rtMMoRY3o7cQ0FKNC3QPgCd9uH2Oe+G3XBvOsCHPIxFdfLg6BU1qKBo8z0fRY12CJ/eUzYtg0jxo3TIDdmQQEKUIACPQXklvZ4MbLXmDvv7LmJyxSgAAUCEghf4J58He53t7ifttkDKpycaNQV8rNVT+JcR8C7MOEgBeTgPfHGG517Sxcvov2NNwaZE3ejAAUoQAFZQB4xxvHxx06MeHFPkTwsL1vZ+d6gAAUGKxC+wB2pWJZf4Cxn6Z4yNAZUYhv++pZ8SXESRscHtAMTaSQgP3G1bdcutFf6HbRTo6MwGwpQgALDV8BeX4+mlSvheYJ1XELC8K0sa0YBCoRFwKDpURw21B6vR1/t6aNH3+zss766dD0mr0hEzQ/MGC9K4HD07gdjMBhw9u0dWC3f0GrKxLT+O8RrWg1m5hKYuHMnW935ZqAABSjQQ0AehcvR0NBjrWtx5OWXY8To0c6Fzj/9CeM3b8bItDS/abmSAhSgQLAC2gbuaMB/GI1iHJgApqK1mCv+BTIZ50xFUiAJmUZTAfnLZ6yqL2bXO+8g4TOf0fQYzIwCFKBArAm0bNqEzrfeUp5E7Sm/3MWwu60NGaWuIdTG3nsvu8V4cPhKAQpoIqBtVxnDTGTlujuya1I8VybrV30hwJtZNTwos+ol0JqXhw4+sKmXC1dQgAL6EpDEc0fG/+hHmPTiiz7/RokH2zlOnFAw2JddoeAMBSigkYDGLe7AP911P7DR1S/aZLZgcvLgS2qz2TB9SQ6WzWQ/mcErardn+tatOP/KK0j63Oe0y5Q5UYACFBgmAiOSk5HgvsF/mFSJ1aAABaJMQPPAPXnW52ERlbyuvAEbFmVEWXVZnKEIjJwwASmrVytZOE6fhmHSJGWZMxSgAAX0JtAqGjTir74aY81mjLnrLnQdO6Y3AtaXAhQIo4C2XWXkghumYYnFhInpQ2hqVwE4GiuwatVuPoBJZRLJWfWl39b/+A90HT0ayeLw2BSgAAUiJvCJHLRfdZUzaI9YIXhgClBAVwLaB+7ieajLXhbB9mxtAvcm62vYufOMrk5KrFT2su98B+f37ImV4rKcFKAABTQVkG9GHXP33ZrmycwoQAEK9CegeVeZ/g7m2uZA44njqP1/f8MHH51FVz87dJ2rxYvrtwFm1/jv/STlpggIxE+ditTvfU85cveFCxgxZoyyzBkKUIACw01AHjWmu70d58STpkeJUbY+ee45pYqODz9Ed0uLsswZClCAAloLhDdwtx3DU7cYsUV+plIwU1swiZk2nAKe8YrlY34ivsiSv/Y1xM+YEc4i8FgUoAAFwiLgaGyE7Re/cI7N3lld3euYo2bPRkJmZq/1XEEBClBAK4EwBu6d2P3oIIJ2uaYpWlWX+YRSYOy//AtaRL/3SS+9FMrDMG8KUIACERGQh8RNefhhjExNxZglSyJSBh6UAhTQt0D4AndHA94p8mKbsnLxwJfm4PKxo7wrfeZG4WLLn7Ft+XpUssXdRyZaF0Zdfz3Gb9miFE+6dAlxI0cqy5yhAAUoEMsC48SoWqNmzYrlKrDsFKBAjAuEL3DvOIN33ViWghq8vCqQy4mLsHDKJ0i79RwcMQ6tl+Krh4e0/fd/Y/RXvsIhI/Vy8llPCgxDgfaKCoxetMhZMwbtw/AEs0oUiDGBEIwq04dA0gRMd24yIeu+QIJ2Vz7JM80oKLwJSX1ky9XRKzDKaESzatz36C0pS0YBClCgt8CF3/4W7a+/3nsD11CAAhSIkED4AnfDDNyRYxTVrMS7J20BV9eQfh3mzUpH+C4NBFw0JhxAIFE8QTBt06YBUnEzBShAgegUsNfVIW3DhugsHEtFAQroUiB8gbvg/eIqVxC3euuraA2Qu/PYzzB3wX4+gClAr2hLliCGS/NMcuuVPGQkJwpQgALRKiB1eQcpHrdqFdQjZ0VrmVkuClBAPwJhDdwNU+9EfXkeULQS9zy1H42trWhubu7z34kjB5Czdj1gGscW92HwnhyRkoKmrCxI3d3DoDasAgUoMNwEujs6cGbdOqVacQZe61UwOEMBCkSFQNg/leLHJDorXrnFjMneAUj6xzD3v5lbY0Mg6aabIHV2ovvcOedwarFRapaSAhTQi8D5//kfJC5YoJfqsp4UoEAMCoS1xf3E3scxecHa4Jk4HGTwZlG6x2iTCSPGjXOWruvoUchDRnKiAAUoEEkBz1XAhM9+Fsn/+q+RLAqPTQEKUKBfgTC2uDdi96ZtPQpjhMk0HaIHhZ+pDaWlla71frf72YWrYkIgboTr96IkX5ZeuxYT8vM53ntMnDkWkgLDT6Dz7bchP4MibswYqO/JGX41ZY0oQIHhIBC+wN32IWqsbjJzLmpeyIYxI3mAvus2VDxrxm0HhgM169BTQL4kbT9xAo5TpxB/9dU9N3OZAhSgQEgF7CdPovWZZ3B5SUlIj8PMKUABCmglEL6uMso47kaU5Ocgc8CgXa5iMm69834xgiQfwKTVCY+2fJKXL8fIK65wFsvR0BBtxWN5KECBYSwgd9ebsG0bPFcBh3FVWTUKUGCYCIQvcDdMxJxB3GRqmPkw2trWIHWYgLMavQVGJLker+U4fRotTz/NUWd6E3ENBSigkYAkSbh05owzt9GLFyN+yhSNcmY2FKAABUIvEL7AXbSem3PyRY2sKD3g6TMTQAVbq2C+ZWfA474HkCOTRKlAwg03OPuZXrQG8f6I0rqwWBSgQPQJyEG7s3Hg4kVn4UYkukY5i76SskQUoAAF/AuEMXAHUuevQVWuGUWr52LHkVb/JeqxtrZ8j3jWKgboC99jJy7GpEBcXBxSn3gChsmTneXvtgX+hN2YrDALTQEKhFWgq6bGeSO8ISMjrMflwShAAQpoJRC+m1M7a/Fszg580l7qLPvquV/AHrMYUaa/mrSVwjmwjLmgv1TcNswERqanO2vk+OgjdPzylxj3yCPDrIasDgUoEE4ByW5HXHw85IfApW3YEM5D81gUoAAFNBUIX+CeOB6JR7dhi2g+NxpFhxnRHaKyNMAuEW2a1pmZxYhA/DXXoG3nTnRWV/OhKDFyzlhMCkSbgL2+HpdaWpCYmYlR110XbcVjeShAAQoEJRDGrjLpMGdnOwsXdBfmfpvlg6ovE8eQgDzSw/jnnsOIyy5zllpyOGKo9CwqBSgQaYHu9nacefxxxF91VaSLwuNTgAIU0EQgfC3uorhTTV+DGdtQKsZxL9+0FFNHx/dTCQPs545jx8ol2MYW936chvcmud/7qJkznZWUW826/vQnjPnqV4d3pVk7ClBAEwH5GRFpGzdi5IQJmuTHTChAAQpEWiCsgTuS58IihoQsvfkrWDTbFYz1DzAVW4rysM3Icdz7d9LHVvnL9/yrr2JEaiqSPvc5fVSataQABYIWkB+sFD99OgziH0eOCZqPO1CAAlEsEMauMrKCAXf8uBpVdwY2bq7t1DG8O3Ixqqru4TjuUfwmClfR5K4zEwvEjcrsMhMuch6HAjEncO7nP3c+kVkuOIP2mDt9LDAFKDCAQHhb3EVhkmfMx8IBCuXZ/PYOC27bYkXx8ejpK2NrrMWbb1XjvUZXmRJSMjDPdBsyp/IRUZ7zFsrXuIQEJH3+885DyH3eu/7yFyTOmxfKQzJvClAgRgTkcdrlz4SUr389RkrMYlKAAhQITiDsgbtSPBF0dfbTcmoQJUvPXCSSW7H831/F3fseREQfldF5ArtyHsHKbfKo8r0nU04x9mxeBtdAhr23c432AnHiTdKal+cc+z1xwQLtD8AcKUCBmBCQLl1yjs/efe4c0rdudQ79GBMFZyEpQAEKBCkQ5q4ywKnDe/HUikXOD9Yk8aj7vv7FxyfBuHSbqzptXegIsmKaJhdj0D+edE2fQbt8rMotyzHxrh18wqum8ANnNvFnP4Pcn5UTBSigT4FLIli/UOp6PshIMQJV3KhR+oRgrSlAAV0IhDVwbz74LKYtWCpuOPXfat2n+NmuCD451YGK3PvFWDjyZEJ+aTXqm5rQUFeD4lyLb5FLVyN3/wnfdVwKqcBIcaPq2K99TTmG/YMPlHnOUIACw1+g+ZvfhGHq1OFfUdaQAhSggBAIX+DuOIHNt64PHt2YjbI9K5Ac/J7a7NFchcdFP3uIclhbKrDmzvmYKp7smTEjE8s2vIyGqnyf42zb9gZsPmu4EGoBechIz3T2u99F19GjnkW+UoACw1wg2WJB4ty5w7yWrB4FKEABl0AYA/dzcHZosOTjeEMLOsQjqCWpBYVieEhklaBD3FRkF+uc/8R8Q7UYPURMlvWrsHhm5G78PPGHPaKXPVCy/znM9lOMjIVrUJ5jcpbV+b+zTQzcvRphnxu/eTPaX3897MflASlAgfAJ2E94r2yO+fKXw3dgHokCFKBAhAXCFrh31teiFEZUbV+DmRmpSJTvPhWDPH5lTS6w8wW83SoGixTrnP/Eloz5q1Cdb0bR8lnYVRupNmwbDr6wU/ywKMVdU/u+j/fmf73fexqt7+HjSBXXWwrdzsVPmYLL/u3flPp3t0XPiERKoThDAQoMWqCjqgrn9+0b9P7ckQIUoEAsC4QtcE8cf7lwGo9RPeLf9FuXIguVuPW5A+j5QPtxnaVO26073uy1LTzoyTAX1qH+mS/328feri6M6RZcG7F+PeqC6HdeHjLSM539wQ9wsa7Os8hXClAgxgXOv/IKUlaujPFasPgUoAAFBicQtsAdyZfBLAL053cfcZbU0dnpKrFhJh4rEDd5blmCJ/fWqmrhQP0nri4o1qPvRWy0ltSpMzA1tcevDVUpe81OTkZ8r5VcESmBcY88gnMvvBCpw/O4FKCAxgJpP/whRqalaZwrs6MABSgQGwLhC9wTp+BmEYcXrZ4L+WbCeDEUZNxdz6JROM1e9pgI6oFtS2fhrqd2oOJgBbavmoslW9yjz1RW4MMo7n7y/ltlytnOf3xJZMebV0rCGVlg1KxZSNuwQcGQxH0UnChAgdgRkMdol5+G6pnkIR85UYACFNCrQBBNyUMlSsfKp/OwvlI1skzpARGQr0NG8nxsKrSgdGURSresFv96HMu0JHq7nzhqsWO1q0sPTAVYkennDtYe1RnM4iXx5fX73/++165jx47FjTfe2Gs9V3gF5CEjPdMn//VfSF62DIbL5a5bnChAgWgX6HzrLcSNCF8bU7R7sHwUoEDwArW1tfj444977XjhwoVe66J9RRgDd/Ek1IXrcLykC7OWbnS7zMGEJNfs7AdfQOl7VpjloRd7THlP3x254SB7lKXnYu0rWyFuXxWTCeVFD4vbbUMzyaPtrFu3rlfm1113HYqKinqt5wr/AkkLF+Ls+vWY9N//7T8B11KAAlElcOnsWaQ89FBUlYmFoQAFYkvgFXFvzK9//etehW4Sz+WZJa7Mx9IUJ4kp3AV22JpxqqkdaZOnIjVRfXQHju1/Ec++VIYGsTol+Xo8tO5x3Dk7XZ0oauYdp/Zj7jSzc7jIgpoWrApRa/szzzyDzWKYwzaOkKLJuZeHkoufMUOTvJgJBSigvYCjoQGGyZO1z5g5UoACFFAJzJ49G1dddRV+85vfqNZG92xYW9w9FIbkdMzwO/KKAbPvXIWXxb+onzpr8aQ7aM8prQtZ0B71DjFYQHXQbtuzB2OWLMGIlJQYrAmLTIHhJ+D4xz9wduNGTHrppeFXOdaIAhSgwBAFor7joKP5MHbsOgj3GDRDrK5Wu7dixyOzsE1kZ86vxuY72XqrlWy48zFccQWaxMgznChAgegQsIlL2pd9+9vRURiWggIUoECUCUSkxT0YA8eHf8BqMWTvfQ8ujJLRWhyo2HQPVotu5cacMvxyzfxgqsO0USaQdOutwMiRkLq7eQNclJ0bFkdfAnKvTXnEsWSLBYaJE/VVedaWAhSgQIACGgfunWg8dRpaDbjn6PgAu58Qo9CI0Vo0LmiAPL2THdv1Ldy2UQxTmVWMQ5sXR8mPid7l5JrABZI+9zklsf3vf4dBPH01Lp6j8SsonKFAiAXaXnwRyfJDlUTgzqA9xNjMngIUiGkBbeNh21EsmbbAebOmpiryIO9RMJ06sAnGlWIMGXMBmnYs63Okm4Ob5uD74wpRsSYzCkrNIgQjYD91Cq3iZuD0ggK2wAcDx7QUGKTAxfffR+eRI0h5+OFB5sDdKEABCuhHQNs+7snX4WHxkCXNpzbNcww6w+bDOzBtiRjG0pyPhn2r4HecG0enGBVnE27daMUDt18b9DG4Q+QFRptMGH3HHehuaYl8YVgCCuhAQL7Klf6f/6mDmrKKFKAABYYuoG2LuxjF/PYHLEBlkatkRiOMQyij1eoe0z3CA37Yju3GxAWrXTUpXQvLnBdR6S6ap3qiqlDKa8rDV2b6HTbHk5yvUSww9p574HnC6sX33sMoMVY+JwpQQDuBS+fOAeLZFCMnTMAY8UOZEwUoQAEKBCagceAOXLNwiThyEQqqG7BqfkZgpegzVSv2Pp6GpUf7TBDyDa0iaP+CcbnPcSo9PyhUa9Wrsh+9x3+LvCo9Z6NbwNPH/ZJ40tpZ8bCmtE2b2HUmuk8ZSxcjAt3t7Wh+9FFM3LEjRkrMYlKAAhSIHgFtu8qIehlmzEeWeE2YkKZBLVPx1RV5ogX/HBwa5BZ8FjaUblgeZJ99C1bcweEhg7eOzj0SxZNWR15+ORwnT0ZnAVkqCsSYQOehQ0hetgwjxo6NsZKzuBSgAAUiL6B5izswFeuqy9GuUfeWxOstOF4XLzrhRGJKxoP7JDwYiUPzmFEhIA9Pd9m//Ru63U+tvXTmjPPyflQUjoWgQAwJdNtsGJGcjFFz5sAwaVIMlZxFpQAFKBA9Apq3uIs2d8yYvwiz0xO1qWViBmbO8HsrqDb5MxcKBCDgebKqvb4enzz/fAB7MAkFKOARaH/9dcgjNskTg3aPCl8pQAEKBC8QgsA9+EJwDwrEikBCZiYuNTaiS31TQ6wUnuWkQAQEHB99BHmc9lHXcqStCPDzkBSgwDATYOA+zE4oqxNagbgRIzB+82aMSHV13uru6AjtAZk7BWJcQO5elv7CC4hLSIjxmrD4FKAABSIvwMA98ueAJYhBgXjxdFV5cnz4Ic6/+moM1oBFpkDoBOThVLuOuoYDG/XpT2NkmhaDFYSuvMyZAhSgQKwIMHCPlTPFckalQPzVV6P9t79FZ01NVJaPhaJAuAUkScKZJ59UDitfpeJEAQpQgALaCPATVRtH5qJTgTiDAek/+YkyxrvU3a1TCVabAi6BS6JPe7zoz54gRo/hRAEKUIAC2gowcNfWk7npUEB+WFPCDTc4a97d0oKON9/UoQKrrHcBz5Cp8vjsl33rW3rnYP0pQAEKhESAgXtIWJmpXgVGXHYZzm3fzq4zen0D6LTeXe+8gwsHDjhr7xk6VacUrDYFKECBkAowcA8pLzPXm4DcdWbiz36GS01Neqs666tTAbl7WMv3voekz39epwKsNgUoQIHwCTBwD581j6QTAbnFccySJc7aykHNxffe00nNWU09CkgXL2LCj3/MByvp8eSzzhSgQNgFGLiHnZwH1JOAPKLG2XXr+MAmPZ10ndTVcy/HiMRExM+YoZNas5oUoAAFIivAwD2y/jy6DgTSn38eXX/+sw5qyirqRaD12WfhOHlSL9VlPSlAAQpEjQAD96g5FSzIcBUwXHklkh94QKme/CRJThSIZQGpsxNjv/a1WK4Cy04BClAgJgUMMVlqFpoCMSYg37Tqmc6IrjMpjz6KrupqZfx3zzb5NeGzn0XijTeqV3GeAhEX6L5wASPGjHGWI3XDBsTFxUW8TCwABShAAb0JsMVdb2ec9Y24QKp4qmTL+vWQx38fmZ7u82+EeDT86a9/PeJlZAEooBaQrxKdE12+PBODdo8EXylAAQqEV8DbDBje4/JoFNCtwKhZs5C4cCHip0/H6NtvR7fodiDf4CdP3TYbbLt369aGFY9OgdZnnsHYpUujs3AsFQUoQAEdCbDFXUcnm1WNHoG4hASlMC0bN6Lz6FFlmTMUiDaB5BUrkDh/frQVi+WhAAUooDsBBu66O+WscLQJJC5YgDPZ2d5iSZJ3nnMUiJCAZ7hH+fAJc+ZEqBQ8LAUoQAEKqAUYuKs1OE+BCAiMvftuTH79de+RHQ40ffObuPB//+ddxzkKhFGgo6oK5/fuDeMReSgKUIACFAhEgIF7IEpMQ4EQC6hHnYG4aTXlG9+A48MPlaPKI3rI/d85USAcAl2i61baD34QjkPxGBSgAAUoEIQAb04NAotJKaCVwKhrrkHTI4/0euKk/Ph4w+TJSJw71/nPczypo8M52szoL38Zl33rW57VfKWAZgKSuNLj+QE5btUqxI0apVnezIgCFKAABbQRYOCujSNzoUBQAvIIHcGM0jFywgRc/uqruHjsmHIc+wcfwCH+Jd50E+JGjlTWc4YCwQpIdjvOPvUUJjz3nHNXBu3BCjI9BShAgfAIsKtMeJx5FAoMWUAeMjJx3jwlnxHJyTj/q1+hZdMmZR1nKDAYgfOvvNLr6s9g8uE+FKAABSgQWgG2uIfWl7lTIGQCI1NTkf6f/4nu8+eVY3SKp7F2Hj6MsffcA8OVVyrrOUMBfwJSd7fz6b3x8rMFMjP9JeE6ClCAAhSIIgG2uEfRyWBRKDAYgRFjxyq7JdxwA+RuNRfKypR13W1tyjxnKOAR6HrnHUjuH30M2j0qfKUABSgQ3QIM3KP7/LB0FAhKQH6wU/Ly5Rgnbnz1TJ1//rPzxlb5lRMFZAFHQwNaNmxA3OjRBKEABShAgRgSYFeZGDpZLCoFBiMwetEiGK64ApdaWpTdLx4/7myZH5merqzjjH4EOmtqMF7ciOoZRUY/NWdNKUABCsS2AFvcY/v8sfQUCEhglOjDnPS5zylp5e4zTWKs+Hb1g5+UrZwZrgKXzpxxVm30bbdBHpKUEwUoQAEKxJYAA/fYOl8sLQU0EUicPx+XixFpRn3600p+F157DRd++1tIly4p6zgzfARa8/LQ3d7urNCIMWOGT8VYEwpQgAI6EmDgrqOTzapSQC0gj/1uyMhQVo26/np0Hjrk0wrPIF7hiekZ+am7lz75BIYpU2K6Hiw8BShAAb0LsI+73t8BrD8F3ALxM2ZgvBgTXn6Cpmf6ZOtWyE9zHffNb0IefpJTbAl4noYq34w6/j/+A3FxcbFVAZaWAhSgAAV8BNji7sPBBQpQQH3D4rhHH4XcEi8/odUz2U+e9MzyNYoFHB99hK6//MVZwlEzZzrHa4/i4rJoFKAABSgQgAAD9wCQmIQCehUYIYYLHHvXXUiYM0chuFBaio/uvRdyYMgpOgW6OzvR/Nhj7BoTnaeHpaIABSgwaAEG7oOm444U0KfAZdnZmCC60GCE9+Pj/P79sKta5fUpEz21lq+QXPad78Bw+eXRUyiWhAIUoAAFhizg/eYdclbMgAIU0ItAvLjJ0TBpkre6djvOiEDR8fHH3nWcC7uA/cMPncc0XHUVkm6+OezH5wEpQAEKUCC0AgzcQ+vL3CmgC4Gx99yDK0pKMDItTanv2Y0bcV4MOckpPAK2X/4SF48dc+PpbCsAADTQSURBVB5sRGJieA7Ko1CAAhSgQFgFGLiHlZsHo8DwFogbNUqpoBzM2997D/LDnjxT94ULnlm+aiggSZJzGM8k8ZRcThSgAAUoMHwFOBzk8D23rBkFIiog39CqvqlVLszpBx6A/BTX8T/8YUTLNlwOLnV3O0eLkcQ47enbt4Mt7cPlzLIeFKAABfwLsMXdvwvXUoACIRCYVFyMpFtvVXKWRN/4jrfe4tNaFZHAZ+SnoF4QNwXL04iUFPBpqIHbMSUFKECBWBVg4B6rZ47lpkAMCsgtwqNvv91bcvH01vOvvILTX/+6dx3nAhI4s3YtRk6YEFBaJqIABShAgeEhwK4yw+M8shYUiEmBODGkZPq2bbjU2qqU/9KZM5BvtBzz5S8j/uqrlfWc8RVI+tKXkHTLLb4ruUQBClCAAsNagC3uw/r0snIUiA2BkampSkFHiJFp5K4f53buVNZJFy8q83qe8Qz3KBsk33efnilYdwpQgAK6FGDgrsvTzkpTIHoF5Fb4FHET64RnnlEK6WhowOmVK9H+u98p6/Q201lTg/O7d+ut2qwvBShAAQqoBBi4qzA4SwEKRKdA/PTpuOyJJ9AtRk/xTI7Tp3Hp7FnP4rB/bXvpJSTzXoBhf55ZQQpQgAL9CTBw70+H2yhAgagRSPj0pyGPDe+ZpI4OnH7wQbQVFnpWDevX8U8/DcPllw/rOrJyFKAABSjQvwAD9/59uJUCFIhSgfhp03DF//4vEm+6SSlh11//ivY33oA8zGSsT/JDldp+8QulGhxBRqHgDAUoQAHdCjBw1+2pZ8UpEPsCcQYDRs2cqVRk5BVXoKOiAud27FDWyQ8pisWp4/e/9+kaFIt1YJkpQAEKUEBbAQ4Hqa0nc6MABSIoYJg0CeM3b4bU1aWU4sKvfw378eNItlhgmDxZWR/tM5eamjDum9+M9mKyfBSgAAUoEEYBtrgPAdvRegL7d+/Hqc4hZMJdKUABzQXiEhKUPOUHPsVfcw26jhxR1sk3tkbjpC5X8v33Qx5hhxMFKEABClDAI8BvBY9EMK+2U9j77CrEp10D8/Jt+Dj2u9MGU3umpUBMCchPa5Vvah3zz/+slLvzzTfxsRgHveudd5R1kZ5xiBb2szk5kS4Gj08BClCAAlEswK4ywZyczkbs3/k0zGu9D4YBUhAfTB5MSwEKRFxg7N13IyEzE90XLihl6ayuhmHKlIh1pzkvnhbLrjHK6eAMBShAAQr4EWCLux8Uf6s6a3chLmkyzBWjkW0x+UvCdRSgQAwJyKPSyENMeqbuzk40r1mDzsOHPavC8uq5eXbsvfcicd68sByTB6EABShAgdgUYIt7gOfNMPl21DW0YEaGeDR75xGcLJqL0gD3ZTIKUCD6BUZ/4QtI+vzn0f3JJ0ph5YcejRg/HmO++lXEjRyprNdqxrZnD+TWf4i+7IaMDK2yZT4UoAAFKDBMBdjiHuCJNSRnuIJ2d/rkAPdjMgpQIHYE4uLiMDJV/Dh3T4m33IKLoh+8PD68Z1KPWONZN5jXi++/j/bf/hZx8exsNxg/7kMBClBAjwJscdfjWWedKUCBgARGXXcd0r77XcgPQ/JMZzduhDxqTeq6dRgxdqxnddCv9ro6pP/XfwW9H3egAAUoQAH9CjBw1++5Z80pQIEABeSWeM+U9vTTcD4c6dw5JXDvslox6jOfUYZvlJ/e2vKDH/Tq/iI/0VXuEpP+k59g9B13KOk9efOVAhSgAAUo0J8AA/f+dLiNAhSgQA8BeXjJMYsX+6y98NpraNmwAZNefhkjUlLQ+ac/IVUM7Zj42c8q6eQuNs1PPomud991ruMY7QoNZyhAAQpQIEAB9nEPEIrJKEABCvQlIHenSf/ZzwCDuy1EtNC3V1biUmsrRqanO//Jfdrlh0GNSOYdMn05cj0FKEABCvQvwBb3/n2iZmuXaK178MEHe5XnqquuQm5ubq/1XEEBCoRXwDBxos8B5ZtOW8Tf5vhNm+D44AOM+tSnkHjjjbjwv//rk44LFKAABSgQWoGf//znOHToUK+DNDQ0QI6jYmli4B4jZ2uEGC7us6rL7p5iT5gwwTPLVwpQIIoERptMzhb2S6IvvKG729m3vdtmi6ISsigUoAAF9CFw9dVX4+LFi70q+/rrr/daF+0rGLhH+xlyly9etN49+uijMVJaFpMCFPAIjBw3DvI/ThSgAAUoEBmBRYsWQf7Xc/rpT3/ac1XULzNwj/pTxAJSgAIxJyBa2C+JBzl1VFX5FF26dAlajQPvkzEXKEABClBAFwIM3HVxmllJClAgnAJj778fbQUFuDhmjO9hRUA/7pFHfNdxiQIUoAAFKBCgAAP3AKGYjAIUoECgAqOuuQYTfvSjQJMzHQUoQAEKUCAgAQ4HGRATE1GAAhSgAAUoQAEKUCCyAgzcI+vPo1OAAhSgAAUoQAEKUCAgAQbuATH1TBTfcwWXKUABClCAAhSgAAUoEFIBBu6D4bU1w6rej3G8WoPzFKAABShAAQpQgAIhEGDgHgSqw9GJ1sZa7N66XRW4l2LHf1egsdUGhyOIzJiUAhSgAAUoQAEKUIACQQgwcA8Uq/MI7o1PQtrkWVi+pdRnr52rb8PktBTEx6/AET4Y0ceGCxSgAAUoQAEKUIAC2ghwOMhAHRMzsU+SAk3NdBSgAAUoQAEKUIACFNBUgC3umnIyMwpQgAIUoAAFKEABCoRGgIF7aFyZKwUoQAEKUIACFKAABTQVYOCuKSczowAFKEABClCAAhSgQGgEGLiHxpW5UoACFKAABShAAQpQQFMBBu6acjIzClCAAhSgAAUoQAEKhEaAgXtoXJkrBShAAQpQgAIUoAAFNBVg4K4pJzOjAAUoQAEKUIACFKBAaAQYuIfGlblSgAIUoAAFKEABClBAUwEG7ppyMjMKUIACFKAABShAAQqERoCBe2hcmSsFKEABClCAAhSgAAU0FWDgriknM6MABShAAQpQgAIUoEBoBBi4h8aVuVKAAhSgAAUoQAEKUEBTAQbumnIyMwpQgAIUoAAFKEABCoRGgIF7aFyZKwUoQAEKUIACFKAABTQVYOCuKSczowAFKEABClCAAhSgQGgEGLiHxpW5UoACFKAABShAAQpQQFMBBu6acjIzClCAAhSgAAUoQAEKhEaAgXtoXJkrBShAAQpQgAIUoAAFNBVg4K4pJzOjAAUoQAEKUIACFKBAaAQYuIfGlblSgAIUoAAFKEABClBAUwEG7ppyMjMKUIACFKAABShAAQqERoCBe2hcmSsFKEABClCAAhSgAAU0FWDgriknM6MABShAAQpQgAIUoEBoBBi4h8aVuVKAAhSgAAUoQAEKUEBTAQbumnIyMwpQgAIUoAAFKEABCoRGgIF7aFyZKwUoQAEKUIACFKAABTQVYOCuKSczowAFKEABClCAAhSgQGgEGLiHxpW5UoACFKAABShAAQpQQFMBBu6acjIzClCAAhSgAAUoQAEKhEaAgXtoXJkrBShAAQpQgAIUoAAFNBVg4K4pJzOjAAUoQAEKUIACFKBAaAQYuIfGlblSgAIUoAAFKEABClBAUwEG7ppyMjMKUIACFKAABShAAQqERoCBe2hcmSsFKEABClCAAhSgAAU0FWDgriknM6MABShAAQpQgAIUoEBoBBi4h8aVuVKAAhSgAAUoQAEKUEBTAQbumnIyMwpQgAIUoAAFKEABCoRGgIF7aFyZKwUoQAEKUIACFKAABTQVYOCuKSczowAFKEABClCAAhSgQGgEGLiHxpW5UoACFKAABShAAQpQQFMBBu6acjIzClCAAhSgAAUoQAEKhEaAgXtoXJkrBShAAQpQgAIUoAAFNBVg4K4pJzOjAAUoQAEKUIACFKBAaAQYuIfGlblSgAIUoAAFKEABClBAUwEG7ppyMjMKUIACFKAABShAAQqERoCBe2hcmSsFKEABClCAAhSgAAU0FWDgriknM6MABShAAQpQgAIUoEBoBAyhyXb45mprrMXbf34HH7Scd1Yy7SojbpyXiYzk4Vtn1owCFKAABShAAQpQIPICDNwDPQedp7AjZyVWb6t07WE0wWithNW9f05xDXKXZYKggYIyHQUoQAEKUIACFKBAMALsKhOQ1ilsmj9NCdrzq+ohHa3AUakDVfkWZw5bls/Fyh1HAsqNiShAAQpQgAIUoAAFKBCsAAP3AMQOPrsSG91N61kldVizcKp7r0QsXFOIkiyjc7lo9VzsqrUFkCOTUIACFKAABShAAQpQIDgBBu4DeDka9+Ox9e7uMbDgsa/O6LGHAV997HFl3cpHC9GqLOljpru7G52dnfqobAhq6XA40NXVFYKc9ZEl/YZ2nuk3ND+73Y6LFy8OLRMd702/oZ18+b0n/w1zGpyAHL9IkjS4nSO0FwP3AeCte19S+rEbs5diVmLvHRJnLUS2Z3XlWpSd0FcQW15ejttuu80jwNcgBYqKirBixYog92JyjwD9PBKDe6Xf4Nw8ez333HNYt26dZ5GvQQrQL0iwHskff/xxbN26tcdaLgYq8PHHH+PkyZOBJo+KdAzc+z0NzXjjxVIlxcMrFvq/+dQwAyvyzUq6V954V5nnDAUoQAEKUIACFKAABbQQYODej6Lj1B9R7Bk2pp908qb4BO94kKV7Dumuu8wAPNxMAQpQgAIUoAAFKDBEAQbu/QB2nP1I6SYjJ5swLqnP1HaobkqtrMB7qsU+d+IGClCAAhSgAAUoQAEKBCjAwL0fqPh49UYLZk7208HdnWT8FderE8NnV58tXKAABShAAQpQgAIUoEDwAgzc+zFraW5SbRVN6HbVYo/ZSdOv67GGixSgAAUoQAEKUIACFNBOgA/67McyKX0W5FtOvben9p3YjtAO52ez2RAXF9d3AaJgS7SXLwqI+i0C/frlGXAj/QYk6jcB/frlGXBjfn7+gGmYoG8B+vVtE8gWjmwUiJL/NNddF1sNrwzc/Z9H19r2vwcUtPeXhRbbnnjiCVgsFsjjjfacRowYgcTEvrvw9EzPZQpQgAIUoAAFKKAngf7Gu584cWJMUTBw7+d0GUaPU231jhqjWqnMxiNBmZdn+ulV45MukAWDwYArr7wykKRMQwEKUIACFKAABSgwTAXYx72/E2tXd3+x4h8tfT+drOFvR1U5XY/L+x6ARpWOsxSgAAUoQAEKUIACFAhMgIF7P07J02+ASdluRf3Zvsd4bD97RkmJrExM5rUMrwfnKEABClCAAhSgAAWGLMDAvT/C1M/gfu8DUUXKvqLxTvztiPdJTVlfuqHPlP0djtsoQAEKUIACFKAABSjQlwAD975knOtT8UVLtpJi7cuV8N9ZpgV/r/YE7iZYbpuh7MMZClCAAhSgAAUoQAEKaCHAwH0AxRlffQgWT5ptL6HGT28Zx6m3sN4dtxtzvoeFqZ4d+EoBClCAAhSgAAUoQAFtBBi4D+SYOBs/LMt1pypFzraKHns48H/bNrnXmbD18UU9tnORAhSgAAUoQAEKUIACQxeIk8Q09GyGfw7Hdj8O4/JtzoqacorxwmNfQFLHWby5ewOWb3Q9oimvvAHrFmUMfwzWkAIUoAAFKEABClAg7AIM3IMgbzy8C48uWNnroUxGSy6e/2E2Fk7tf6z3IA7FpBSgAAUoQAEKUIACFPARYODuwxHIQicaTzWgTdylGi/GjklJm4T0VD65NBA5pqEABShAAQpQgAIUGLwAA/fB23FPClCAAhSgAAUoQAEKhE2AN6eGjZoHogAFKEABClCAAhSgwOAFGLgP3o57UoACFKAABShAAQpQIGwCDNzDRs0DUYACFKAABShAAQpQYPACDNwHb8c9KUABClCAAhSgAAUoEDYBBu5ho+aBKEABClCAAhSgAAUoMHgBBu6Dt+OeFKAABShAAQpQgAIUCJsAA/ewUfNAFKAABShAAQpQgAIUGLwAA/fB23FPClCAAhSgAAUoQAEKhE3AELYj8UA6FXDg2IF9qPn4ImbdfjfmZ/Aps/29EWyNtXjzrWq819jmTJaQkoF5ptuQOTW1v910uM2G2iNv453aD3D+oqj+qDQYM29E5swMHVoMosoO4ffHN1H97nto65L3T0DGZ+bhtlszkcpvhUGAAo7mY3jlNzVAmhF335kJftIFx9h84gj+8MYbeP3QW9hZVOrcufB4Gx6cmRxcRrpIbcMJ8fl3+O138A/x9yu/11ImXIcFX/gcZmbQy/ct4MCJg/vw/0bdjDvnB/b9IH8Pv/3nd/BBy3lnVmlXGXHjvExEDa3EiQIhFGiqypPEO9/5L6+6JYRHivGsO+qkwmyTYuUx87yacoqlphivolbFry8vkEzu95TsYzIZvW7mXKmmya7VoYZlPvVVhT5+nveY69UsFdfwnRb8iW+S8k2uzzkY8yV+0gUu2FBTKmV77OS/a6NFyi8ulax1DVIb/5R7QTZUF0tm5fPPKJktZsmoLEOy5Jby/edWq68ukbLc7y1TXnUvy14rOuqlAvX3sNHkY5tTXCNFw1sSvQrOFRTQSqCtWvUBAym/hl9nfmk7jkvZqg9e30DKHQzI280Fuv9Ari/L9QbplgKpvsMl2lFfLlkUQ4tU0+ZXWvcr60qyvX6Kl+o95l6Xzx/ZQb1XavLNXldTgcS3XwB8IkjyaawwZkll1oYAdtRvkvqyHOV9llVQpXqftUlVhaq/7ezSqAgwI3Wm5B+DWUbfzzVzfs0AxamXclX75FfVu9N3SFX5FsXdUjBQPgMcRoPNDNw1QGQW/gTapEKL7x8OA3d/TnapPMfTYmyS8kurpfqmJqmhrkYqzvV+WHiC+ezSOn+Z6GNdS5WqpThbquvR9GGvK1E+XGEpVn2p6YNnwFo2lCmtR6asfKn6eL3U1NQgWcuLVT96PH+zOb18B8xfpwnarIXe9538w4eB+4DvBN8f2sIsq5BXFAdSa1E1hGWV+A3Mvd8lkEQ3o4FyHIbbO6Rid9yRnZOt+r6ANFDgXpXnveKdVdLze9YulWR5vqcjb8vAfRi+daOhSseLs3y/zMQXGgN3P2emqdwVTBmzJaufCxINVfm+jroNCuxSmfIDR1wOLjzuB9P3xyJbjX2JynNdXzzZxVbfDfKSvUHKN3uCdtdrPi9b9HbquUZcLctSXblwdlnQ7d9oT5w+lsVnnrqrm3wlkZ2z+rBSrW6rUX0X5Pv7/JOkFlUafX7f2kWjV53U4m7UUV8J6y9wtzeUKo0agEWyuq/kqvilDvUPdFNku8NxVBnRlMlJWwHHqf24f/lOwJyL4nzxtcapT4ETf9gDq9hasv85zPZz/2nGwjUozxFfc57pbBNsnnk9vdpqULBFlpInI5aarnHN+vw/GaalotORe1r7fDk6PQt6f3WcwJ6Nwi+rFM8tm91bw5CBNS+UCVnvdO4TXb7TvAADzjmwP+d+iE865BYXQ1yad/4tD7ibrhM049kv3oZKxcCM6pdXIV1Z5kyfAvEJyiZTZ7Myr55JGp2iXtThvAEZM2YoN9jHJwR2o65170vK364xeylm+bmzPHHWQijfLpVrUXYict8uDNx1+NYObZVPYcudZucfQekLOZif0h7aw8V07jYcfEF87Ytg6q6pfQ/lcfO/3u+tpfU9fKzDeKr5r3+Aa5wJQWF6FKY+vCbPMXmDz6IiHNWhlffN4p3rPP6GM8AseerL6POdlvE5PC7uevNMNe9/7Jnlqx+BxgNbYN4mfgxllyHnvky0e35X+knLVS6B2t3fw3qVU05pPuYHFluR0O4c/snpULn++zjQ2Jvk3T+Uq1b2+ZeuSsNZoBlvvKh8u+DhFQv9f0YaZmCFuCzpmV55413PbNhfGbiHnXx4H/DgsyvhbNgrPo47Mwxo937WDO+KD6p2yTAX1qH+mX6CKZGvXZ236RZcq7svOgdqflWsVoDDZ8m7YJg03Ru4i1D/8Put3o06nku89j7UHW/o9wdiT55F867tuYrLHoHmCliWbBRLWbBuWQyDo12fV8I8HoG82g7j3+UrsZ7JlI+cO6d6lvg6gEDylM/Ae+21Eksmr8Jh1ceb49QBPLG6yJWLqQArMnX3RTGAoP/NjlN/RLHqx6T/VK616hb80j2HoOLvbzfNtzFw15xUvxm2Ht6OW9eLi6DmQvxo2Uz9QgRR89SpMzA1mIGzJycjPoj8h0fSDpw6qfpkvXY8kvqqmN3uE0BVvH2yr5T6Wp+YihlijPuB2uDUv7NTRuuLKPDaNmP7/a7uHgU1P8Js92V1hkn9C5547SXvVTOR1GSagMpdm3DXojmIi4tz/puzaAW27z3s8zfcf6462pq+CE/neUN3iGtoC9Luwv7aVthO7Me905a4uyBlo+bVVfDT81JHWIFXtePsR0o3GXmvCeP6/HYRjWiqS7iVFXhPtRj4EYeekoH70A2ZgyxgO4I1C9aKGdFnsfBB8EtMu7fF+2+VKZnlP75Elw928fbuFO+wzE/1bZA8HUvMChegjkRVqznrR8D2Pso8V4xFi52ZD77xgwQc2/FtrJXbJ/KrsYqtmn6Neq8U3QJf8bS2u+6kqNy4HOaVG1Fa6f1Rbq0swtqlC5Ay5ykci1BQ1Lvs0bNm4bo9KFB/vomfQuZZaUi5xuz8UWTJLUGDfSsyGbUHfNLifVrCLJg52U8Hd3du46+43idfn119toR2gYF7aH11krsNux+dC/kiXW75C5jPDw3tzrujFjtWu6Mp5+VPPeK24D2fhnOfzkM9rA3iGaCcBiNw4rUdSoto/pb72GLnB7GzdjeMcncEYx5eWDPfTwqu8ivQ+T72uT/GPLfwWvJK0dQhySPboaOlDsW5qojUugXGW7aL3secfAXSsWpfEwrFU4V6TyZkrb4XoocqpyAEWpqbVKnFr8V+vl4mTb9OlTZyswzcI2c/bI58Yu9GLJe/y3LETVqLMoZNvaKhIrWvbHXeVCguLKO86GGdBlOjcd0C73gnpYfUH7TRcJaGQRk6j+FZd/9jU2451vDXd++TKkbmyZm1XKw3oqzs2+AnXW+i/taor8LK77GX192JdHfjZmLqDCzbsBdiyFdvFta1KDzI0N0L4plLh/mhxZ4F1Wslbp04B7uPtarWcXYggaT0WaKfQGCTPUou4TJwD+x8MVUfAvLQj3cv3Sa2ZuNXueImrT7ScXXwAsqwmmLXgppXsUi3TSkGtL3vvZxu9DduZvC83EMRcOBA7lrXD0RLIV7dsEjZwhmPgDDaeDecn3Qlv8Linn+LPVrp+rp52pOb3l/vv2ueHwIDFucUQjwBWZmKy2r6vBFdSaSzmWN7n0LagvWi1kbk5OX2CDqtWG5Mwy4G74G/K9r/rlxpDHynyKZknBVZ/yg9eisO7n4FfxFXjfx1O+jqEqOhZC3DVINn6EcjSuqewww/7yZ1H7CE+L5v+ohSiEEWK0C/vrvSAZ21eHKaa1jNnNI60ZdWj11kPPwGpKiGJ56eqH5XedL4f23zv5prVQIn9j6JJVtEp23koE7cn6Lnd5qKxWe2sWKLMLLCmC3Gwb93hs8250KS6j2ZktD3zdO999Tlmi57Hz9tksUzGsSA+EU7XT/UrdXvidsBF/M96X6XnNj7OIzOhjLRVFa6H5vlUXm+eRc2mY3YKP8Ju6eVxntwVdPvsCjdz5eyJxFfnQKG0eNUEurrQqrV7tn4HhFRj9/rvXcI0Rqe1RDBxnS2tvfw/eWrVQ/J6FkbE+avXIa0d0udQz/KfRaLnv0WStt7jNkuRqWw7ixSdn5hwyM4JP9d2GyYct8z2DxcR54J0G9qn4F7K3Y8MsvZuiffALf5Tj+BgqKqhxkHunwi8H4+LjvrUa70pQUWTBuvB6BB19F2bBeucQYCFlS3bPb743vQmQ+bHW147Yfy0I/i82zbS/hWewl8P+rEB52t2nmPjzNR6VY8ssI1nrbNNgWbfrlZGXnGuV2P/xN/soHda2rA9Ey5u4znClsCr+J63i9iOM3vuIN2iCtjuZ6hNJNnY0NFC2Y9dQ+WOn+AyztU4vGtVTi6mVfPPHx9vqrGx5ffd/9ocSAz2X9o3PC3o6psrsflEWqL9F86VdE4q0OBpAliqC4jzp71X3er9dpeQxKW7vSMGOB/H3mttbRI+Tg2LXJ9EfadOoa3DMLPW1sHKjbdA+f9b+KegV/yBjhBk4rrF4ubsSpdTUql+/4Km3Dpv23EJZr56UleWs75CjRWwGxcKdaZUFr/M95U7qvju6Rc8SnFwB91oiGjyBN4mpEj/87s80e672GG7VLSaAT8l9jjMm8fbfPDlqqvip347S+VLh2WJQt6fP6l4t7Nv0MZbndfPRPft1vewIncRfwx3heoe33y9Buc4+O7vl2sqD8rfmJO9X/dsf3sGW9uWZmYHKEIOkKH9dadc1EoIJ4QtqHiKDYMUDTH+M8g22zBmUmjIdqc/E6nq3ei1P0dZhRpF4i07e2nMSWjrz38ZhNbKwP081epY7u+hdvka55ZxTi0ebHuv+89Rv/0xfvFrOujFZWnIBpF4K9RxNHwN2/Lp7jv4oa+L2t4stbnq+0YVk12jUVeaH0Vd9Kp3/fBFddbYEkWn3N9fWyJz7SdRZ5LPUZYshaIz8R2nG6/DqNVvWj6Pchw3miYhpvEHYA73UQVh05iTR/d/3y4xHMrItSoGXVnwzA2TSnTLbMnK/PeGfkeAfE03y0L3AH+uzjTAcwIpIXDm4n+5lI/g/vFe7PS8+fb5zWeTvztiOcHufiK/tINfaYMOaIYiokTBUImcLzQIok3sfNfgbUjZMcZDhnXl+W6rMwFUlM/FarKNUqm/Jp+UgzDTfY6Kdv9PpLfTyX1dr+VbCp3G4o0prwqv2l0v9JeL+UaXX+T+dX9vNNayiUjTFJNm+7FBgawWyWL5/1pLpT4SdebrKkqT/kuEMNp9vkZV5NvVtJZio/3zkina+rLvX75NS19KLRJhWbX37Z40oDu/3atBd74w9zPd2ZdSbbynhM3D0j+v10apDz356a4SilV9XUK+jgzWq7mqDIh/2mk7wOou4912cXPf05+BZoP78A0+RHq5nw07FuFdH+pHJ04tn8Tbt1oxQO3X+svxfBdJ65iPFQoQiP39EJpjWdW9erAH1/b6142Yp3lJtU2zroEGrH93mnOe1PyyhvEsI9+32nobD6GTffcBqvlG7ieLXYDv3k6VPddtHWBn3S9ydIXWiACH9dkXY9f+X3CUjPeeNHT9GnGY/88s3dGel1z8ROl5i+Kp8v6n2z48KR7i2kRpvNv1z9Tj7UzvvqQdzQjcR9LjZ8bMhyn3sJ6T++BnO9hYWqPTMK5qOWvAOZFgZ4C6l+8fbcS9NxLX8tt1mLvr325pdhoFMu+/4zOde6WFFPfrVXDW87bUiy3eJQ3+NbWXl+iOJpy2druqyMvtUjit49iJG5kES3qYln1fpPfZ8517tbjvKp+WuR7H0C/azpqvC3upgKJFyn8vxU66rx/o3Kre48/YanBc9VRvP/Y2t7DsE31HhM+xdbe77IG1RXH7JK6Hhnob1F99cZcYO0XQLniLWzFcwZ6pLVLpdnyd7L8+Sm+eyL8sSg/tYwTBUImwMC9f9oWEbSrAyXXB4MquHJ+UPgu6/oDuc2q6jJjloqrj0sN9fWStapYEt0UXR+spvxeAUH/Z0EPW1uk4izPF4/v+6nv91y2VOf/mrEewIKrIwP3gL18PvNMOVKZtU5qaGiQrKXeriCm3DJ2N/Ij2lJT6P3hLRp38kprpKa2NqmtrUmqKs5RthmzS3T849EudbS1SMerCiUxpIFiAmOWVH68Qero6PtDzVrs7TJjyimWjov3ZX2dVRJP9VXyEVcq/ZyZ8K5i4B5eb90dTR24F/TZL093LO4Kq/sjqj5g1B82veYtuu+3KIk+2oU53g9Sb+BplHKLq3T8hdX331GHVf2FH9h7zVKgs/so+uYbeIs6cBf3qPRuCx04Cz2lsDfVSHlZJiUY8v4Nm6T8UvZr7++9YG+xSgXZ/j7/xN+10SwVlOnbTx1zeN9Xvp955n4+2xqqC72NQKrvX6MlV6qqj46/7Dj5DSIqx4kCFKBATAl0tjai4bToTSyGoTAYUjBpajpH4YmpM8jC6l1A/huu/8dZJ4M9PgXTrpnqd7QovTv5q7/D1oqGhtPO+ynsdjtGp1yOqeIzkEMF+tMKdl0nGk81oE2MXhYvRFPSJiE9NXrGdGXgHuz5ZHoKUIACFKAABShAAQpEQICjykQAnYekAAUoQAEKUIACFKBAsAIM3IMVY3oKUIACFKAABShAAQpEQICBewTQeUgKUIACFKAABShAAQoEK8DAPVgxpqcABShAAQpQgAIUoEAEBBi4RwCdh6QABShAAQpQgAIUoECwAgzcgxVjegpQgAIUoAAFKEABCkRAgIF7BNB5SApQgAIUoAAFKEABCgQrwMA9WDGmpwAFKEABClCAAhSgQAQEGLhHAJ2HpAAFKEABClCAAhSgQLACDNyDFWN6ClCAAhSgAAUoQAEKRECAgXsE0HlIClCAAhSgAAUoQAEKBCvAwD1YMaanAAUoQAEKUIACFKBABAQYuEcAnYekAAUoQAEKUIACFKBAsAIM3IMVY3oKUIACFKAABShAAQpEQICBewTQeUgKUIACFKAABShAAQoEK8DAPVgxpqcABShAAQpQgAIUoEAEBBi4RwCdh6QABShAAQpQgAIUoECwAgzcgxVjegpQgAIUoAAFKEABCkRAgIF7BNB5SApQgAIUoAAFKEABCgQrwMA9WDGmpwAFKEABClCAAhSgQAQEGLhHAJ2HpAAFKEABClCAAhSgQLACDNyDFWN6ClCAAhSgAAUoQAEKRECAgXsE0HlIClCAAhSgAAUoQAEKBCvAwD1YMaanAAUoQAEKUIACFKBABAQYuEcAnYekAAUoQAEKUIACFKBAsAIM3IMVY3oKUIACFKAABShAAQpEQICBewTQeUgKUIACFKAABShAAQoEK8DAPVgxpqcABShAAQpQgAIUoEAEBBi4RwCdh6QABShAAQpQgAIUoECwAgzcgxVjegpQgAIUoAAFKEABCkRAgIF7BNB5SApQgAIUoAAFKEABCgQrwMA9WDGmpwAFKEABClCAAhSgQAQEGLhHAJ2HpAAFKEABClCAAhSgQLACDNyDFWN6ClCAAhSgAAUoQAEKRECAgXsE0HlIClCAAhSgAAUoQAEKBCvAwD1YMaanAAUoQAEKUIACFKBABAQYuEcAnYekAAUoQAEKUIACFKBAsAIM3IMVY3oKUIACFKAABShAAQpEQMAQgWPykBSgAAWiWqCztRGn2+xDLmN8yiRkpCYOOR9mQAEKUIACFJAFGLjzfUABClCgh8D7L1tgXFvZY23wi8a8ahxdNz/4HbkHBShAAQpQwI8AA3c/KFxFAQroWcCBho/P+gBYsnMxb+ZEJIi1504dwvotRcp2c04elkxNxLlz5/DJR+9hyzbvtumJ8Uo6zlCAAhSgAAWGKsDAfaiC3J8CFBhmAh049a7VWSdTTgn2bLwX6areLo7aBJ/Afcm/rsGq2d4Em7f8EDsemYbV3vh9mPnEUnVsOFzxV0y5eSEyvKcolirAslKAAhTwEeDNqT4cXKAABSgAZ8s6YMaPegTtsk2HvcuHqMve4bOMxKlY9cNS33VciohA7e4nsOC2x/Dh0G9XiEj5eVAKUIACPQUYuPcU4TIFKKB7gbaTgsAi+rkPtpV26kLkiSxOduqeMmIAtmO7MGv5TnH86WCHpYidBh6YAhTQWIBdZTQGZXYUoECsCyTj3ueLkWKfN4S791NxT1kBxon/OGko4HBA/i1kkP/r59vL0ViBFcaV7gMnIz5JwzIwKwpQgAIRFOjnoy+CpeKhKUABCkRQIGPhMjw4xOPPWLwKM3rl4UBtxSvYUfhzVFjPYvz48UiZfC2WLH0Iy+6cj+Re6cUKhw21f6zEL378Eq7b9Es8KPrTNx+rwP/8zx5UvHsabW1tuNb0ANZlP4gZ7gw6m2vxq//5BcoqzmLekivx9qEWmLMew70Le5eotbEWB39Xgg0r/4Ei+w7MttVi1/M7sHXjNkzPzkbbtgpMzl2PH2QvU/LvXcxg6+VAY+0fsXfH97H25APo2PcgGg5sxyPrK7Dg3kn4sONL2L75XqS6D9R87AAKni/Axp3qLkhGWES58nKWIUP1TdZ8bC/uNy6Fd0ygImzYOBuLLhM3FuNK3PFZG/7rxSOYMmW8K/eODlz3tafw4Px053Lrkd34961/wHjPdnSg47I7kLtucY/zE1wdHOKcvFK4Az8vrsBZcd7FmRfnbQkeemAZ5k/1e+Z7M3MNBShAAYkTBShAAQoELNBmLZDEN4fyL7+mJbB9O+qkPLN7P6NZys6yKHk48zNmS9VNdiWvtvpqqSA3SzKqjlVQZZVKc02++ynbs6V6sffxktw+tkPKKZNTyFOTVFaQI5mN3nqIPv1SYUmBz/HU9RR9h6SqBm/5XPmI/wdRr44Gq1SSnyOZlDKL42cVSGWF2b3KXHi8w3mI6gKvU05BqXS8vl6qLs7xpjflSw1KYUT9i3vn5a2HSar4W51UVZLvU09TXrWSQ0tdjVRamOezHaYCyXOWB1OHurI8pbzmrCzJYlK7Q8ourJH8yCpl4gwFKEABjwA8M3ylAAUoQIGBBQYVuNvrpBx3kGzOK5dcIakk2ZuqpSx1EItcZ/Atl8IqglmT2X+QbsktlKpqakTAqwpg1fmYsqWSqhrpeE2pZFGvR44r/47jUn5OrpSbbVYCSiW4NVqkgpJSqUwE8b77ysGmt3xOqSDrVV+a61sn1Q8Ho8noUxY5cO84XqisM+VW+ZwcdYCeXer5QSJM5Qi4rVoyK/U2S9Ut8kq72OYNj2vyvXU359f45C0vNJWrfgCJwL3NnSLYOtSXec6RRSqvV868VF2YpdRNts8pU//86FUcrqAABSjgFGDgzjcCBShAgSAEBhO4V3uCREuxErR7DqkOTuUALqukzrPJ+Vqd5w0wAZNUYvW0/bqS1ahapOX9zXllvsdoqlIF4Capymf34z4/HEzZJUrLsiv3Jqkwyzegzi1vUso32HrVlfi2ipsKXIFzQ3WJlCNapHMLyp2Bsjq4hrDzBM9yATqsqqC+Z+DdUaOqs1mqUe/oLr1V5eYvcO9QX1lRBe6eygdUB/EDwnN1odDqCdo9OXRIhRZ1y3u2VOf9XeFJxFcKUIACPgIcVUZ803GiAAUoEDIB22FsWevqm51lng10tqK11fPPBntSms+h3z/e6LM8epy3/7M5Px/3zvb0/HYlu/7mW7zpTfkoFH2xfQbDSZ+H20Tzs2uqxF9OtnoWxOtk3KRsA+566A6lX7krUToe/MkeZKv22Fj4G9jk5SHUa/Kn5nhzNOagcFWmczlj/r3YvGMHNqxa5OxPPuWGm5V0xtkzfPqYG1RDxVRWvO0qk5J66DMDjSAZSB3eL9zi7mufjblX2mFTznsrbJ12XD5BXc6jOKU+NepNnKcABSjgFlDd0kMTClCAAhTQWqD57d/Bc0vlzqVGyAMU9jdVbvwjWjcs7BFAe/boHU4mXvlPYsR5uI6RkuBnJJze+3hy6/Vqd/RaBcNMrCrMwraV7pI3dEFONZR62aEaC3/6VPj+dPEWIX3ht9Fg/SI+bI/H1XPEjx7n1IlTR97Cnh2/8CZs886Ga27gOjTijRc9Z34bjGnbBihaJd78eysWpfv+MBtgJ26mAAV0JsDAXWcnnNWlAAXCK/DhOzXuAxpRUL4T8y5TNRWrimJ3xtfif6Mv92lZViXxP5sU700fogB22tybxLG9PznkL46TWtWr3zIbkDE7ExlyzR2tOLj3ZXx/6VrViDHyhiiY/NXB9jHesrrKZswqwM7H5iHe728oO+x2+T0hWuCv815diYJasQgUoEAUCjBwj8KTwiJRgALDR2D8tLmiMnLLq4ji0ucgUwznGGuTT+uyu/Dhq5cNh3f/FFnL18uCMGUXwPrUw7j2bBGSZnnGao9CURGLe8Jw6+kEzBE/QGLvzEehK4tEAZ0LMHDX+RuA1acABUIr4BDjgHumUw0twGxn+7FnVUy+yl1lwlOvZuy4ayJWu3uc5JXVYd1i11j0to9V3W2iXfHkhxBn3nXlINrLyvJRgAJRLcCbU6P69LBwFKBArAucq39XqcKWZ18b4CZKBw7u2I6KU/LzQaNoUnfxmHOFsyU59PVyoGLT/UrQnlV8XAnag5PxtHsHt9eQUwsz5028ckbWjdh7RFnym7XjVAW27zrofDKs3wRcSQEKUEAIMHDn24ACFKBACAWmz1/kzb1yNQoP9z10SGPFFty6ei0+8DbSe/eN4Nxff7NHOXre1xY6b4ANeb0cdXhtY6X7uCbc/6WZShnkGZ87BVJ8NvVYKMLf+4+ZgQSf3Jz7x8cn9MgnyMXkKVgkxoL0TGufKETfZ/4Uttx5G9bu+9CTnK8UoAAF/AowcPfLwpUUoAAFAhPY9/f+o+zUubdDPGRJmdYu+AJ2HfYd8lHeeOrgdky+baN4QGkxvjYzmN7QqqCz3wBWKUKfMwnxfnpP2o7gx0oAnQvLfNeoJ5rVq68yd7TjpFLSSrwjRlxRT6dPnvIulpZ5W7flterWbjHmztVp3qTeOW80X1r2lu/+Yul3v9jnTSpG61Epe9d75vzWIR1f+YbqzFeuxRdW7UJjz4F7Ok9h+4pp2Cg68Bc/czf7wXtM+UoBCvgVYODul4UrKUABCvgXaKg55LPhrilJPsu9FsRwio8XW1SrrVi5YDIWPb4dBw4exsGKvdi0YhGm3bpWpDGiLO++voM3Py3DaGlw3rTpPEDpIdT3DAx7hJx+g3N36V54/rc9umo0Y9ejc5XhLPOrH/P20x5CvXyC4DbX8JIqIL+zaxesxN6DR1Bbewz7t6/CNPMWbzrj9fj4VC327jrgatVOGo1JytZSbN15UPTJd+DY3qcQF7cKtcLoynmqKyGlq/Ho9gq0dnaisfagOB+3wLzF3bFezqd0H351+ITIwTsFUocZdz/m86PNunMlJsffhWd3H8Dhwwexd8cmLEqahrVF4sznlOG+oH6wecvCOQpQQEcCPo9j4gIFKEABCvQWsHdILU31UnVJvvIkTPE14XpkvdEiFZfXSA1NLVJHn0++bJGKs9RPyfQ/X1jtfSqpXIi2+iqfJ5vClCtZW7xP4LS31UvF2SZXOdzlySmu8T5hVJS7vrrQp8zGrEKpTsmjTSo0+5bFaMmVysrLpbJS8RRTk3dbdsnx3i7iOatB1UuUp6m+Rsoz+z6NNbuwSmpq65B8+Tqkkn7MsnN9n77qOh/iKalOHrGvz1NJvfXI8tSjw+pr6zmf7te84gLJ3GOdMbdckoKqgziH1mKf86O8b9R5i3Pie+b9UHMVBShAASEAKlCAAhSgQP8CbTX5AwdfIhDLr2npJ6M2qbwgy28+RkueVNOkDlv7D1othceljrpCv3m5AkOLdNzeJhX3CMrVQaO5oEaUtUfgbjT7BPmeYLiwukGTelkLLP2U2Y9fR71UkOUb5BstOVJ5XZsoj10qy1H9aDFmSeX18nrXZK8v61EXo5RbYvVsdr52NFRJ2aofJ876inxKrSIfu9W5v9GSLRWXVUsN7h87QddBHKmjvlzKMnp/PHjPg1HKK6np8YPFp4hcoAAFKOAjECcviQ8RThSgAAUoEAYBR2sjjovhAe3OLizxGD9lGqamR2jkE9GXe9ddKVjp7hVSeLwDD15jx6lTTeiQnwgVn4JpMzL67rqj8gplvWzNjbDJxUlOQ3qyb/9/W3MzOg2JSE1N7v3UWIfNWRcHkjBxagaS/XThl6vQ2ngKLR0OGJLSMDkj1Z1PJ5qb7UjX7Nw4RDec4/jwnDjzop9N/OjxmHbN1D7LpKLlLAUoQAFFgIG7QsEZClCAAnoT8A3cxRUDrMl03XyqNwnWlwIUoEAsCPDm1Fg4SywjBShAAQpQgAIUoIDuBRi46/4tQAAKUEC/Ag74Pn+0j74k+gVizSlAAQpElQAD96g6HSwMBShAgTAKOP6BQ6pRDzvt6gEPw1gOHooCFKAABQIS+P+1IaxIarieNAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 7, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename=\"table/table-interp.png\",width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure Table**: A rock with $\\lambda$ known only at a sequence of discrete temperature\n", "values, from experimental measurements. The function $\\lambda(T)$ can be\n", "represented approximately using linear interpolation (and the resulting\n", "approximate function can then be used to solve the problem\n", "numerically.\n", "
\n", "\n", "Then there is\n", "no way to express the rock’s temperature as a function, and analytical\n", "methods fail us, since we do not know the values at points between the\n", "given values. One alternative is to approximate $\\lambda$ at\n", "intermediate points by joining successive points with straight lines\n", "(this is called *linear interpolation*), and then use the resulting\n", "function in a numerical scheme for computing the solution.\n", "\n", "As the above example demonstrates, even for a simple ODE such as [1-d conduction](#lab1:eq:conduction1d), there\n", "are situations where analytical methods are inadequate." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Partial Differential Equations\n", "\n", "\n", "#### Example Three\n", "\n", "[lab1:exm:diffusion1d]: <#Example-Three> \"Example 3\"\n", "\n", "The rock in [Example One](#Example-One) was\n", "considered to be small enough that the effects of heat diffusion in the\n", "interior were negligible in comparison to the heat lost by conduction\n", "through its surface. In this example, consider a rock that is *not\n", "small*, and whose temperature changes are dominated by internal\n", "diffusion effects. Therefore, it is no longer possible to ignore the\n", "spatial dependence in the problem.\n", "\n", "For simplicity, we will add spatial dependence in one direction only,\n", "which corresponds to a “one-dimensional rock”, or a thin rod. Assume\n", "that the rod is insulated along its sides, so that heat flows only along\n", "its length, and possibly out the ends (see Figure [Rod](#lab1:fig:rock-1d))." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AezdB9xtWV3f/2OKiaaZGI2JKRqTSBOGIl1mQARmYOgdhl5FhiYo1RkYGMjQlDZShu4IShGkSG8CAwwBZBDSE0liiqaYoonJ/z/vLd/rms05z3POeZ5755653/167bv2ee7Zq3zW2md912/91trf8v9deix6lEAJlEAJlEAJlEAJlEAJHNcE/sRxnbtmrgRKoARKoARKoARKoARKYCJQ4d6GUAIlUAIlUAIlUAIlUAI7QKDCfQcqqVksgRIogRIogRIogRIogQr3toESKIESKIESKIESKIES2AECFe47UEnNYgmUQAmUQAmUQAmUQAlUuLcNlEAJlEAJlEAJlEAJlMAOEKhw34FKahZLoARKoARKoARKoARKoMK9baAESqAESqAESqAESqAEdoBAhfsOVFKzWAIlUAIlUAIlUAIlUAIV7m0DJVACJVACJVACJVACJbADBCrcd6CSmsUSKIESKIESKIESKIESqHBvGyiBEiiBEiiBEiiBEiiBHSBQ4b4DldQslkAJlEAJlEAJlEAJlECFe9tACZRACZRACZRACZRACewAgQr3HaikZrEESqAESqAESqAESqAEKtzbBkqgBEqgBEqgBEqgBEpgBwhUuO9AJTWLJVACJVACJVACJVACJVDh3jZQAiVQAiVQAiVQAiVQAjtAoMJ9ByqpWSyBEiiBEiiBEiiBEiiBCve2gRIogRIogRIogRIogRLYAQIV7jtQSc1iCZRACZRACZRACZRACVS4tw2UQAmUQAmUQAmUQAmUwA4QqHDfgUpqFkugBEqgBEqgBEqgBEqgwr1toARKoARKoARKoARKoAR2gECF+w5UUrNYAiVQAiVQAiVQAiVQAhXubQMlUAIlUAIlUAIlUAIlsAMEKtx3oJKaxRIogRIogRIogRIogRKocG8bKIESKIESKIESKIESKIEdIFDhvgOV1CyWQAmUQAmUQAmUQAmUQIV720AJlEAJlEAJlEAJlEAJ7ACBCvcdqKRmsQRKoARKoARKoARKoAQq3NsGSqAESqAESqAESqAESmAHCFS470AlNYslUAIlUAIlUAIlUAIlUOHeNlACJVACJVACJVACJVACO0Cgwn0HKqlZLIESKIESKIESKIESKIEK97aBEiiBEiiBEiiBEiiBEtgBAhXuO1BJzWIJlEAJlEAJlEAJlEAJVLi3DZRACZRACZRACZRACZTADhCocN+BSmoWS6AESqAESqAESqAESqDCvW2gBEqgBEqgBEqgBEqgBHaAQIX7DlRSs1gCJVACJVACJVACJVACFe5tAyVQAiVQAiVQAiVQAiWwAwQq3HegkprFEiiBEiiBEiiBEiiBEqhwbxsogRIogRIogRIogRIogR0gUOG+A5XULJZACZRACZRACZRACZRAhXvbQAmUQAmUQAmUQAmUQAnsAIEK9x2opGaxBEqgBEqgBEqgBEqgBCrc2wZKoARKoARKoARKoARKYAcIVLjvQCU1iyVQAiVQAiVQAiVQAiVQ4d42UAIlUAIlUAIlUAIlUAI7QKDCfQcqqVksgRIogRIogRIogRIogQr3toESKIESKIESKIESKIES2AECFe47UEnNYgmUQAmUQAmUQAmUQAlUuLcNlEAJlEAJlEAJlEAJlMAOEKhw34FKahZLoARKoARKoARKoARKoMK9baAESqAESqAESqAESqAEdoBAhfsOVFKzWAIlUAIlUAIlUAIlUAIV7m0DJVACJVACJVACJVACJbADBCrcd6CSmsUSKIESKIESKIESKIESqHBvGyiBEiiBEiiBEiiBEiiBHSBQ4b4DldQslkAJlEAJlEAJlEAJlECFe9tACZRACZRACZRACZRACewAgQr3HaikZrEESqAESqAESqAESqAEKtzbBkqgBEqgBEqgBEqgBEpgBwhUuO9AJTWLJVACJVACJVACJVACJVDh3jZQAiVQAiVQAiVQAiVQAjtAoMJ9ByqpWSyBEiiBEiiBEiiBEiiBCve2gRIogRIogRIogRIogRLYAQIV7jtQSc1iCZRACZRACZRACZRACVS4tw2UQAmUQAmUQAmUQAmUwA4QqHDfgUpqFkugBEqgBEqgBEqgBEqgwr1toARKoARKoARKoARKoAR2gECF+w5UUrNYAiVQAiVQAiVQAiVQAhXubQMlUAIlUAIlUAIlUAIlsAMEKtx3oJKaxRIogRIogRIogRIogRKocG8bKIESKIESKIESKIESKIEdIFDhvgOV1CyWQAmUQAmUQAmUQAmUQIV720AJlEAJlEAJlEAJlEAJ7ACBCvcdqKRmsQRKoARKoARKoARKoAQq3NsGSqAESqAESqAESqAESmAHCFS470AlNYslUAIlUAIlUAIlUAIlUOHeNlACJVACJVACJVACJVACO0Cgwn0HKqlZLIESKIESKIESKIESKIEK97aBEiiBEiiBEiiBEiiBEtgBAhXuO1BJzWIJlEAJlEAJlEAJlEAJVLi3DZRACZRACZRACZRACZTADhCocN+BSmoWS6AESqAESqAESqAESqDCvW2gBEqgBEqgBEqgBEqgBHaAQIX7DlRSs1gCJVACJVACJVACJVACFe5tAyVQAiVQAiVQAiVQAiWwAwQq3HegkprFEiiBEiiBEiiBEiiBEqhwbxsogRIogRIogRIogRIogR0gUOG+A5XULJZACZRACZRACZRACZRAhXvbQAmUQAmUQAmUQAmUQAnsAIEK9x2opGaxBEqgBEqgBEqgBEqgBCrc2wZKoARKoARKoARKoARKYAcIVLjvQCU1iyVQAiVQAiVQAiVQAiVQ4d42UAIlUAIlUAIlUAIlUAI7QKDCfQcqqVksgRIogRIogRIogRIogQr3toESKIESKIESKIESKIES2AECFe47UEnNYgmUQAmUQAmUQAmUQAlUuLcNlEAJlEAJlEAJlEAJlMAOEKhw34FKahZLoARKoARKoARKoARKoMK9baAESqAESqAESqAESqAEdoBAhfsOVFKzWAIlUAIlUAIlUAIlUAIV7m0DJVACJVACJVACJVACJbADBCrcd6CSmsUSKIESKIESKIESKIESqHBvGyiBEiiBEiiBEiiBEiiBHSBQ4b4DldQslkAJlEAJlEAJlEAJlECFe9tACZRACZRACZRACZRACewAgQr3HaikZrEESqAESqAESqAESqAEKtzbBkqgBEqgBEqgBEqgBEpgBwhUuO9AJTWLJVACJVACJVACJVACJVDh3jZQAiVQAiVQAiVQAiVQAjtAoMJ9ByqpWSyBEiiBEiiBEiiBEiiBCve2gRIogRIogRIogRIogRLYAQIV7jtQSc1iCZRACZRACZRACZRACVS4tw2UQAmUQAmUQAmUQAmUwA4QqHDfgUpqFkugBEqgBEqgBEqgBEqgwr1toARKoARKoARKoARKoAR2gECF+w5UUrNYAiVQAiVQAiVQAiVQAhXubQMlUAIlUAIlUAIlUAIlsAMEKtx3oJKaxRIogRIogRIogRIogRKocG8bKIESKIESKIESKIESKIEdIFDhvgOV1CyWQAmUQAmUQAmUQAmUQIV720AJlEAJlEAJlEAJlEAJ7ACBCvcdqKRmsQRKoARKoARKoARKoAQq3NsGSqAESqAESqAESqAESmAHCFS470AlNYslUAIlUAIlUAIlUAIlUOHeNlACJVACJVACJVACJVACO0Cgwn0HKqlZLIESKIESKIESKIESKIEK97aBEiiBEiiBEiiBEiiBEtgBAhXuO1BJzWIJlEAJlEAJlEAJlEAJVLi3DZRACZRACZRACZRACZTADhCocN+BSmoWS6AESqAESqAESqAESqDCvW2gBEqgBEqgBEqgBEqgBHaAQIX7DlRSs1gCJVACJVACJVACJVACFe5tAyVQAiVQAiVQAiVQAiWwAwQq3HegkprFEiiBEiiBEiiBEiiBEqhwbxsogRIogRIogRIogRIogR0gUOG+A5XULJZACZRACZRACZRACZRAhXvbQAmUQAmUQAmUQAmUQAnsAIEK9x2opGaxBEqgBEqgBEqgBEqgBCrc2wZKoARKoARKoARKoARKYAcIVLjvQCU1iyVQAiVQAiVQAiVQAiVQ4d42UAIlUAIlUAIlUAIlUAI7QKDCfQcqqVksgRIogRIogRIogRIogQr3toESKIESKIESKIESKIES2AECFe47UEnNYgmUQAmUQAmUQAmUQAlUuLcNlEAJlEAJlEAJlEAJlMAOEKhw34FKahZLoARKoARKoARKoARKoMK9baAESqAESqAESqAESqAEdoBAhfsOVFKzWAIlUAIlUAIlUAIlUAIV7m0DJVACJVACJVACJVACJbADBCrcd6CSmsUSKIESKIESKIESKIESqHBvGyiBEiiBEiiBEiiBEiiBHSBQ4b4DldQslkAJlEAJlEAJlEAJlECFe9tACZRACZRACZRACZRACewAgQr3HaikZrEESqAESqAESqAESqAEKtzbBkqgBEqgBEqgBEqgBEpgBwhUuO9AJTWLJVACJVACJVACJVACJVDh3jZQAiVQAiVQAiVQAiVQAjtAoMJ9ByqpWSyBEiiBEiiBEiiBEiiBCve2gRIogRIogRIogRIogRLYAQIV7jtQSc1iCZRACZRACZRACZRACVS4tw2UQAmUQAmUQAmUQAmUwA4QqHDfgUpqFkugBEqgBEqgBEqgBEqgwr1toARKoARKoARKoARKoAR2gECF+w5UUrNYAiVQAiVQAiVQAiVQAn+qCI49gY997GOL3/3d3118y7d8y+If/IN/sPh7f+/vLf7En/ijMdSf/JN/8thnqCmWQAmUQAmUQAmUQAkc9wS+5f+79Djuc7njGfzABz6w+MIXvrD4/Oc/v/izf/bPTqL9O7/zOxd/9a/+1cV/+k//afH1r3998b3f+72L//7f//viHve4x4J4v+Utbzn9/Qd+4Ad2vPTNfgmUQAmUQAmUQAmUwGEQqHA/DIpL4vjDP/zDxTvf+c7Fu971rsW/+Tf/ZnHd6153EuME+z/7Z/9s8bWvfW3xj//xP17883/+zxd/7a/9tUnE/6//9b8Wf+7P/bnFv/7X/3rx3/7bf5vO008/ffFbv/Vbix//8R9f/L//9/8WV7rSlabQAKBHCZRACZRACZRACZTAiUOgwv0o1DXL+nOe85wFa/m9733vxSWXXLL4J//kn0xC/bd/+7cX3//93z+5yPz9v//3JzcZLjMEvO8Q9IQ9azyR/23f9m2Lf/tv/+3iz/yZPzPd/+3f/u2L7/7u7178wR/8weKJT3zi4j//5/+8uMlNbjKJ/O/4ju+YRH3cbo5C0RplCZRACZRACZRACZTA5USgwv0QwbOgP//5z18Q5ze84Q0XJ5988oI4/yt/5a8cSYXg/qf/9J8eEfLuYVH/23/7b19GzP/pP/2nF//yX/7LI99zz1/+y395QZz/hb/wFxb//t//+4XvXHTRRYurXe1qi8997nOLM888c/F7v/d7i0c84hHTvazzvtOjBEqgBEqgBEqgBEpg9wlUuB9CHfJNP//88xef+tSnFj/5kz+54PLCeh6BzgJuAWos7K7/5t/8m9PiVMn/n//zfyaLOxEfyzzR/tf/+l+fxHwWsLK+c6PxvZx/8S/+xcX3fM/3TAJdPP/xP/7HxX/4D/9hygORL+273e1uk7iXTyL/L/2lv3QIpW4UJVACJVACJVACJVACx5JAhfsBaRPDZ5xxxuJHfuRHFg972MMWXFnmhwWoRHxO4pyLy9/9u393EvQR9T7HQs6f/V/8i38xCfSI+bjQEPIGAUI+8XzoI+S52vz5P//nJ795fvD/83/+z2kBrDz8u3/37xbXuta1prR/5md+ZvHRj350cf/733/6zt/6W39rnu1+LoESKIESKIESKIESOI4IVLgfoDII6ac85SmTC8u/+lf/anJhIcLHkzV82UFQR8jHMs+abneZ8X4CnWuMwwZAvhMhn5DVfRTzcaUZxTxrvbwYWPzX//pfJ2v/Zz/72cn1hvB/0IMeNPnJ/+AP/uDi+77v+6Y0XWcgsawM/VsJlEAJlEAJlEAJlMCxI1DhviXr97///YuXvOQli8c+9rHT4lDRWEQ6inHXBPooxF0Txn/qT33zFvr/9//+38k3PUI+cbGquy+uNkI70eSIxT1CnmC3mNX3iG8h95jf+Z3fOWLBZ5m37eTf+Bt/YxLzdsGxk42FtNxr/sf/+B+LW93qVouLL754GpwYMFzlKleZzu5oE/INS6AESqAESqAESuDYEahw34K1fdkvuOCCxbnnnrv4O3/n7+wZAzEcAZ6Q0OaaMhf0XFyWHVxc5mLegCBCPqLegCA7yli8Ogp519xvRsu8xa7yl60pCX5WfVZ/gwWHwQi/efGJ+3//7/+9uN/97jd9tvj1qle96uKHfuiHpt1v7I7TowRKoARKoARKoARK4OgQqHDfkOuXv/zlxU//9E9PApbrCfHsjCCOW8te0VpEyn89Ql7I7ca9czG/ytWG4CbGE4drAp94j5BPXLGQs7hHzCc0AEjehbag9DcinqD3PTvhGGgYWBD//+W//Jcpv/z0zRwQ+de73vUmX3r71RPz17nOdSah/63f+q17oej/lUAJlEAJlEAJlEAJrEmgwn1NUL5GtPNpf97znjftxR5/c+I2J3E7F/PE8DrHQV1tWMMNACLmMyCwJ/wo5uUvW1TydyfSI+SFBLnvE/JObjlcZ8Ttu06fbWGpvCzxtqH0d4tgiXVbYX7kIx+ZFuBe4xrXOBKXtDOQWIdJv1MCJVACJVACJVACJfBHBCrc12wJtlh8yEMesnja05427cyy6jbiOyI+YpgLyVzM2+pxneOgrjZcX+wTT8TLT0JiW55ilRdmi0qiPHmPqFd+u964h5iX/9///d8/so2l78krMW/mQPx23LGtJTebWOttlcl6f9JJJ03xiI/LzbLdeNbh0++UQAmUQAmUQAmUwIlCoMJ9zZq2fSLL82mnnTaJU8J03YMVei7mieOIYKGT6F3HT/wwXG3226JSfoj5bFFJpBP9EfJCvvp8/FMOC10tsPUWWP/v/N3f/d3pOxa/ssTjQOArgxkCoYW03/Vd3zWJedtqenmVt8P2KIESKIESKIESKIES+GMCFe5/zGLl1Qte8ILFr/3ary1udKMbTeLVm1G///u//zLWaiJ3ExeQ+KgTtxHExDShzKIdMS+dZTvQLMvsQV1t+LbLS6zywr22qCS6813lIMpZ2C1uVQZlcVx44YXTAtd73OMek4j/yle+Mr3xlUXeAlnWeC47LPPY+ru/icO+8ze5yU2ms/7yy2q9fyuBEiiBEiiBEjhRCFS471PT7373uxdvfvObFy972cumnVN83WJNVuWIXCH/7/iSj+4n/rbuwY1EXKOY//rXvz5Z4kcxL35W6nWOg7ra7LVFZazy8uPajITvW3j7+te/fvGOd7xjcetb33paNGtQwdc/3xUS9mP+CH/lN1BRPgLeglqC3jX3nB/7sR+bZiVufOMbL25+85tPAn8dDv1OCZRACZRACZRACew6gQr3PWrwN3/zNxdPetKTFi9+8YsnK/IeX522USSyRzFPiNqFhUgdTy4x67rasGrH9SSinjAmkkcx7zpbOO6VT/8nzoPuamMHmwjtlJnF/va3v/2CP7z/e+QjH3lkPcBevvajmHdtf3kDoTF+Fnkvg7IfPau+NCyi5VZjlxtbUro+9dRTJyv+Oi5H+3Hq/5dACZRACZRACZTA8USgwn1FbRCh55133rS1Ib9rQnmbg7iMsE14UFcbgwFvao17CoHrJGrnYp4ryrrHQVxtWMXttqOMXFsIb6fda5KnhN70mmNdX3szF8ocMS80UBIXX3nC3n7zBiU4EPlXu9rVFte//vUXt7jFLdZeP5B8NSyBEiiBEiiBEiiB441AhfuKGvngBz+4OOussxZcMghQbiyj1dy1PdNZhzc9jparzfgG1Yh5bifxlxcSz5sMQkZXlgw85i+Q4gLzwhe+cHHXu951OolmR6zsGWAktOtM8pJwHGCs62tvYSzLe/IlVFfcbLjsyDtXG+Ker/4pp5wy5cmsALcbA7IeJVACJVACJVACJbArBCrcl9QUsffABz5wsiD/wA/8wPSNVQKW28tc0K/rsjImTeQeDVebuK1EyAsNQmL9TpitIMc8rboeXW3e+973LrxJlqvK1a9+9SODBPGu4sCyHxEvdBL7yYvQaaeZHHv52uNvAJB6YIEn4pU1YRbCsspb5Ergi9/fr3nNa04vkLr2ta+98AIpbjbrujIlfw1LoARKoARKoARK4GgTqHBfQvinfuqnJjeLM844Y8n//vGfRgE7Wn25akREJtzEyv3HKSwmP+4xbtcHdbWZv3RJnLZtNEiJBVy434zCBRdcsHj/+9+/eOlLXzr5mUeMZ5CwietOBhgR8kJifRTz8mTLyfHgay//EemuWewj5BPapWZcUOz7OBLxtqo0cOCKI37/d8c73nGyzj/gAQ+Y9pjPAG5Mu9clUAIlUAIlUAIlcCwJVLjPaHOReec737l4/vOfv7XVdZmv+PHuakPsRnATzQSwchDvBh8R0AQssfva17528fnPf37x9Kc/ffIpn2GcPh7UdcdgIoOBhCzkscgT5a7nswVmRyLkExL4KUvEPJE+znL4roWvyvdt3/Ztk5DnUuPv3/Ed3zGddrWxGw43Gy44cQtaVv7+rQRKoARKoARKoAQOk0CF+4zmK17ximn7R24eEasRiHNr7+zWPT/uoqsNlxMuJYRrxDxha6aBaw+fdowIe29DXWcnl1jWxZlzE9cdHCPiExL48pB6kif+76O7S8piQJJT2bKFZ8T8uEWl/PmudFj/rRewMJhYNxAg7v3NzIy/3+Y2t5kGMfbzx2cdHns2mv5nCZRACZRACZRACQwEKtwHGF/+8pcXz3zmMxdveMMbpl1KIlYjEIlGAi8ngbjJ1o5DUtPlLrra/OIv/uLijW984+IpT3nKEas2cZuXRxHQOVnn19lv/qCuO95CG4FNbH/ta1+b9n4nwiPmhT4T2jmyeNa9EelCgt/3Uw7hfItKW4X+3u/93hTV93zP90z320Hn4osvXtzudreb4rjTne40xeHv3/7t3z5Z8pN2wxIogRIogRIogRLYlECF+0DMvuNElxf7LDu4aUTEE3hO2yBGIEYketvpQVwojldXGwOa973vfQtvkrWTzHj8/u///hFLNiHszH7zowDGaNxBZoxjvN7UdWe813Xyo45SZ7/1W781DbR+8Ad/8Iigj+vPeP+4RaX7lcW2nupZWSLqWevNQKS8vuuzXXMcBi3ywbJ/vetdb3K1+dEf/dEpDoM+swCs9j1KoARKoARKoARKYB0CFe7foHTRRRctzj///IUFl5u4OIwCkXBz2nqQ6wiBFzFP8HGh2Pa4vF1t7In+nve8Z2K0jvBWTu4jWETYJmTRHsW863VcbeLugnFmQwhlLkziIIYjqpftaGOGIy+zipjP/amnhPO62maLSvkk2i+55JJphx0WfuLf3+zAwzp/8sknL777u7972tlGW7IHfo6624REwxIogRIogRIoAQQq3L/RDixGJc5uetObTiJw211gRGeXEgIxQl7os+0HIwyFzlhnv5GNjYJj5WrzhS98YXHuuedOAxozCfMycBfaZLAzWrQj5rd1tck2kRHzEcvcU0YxT9Tb5WZ+5P4IeSFhPa8r99uZZjxyrzJIN2UxaMBI+vzebS+KHxcelneht73ywyfklV1cXLUstNX2LKS1PaVBidkN4r5HCZRACZRACZTAiU2gwv3S+mfJ5R5zr3vda8ECS4CxfhJe40lMbfPCJU0s1ucIzIg9YnAuhOduKJs20cN0tcHmzDPPnCzB97znPaeXGqUMQmdEdyzeysNdaPQn368MmbmI+BVu62rDUm23mDGfBDm3FHkbz2WCeF5XKaddZJQxp3jsNjM/LFxlZX/LW94yDdj44HOrIdqvfOUrT23KzjVmI4j4MX7fI/yVgXsOqzzxLp8Gldqn+rB1pb3zxb1sdmGep34ugRIogRIogRLYfQIV7pfWoS0g7Uf+7Gc/+0iNWjA5ikjXBPFhvXApCYkzAlMaBGZcSUYhbFvCgxzbutqcffbZ06LKJz7xiSuTtytM8h4RaitIrEaRbBC0zmLVJBQBPa+H8BkHVeu42liPEMt68ml2ZMwj5t/7vd+bLFwmzPaWiUPIpcb9qaurXOUqUxrnnHPOZDG/z33uM7kBxUUndW1QYlFr7hMS4Pzw8x3x46XuWeT9v/+Lyw+LPAu9rSl9j/XegMl3tx1gXqbA/VACJVACJVACJXBcEahwv7Q6vHDplre85eJmN7vZnpUTwTQKSW4Vh/nCJRlgwY54iyBmWR0FoutNXVTmhdvP1cbghWXYgGYT67l0xI2NcuSMWI1Qjmjd1GKMz1gHrmP1H8X8OrvasGpHiIe5ciePYT7fXjIsx8HApz/96YW1Eje84Q0XX/nKV6YXWo35EVdcowxKWM+TplA5uPiEi1DbYsEfv+deVnh14/A2WDMMtsXkmuP7d7nLXaZymSUh6pe5CaUMDUugBEqgBEqgBHaDwAkv3Ak3+3C/9a1vPSKENq06lti5kDxsVxsW81G8uY5YjdAjDDd1UVlWVrMAXDj4/dtJh2U4AlboJDA3PUaxmrLgxt0k8aYs6y6ATR4O09XGIGku5gl0bOWPGBeycPP559bykpe8ZPHhD3948ZCHPGQaBMb/XTnHtmGQoqziSJj1FOJhcU/aCeNOld1wuNMQ6/4/p1kPMwXiN/BgcTeIUE9ccp70pCdNbjcEvTxf//rXn9ZibDIDEtYNS6AESqAESqAELh8CJ7xw/9CHPrTgzmAbSEIqwowo29TKPFbhsXC1OVouKsphhx3i8KlPferCwIQAjdgWEobhJXQS+Nsc8Ucf4ycuUxdC8UfgrpvGYbra/MEf/MEkwEcOBDGxTNSzpD/wgQ+cdovZK5+xno9iXj3GMq+crq2n4BLkGN2pItTDx/fxkaZB6MjQZ/mzh7y2LJ/qUr1e9apXnVx4DP7S9u0cpN3WOr9uC+v3SqAESqAESuDYEjjhhbs9yYkeC/0iyoTZ8zvCSMj1Yr5N4CbVdSxcbQ7DReWrX/3qZKF9zWtes7Agc9lB/IVXLMMEaEQ2Xs51fM+XxT++YVX8hC6r+lzM8/HeZEcbaR2Wqw3XlMc//vGT5dq2jhHjoxCPIN9rYXNmU9yPqZDAdw+GiUOY9hc+YS/krx/+QqLdS6LEme+5j5sNyzwxb9AkfYKeu5h9+h/2sIdNbk4EPeu+PBgo9CiBEiiBEiiBErh8CZzwwp0P8LOe9axJJI1VEZE9ilM+yXb3IGRGgbSpj/aYjuuj7WqziYtKLMcPeMADpj3G53nd6zNrbUR2hCJxa8CDWbjtJWL3it8WimN9uGZVjrBNnXBpibV6r/jG/9vU1Yb1+lGPetTCC5Ue/OAHj1FNQjgiPqE63mRhc/asz/1CawYipJU5TONWhEV2qQl/rk7hjo88KGs4+r68WQBrkGYQROxLS0j8GyxwqeF2w8WGtV76B233l4HWDyVQAiVQAiVQAvsSOKGFOxcEW+v98i//8r6gfIEAtg1fRE/EEdeCiMaIpIiptSJe8qVj4WqzzEWFqCMab3/72x8RxPHlXpLNff+UN6ASnuGFu8WeEZ7YLXuD6b6RX/oF/ujiVidj/MR74hduE/8qVxt/NyDhYsVnfJ26NhC0OHcU4q61nQw8Eq5ytYkPvLKmzEJuS7k3YWYiYs3HJnzk3ffSVg2kWOuJ9XzHINVe9tYfEPNmEfw/iz1LvYXcn/rUpxYnnXTSJOZPP/30I2+X3XTQtE499zslUAIlUAIlUAKLE/sFTG9729umBXxcA1gitxUcLJYEDxEV4UNMzcX8KkG2bkPMLIB0chJTm4i//dJ66EMfOolcQjdp8OXmXhFRmHBbX+jRmhxeRK00Iraxk842Vt3En7gJXQOuMf6kw/97k8NA4RGPeMS0UDVuKPE3l9/U+bp1bRATzgk3dbUZXX8i6lnfDbiUM/WVAVgGO+Ej/O3f/u0j31cG3yXYx20sXRukEPPKrPzahtkH22AS+wY13M7ucIc7TFZ835OHTTlvUif9bgmUQAmUQAmcKAROaIv7e97znsUb3/jGSbDz2Y7QiWj0edsFquIjiIixCKS5D7h0Yhk9SIM7LFebz3/+84sXvvCFi9dc6ts+DmKyQ0qEZUIuFBGFCblWbHMQfMQ74ZlTOoRiRHZE8bKXHu2XZsqQupCGQQ/3j8QvlMaqAYn6e+xjHzu5ivzET/zEkSTjby7OxG8xa9pR8s3ff52DlTyME27qamOmw73ylDiymDZ1pbyuuUfJb7inDFnnkfz7PiFOoI9ldb96sj2lQYH7WPUNlLg34eb6mte85uJKV7rSkcGN+3qUQAmUQAmUQAmsT+CEFu72JzfVf6tb3Wry+yVwIloIkwiXCLoIniwQXB/zH33zaPuAj/nZxtWGGL3jHe+47372SYelNaIwoXRZ68NKGEtv7tskVAcRlBGL/K3VSepFuOwNqPulw/WEu9BY567zhtVReHMbsWUoC/ko2lelsZc/fvIuXNcf/zBcbTJ4wVF9CQ1ebDeZ+pIn12YMMsMTPkKiPTMXEfR4qafxe0S8QZG6Eg9uFtz6rkEhMc9fH9frXve608uqtJNt6nFVHfTvJVACJVACJXBFI3BCC3cuDw9/+MMXtsFbdkS4jMKRVXi+QJXYIX62OeIDPqZxmD7gY55SnohsYVxtWLG5V7z85S9fuZPMGNeq67hhjGkctquNAcPIi2BUNvUQMenabMY2h/gjQqXj2iJPriLaizScm87IhM0Yt7o+iD+++0fWroniCPGE/Ni5by079oojQl484jDYId5TBqE2RISHi3vMWsSFDMNPfvKTkxWeUI9wFxL3Bk/cbuSPsOd2Q8zf+MY3Xlz5ylfeyl1qWTn7txIogRIogRLYdQIntHC/xS1uMS1MXbXl4bLK5dIxX6BKLIljFI5EzDqLFpelER/tUZwepg/4PE0C69WvfvXiTW960yTO+CMrS05lIcy2PWLpnQvMw3S1MeiIyJYOQcnqTXDKf8pCfI5uQOuUyVtQbfv4yEc+cpqZiWg1ILE2IvELzTZs8lKj1HXiVIaD+uMfhqtNFrXKT+pt1RaVyouFMozlMJg1eFJG7ZerzF3vetfJ3/2SSy45MgDI4JHY93wZOEmLu5mBgoFyxPwpp5wyudusGoSsU5/9TgmUQAmUQAnsKoETWrj/8A//8JG3YUbYbStSid8I7YiX+QJVaWz7kqL9fMAjHqWxjQ/4ve9978XTnva0SYQSTSlLQumPjFxzmTjIcbRdbVi45V99RMxbhEm8j7yIbb7byw4DAts9PuEJT5iswON3MoOR+hayRttaEZ+86dQ1S/K6RwY6iVcZiNv448t7BiSr/PHnackr8RwRntD9sconXLWwNoOM3CtfZiFY0XOvsrKWWy9x9tlnT4NX/Aj1tCWLXn3PPUIzF9pX6ijfszBZmfnfW4CrXao/hwGBbSmvd73rTa5d4upRAiVQAiVQAld0Aie0cL/NbW6zeOUrX3kZKyHRMIpUwoJQ2kakHosFqvEBH8VpfMBHcbqX7/Bv/uZvLvj7v/a1r13Z3n/nd37niPBKWqyy+ISR8CC780g87iQRh8LDdLUhAonglEHIwm1R7chLWYj5Rz/60dN2hwY26xzjAEvcztGVZGS1yeLMTf3x18mr7+zlJhMxLjTYWWblli/1k/q66KKLpufHbAdRfdOb3nTiSoDnSFvKPUKLWeMylHTNyBhsYOi5FGrbZrJsWyoeYt5pluja1772tBPOda5znUnMX+ta15o+J92GJVACJVACJbDrBE544f6rv/qr31SHERax/AkPS6QeiwWq8QEndIgi4V4+4C960YsmK/0ZZ5zxTSz2+gO/71FUScsOKyyoxFeEMEG2yqK9V/z5v1igR6Hn+rBcbcQ/CkT1TWwTqv7v1re+9REL8SoBm7wuCyNuIz7Trgj3MBI6N50tWeaPL88ZIKQeNtntZxtXGz7qL3vZy6btVc1OGCBpGznH2aeUebTsW+uBOTap59FlKGKeS1pmhBI35gYGZjXMfPl/oUGkZ1l6RLy95s2urDtLsawu+7cSKIESKIESuDwJVLgvEe7LKmSZSCWaiNSIJOE2IjULVAmWCGGW0MN6SZHy7OUD/o53vGNyk7H/tjJsKh5HXnkDaUSqMpkVsBViRKQ0XG+7O0/SO5quNurkbne72yT2CL2ISfVCEEZIJtxmv3niMvUdETrOlkTMb7q+gPU6g4PUgwHj2E5da1/r+vvv5Wqjbq0D8BZZ70RY5haU2afkR0jccyeKkBeOM1vzAZt71EPWYGCvHCzwBhsjSwt0szhZ2yfm43LDX95AQtoGZRanb7seJW2xYQmUQAmUQAkcCwIntHDni2sqX+efcxQO+1XA0RSp8ScmVnKyCstf8kroEC/biEZl45bymc98ZvHkJz95wdpOFEmLdTyCNCERxDd5myOiT9wRV8rCfUf8o3Dbdnee5OuwXG2e+9znTuV93OMel6inUFn4dUfIC1mKN/EVv0yEsw/jbElYcb8ZGal/fvSbHLgkvoTSMtBM3OI1EN1kduRjH/vY4qyzzpriMBAh2sWTtinkA7/s4E7zta99bWpzyRPL/di+3W9gMLY9fu7aUtqr0EDLfWmvrPmjW5T4pWewQrTjYUDp2fnc5z63OO2006Y4LZ5V/nve857T/aOLz7Iy9G8lUAIlUAIlcCwJnNDCnYXQAjpCLOKYZT3CIeEmfttzkUpUiH8uUsW9iY+zRjH6Tye/4mctTF4jwta1mnsJFeHy1Kc+9Ui7Yx0V73iyWhJ5EUZCbgf2697mUBa+0aOYd53decbyHFQ8zS23KdcqV5vPfvazi+c973mL11z6Iqp1ZwWI1sSb0MBu5OV6G1ebuG5F3AoJ1dR1wnVf8JT6ImzldawDdSKe8BfK9zIr+tvf/vaJkR13bnSjG03RGgwkn4l3E9cdwj33CQl7MwjamrykrNriOFsQ9x73hP84a6UM3IXkZdxznmuXQannUxwGzJ4H5TVYuMlNbjIJ+Bvc4AYLvvPi2PalbOHesARKoARKoAS2JXBCC/f73//+k2BlZcwxFw6EACE7usQQAT6v24EvE6nEBeEurogR4TYiNQtU5dVJOI0uFxFhyxaoPuMZz1jYXcdLqPY6CEWW5YgioR1U7JKjDDmlte6gYVl6xNZc+LGQpgwRb9vuzjOmuczVxgBF/m9/+9svbnjDG36TtXe8f7/rbV6CtV+c+X8ic26tlvexPXEF2WTQKe4//MM/PDKjkHowO8JdJ3WgnRLT3jp87rnn7rtT0kFdd7S9sW275vpiEJSde+Rp7qZGhGdQnnbr83d+53ceaa/hM850xD/es+gZN3AyoHEoC9ca/L2Iy/qFk08+eRpUjwOJ6cv9pwRKoARKoAQOmcAJLdxtU3f3u9998s3di2tcYiJkCAdiWacfIRnhuq6FVnpEaoR2wrlIFf+mbhHiHoUI0SLvZgOS34iwhzzkIYvXve51W+3TbkBiAWFEkVA5DtvVxlaAI3vXfJhThpRp7lKBw6YH16GHPvShk3BXFqKNtZcwjCgmENXTNsfRdLXh/pF2lDCLhcNIKP/rDjqVMQPPtKNPf/rTCy4y4mGtTj1g5Hqd9yIc1HVn7gajvJ7JzBYkL+rMIDZHdufx/bRX10S378q/AYH6HQfxhDtru8E2QW8nJm4373//+6fnU3v01mEWfe+H8L1NFgQnfw1LoARKoARKYC8CJ7Rw55v74Q9/ePIbjyjTcev097N8xyVmFJTx204ciXMTv+25SCUq4r8r3sS9jUhlkRWfPBMtX/ziF6dFhXz95XU8WSW3PY6Fqw2L58je9WGI7DPPPHNhm1Diy0GQYZZTOiyyRNso5on7USBuyu5oudrMB53Jv0Gn/I8Cdx3f9l//9V9f8P8/77zzpgFN3J3GdpXFo2mrwnUW2B7UdWf+TCqrZzL76qes8iOP4+G580yMJ+u6wYnvCw3K5TFWfCH/fUKfyJeOwbg0zUbZntJCWJZ/bnlmBw4yGzXmt9clUAIlUAInJoETWrjzZX35y18+La6L8Ei4jeU7FuiIvITx2x6Fw34Dg7E57iVSiQqnuImLTSzBn/rUpxZ2lLETyChYXDtGIe/aYGFbd4Bj4WpzUJHNt/3FL37x5Lc9LoYc68I1gZitC9Ne4jakHrBKXW+7cFg6R8vVJvknbJ3KIP8sxMl3wnEGaRTtyrjqyHaNYSNk6Z6zWWch+LquO/KzzNLvmSSkx7yoO8+f/OT0DM3XnKTNutczITRQyQJx7nIG5YR5XLx8Tz4M5LAzQPAyKtcXX3zx5GZjtuPUU0+dXIy42fQogRIogRIogXUJnNDCHSRb/lmgeqUrXekyzA7T8s2aqtMfxUMGBhFIhMMmftsHFakK++Y3v3ny33/EIx5xmbL7wHo9F/OYsC4SSTkjUL4pgjX+kIHOmA5Gh+lqE5E68l8lsr1s6b73ve/ixje+8Rq5v+xXlEW8YzrKxcI61rF6PsjWg8rD0jsyO4xdbbh4ELgR8kLpWBchz0Q9n3oLNFmSN9lKEintac6GlVrc2lIYxef8snQv+wlrAhqD5Ne1QZL4nIlv2cyRQUQWqOZ+eSPcx3vFMa8rnNRz+LsvaSuH+8UjDc+L/5cGAe/vLPTcyz7xiU9MC7v5yxugXfOa15z2mufixoUvgxDP+bKFwZcl0k8lUAIlUAInCoETXrg/61nPmjpRCzTHTn/eYWsQh2n55k4yChnXOukIjuRlE5eYTUQqkfP85z9/Ek23ve1t12rv3C6WLVDlBhEhn3CZYForkUu/dLRdbZaJbD7LhOvtbne7y4g3/A9yfP3rXz8i3lLfBibzeh5fRrRNekfD1SYCmfA0E0FMcvcgVG3JuGwQN3dB2ass8SGPuBVmIfgo5tddCM7qLW8R40IzJ3mWMBfvKkt/rObJj/vtmuT+1Jdw2faWZhmk7V6hk8Ve3m92s5stfumXfmlaUHv1q1994TQI8h0DAXUfbl/96lenWS1i3k494rjTne40bV9pz/kc6mbb2a/E0bAESqAESmD3CJzwwp31zGLEBz7wgdM+zzpep+nsscN3vUxcHYblO81GZ00s6NAjPvjZsmqPeSGY1nWJWSZSxc8SzPJHFJx00klT/Nvs1S5+1ktxjqcyRcQnPJ5dbd70pjctfuM3fmMS7hFuwuzUEv5CLkkHEU0WjI5puOY7HXGYtA46aDgsVxuLl7mVveAFLzjS7riHzAdxBj4GvKnvhMuEbtr8PIxP/shnXAgeNuIe3Xjm8eRzrN7iy2lhrPvFFear2ua4yDt5IrZzX3a1mS8g91y8/vWvnxZ+E+5mCJQjLjrSdi82c9Fv8OK3hhuOwbgtaj1b8uhv/ObNeLDSi6NHCZRACZTAiUPghBfuqvqd73zntODurW9967RVnL9FXKWz1nGOFvF03MvE7qaWb+mtOljc5EH6EfMsgzruiBh5Ie432VOdJfisSxfnEjDEkjQiUv0t5dtWpO6aq42B26Me9ajJGjrWBZE3sscJf1zCX7gp/zEN114OlLYmHOtD/OpDvWxbH0lvU1cbO8iYmfn5n//5b3IbSZwJs2MLXuMpTWWQ/5ybuNq4f3TjwYYbD3E71gFG6ywEN3MWxkLPlfaaOh3b/rLddwym8ywKnZ7T1JPBi0GgQQM3NG8kdsxddHKvl3dlACBtbPz+jAyV3/fMehi0E/MGTma2zJ7ZztVA3BaVGSgpZ1xuUkcNS6AESqAEdptAhfs36s+2iBaRsWpFXCSMNS4W8XT2OladeL6XDn+ZRXwvy7f7xJH7l7npjM1stHZGQOjYs2guAkKcey2OfPjDHz6J1fj3R6SmfMLDFKnHq6sNAfSUpzxlceGFF46YV16Hf9jjRDSN/CMo4wKxMrI9/iP1MaYz1kfazUEHDbKwzNWGK4v2c7/73W9xvetdb/J33yO7K/8rg5JRiB7U1cbzxIo9slEPhGrY5zlYZyG4Qbn8icMpXoPb7L6TOD1Ty3YPIpI/+clPLl7ykpdMszFe3KRNiFP6yUvCUVBLR3o5udEYgKjfCHr3+f2RtzGfZn7MnhlgiEeIt52izOJw/fIb5U2wOSz4XTYgyf83LIESKIESOH4JVLh/o26IMS4zfFJ1ujrBCI29FmVGXKWzdw9xRbyPYnyVuJLOKBZcb+MDTcgQ74lLKC8GAREdGRhkS7q5cF/WTI+2SJXvy9vVxkyD7R8N3jaZtRh5ZdHiKCQNCEbRlvbAcrrtsV99RMyr84MMGuTvta997eKlL33p5KOtPRF8aUsJzThtc6QcecaE2u9BXW08e2MduB4XgqcO1lkIntkJccifUB5Z+vMs4eCab7qXmd3jHvdY3OUudzniSpVZiOQpobpxX+IRjgOMlMP3ncQ816DcIyTq5TEM88wT6p5xoh5ngzLrULS7K1/5ytNg5KpXveq00Hibuus9JVACJVAClx+BCveBPQsVtwBbJLI0enOmjp7FXedP4KWT1IGbkvb/OXXiOt+IEh1pOupYZCMcInyWiau46eRe8WzrA00Uuz+nOPNWVTtbnHHGGYtrXOMakyDbz9IfVPuJ1JSNuNhWpB5LV5vHPvaxkwWShZnVfKwj13vNWoTJsnAu2tIe7BISwZe04t6wLJ79/qY+5oO2+aAhdbJufRCOBnZcZCJytf+xTSoP627iTpk2cYMZyxZeecYSHtTVxsB7zLdrFvbkN3XgOd9rG1B5NdD0LItD/oTciYjlm9/85keeJW1/mRtdypstMwnytAu/Me5LvoTjuhr+9r6fsrjOPe5zEvOe77ATt2treexqQ/wbgDEYaNcEvkGr73AVs3sQwY/ZOnvvpzwNS6AESqAEjg2BCvclnC0O4/9N/OjcdNZ8SlljdYw6epZ5/8f9I9vz6SR1/P5/PAkCokTnmU5aOIornXQ67GXiKu4G6bTdH5/03Ctcxwc6C+5e/epXT+UQj/hi6Y+QEd8oHJagOvKniK4xf64PU6QeDVcbAs4C3V/5lV+ZBMuqOhqZEEjL6ugIjH0u8J9zIr5T/0nrIG/eVB/joC3pjfWR9JYJNC+iOuWUU6a3ge5VHDNOiTttW/niL540PC/a1zZH2n7EqPCgrjZ77RClflMHykEcLzv8LngPxEc/+tHFOeecM4l3eQsPYt5MGwbhsMyNLnH73cm9CRkBIsoTx7grTgb5GQAI1X3uScigkMGdPKor3yXS/Y75DVA/BszcogyWvIhM+bVDgt/vn7i3nZVKORuWQAmUQAlsT6DCfQ92OrZ0cunodG46OgKd6LMoTSefkwiKiHWvc5WrDcsYy1c66QifiKuxw19mkY2bzng/S2lEUwTIKjedF73oRZM11dS+IyIg+RBua+kP1qMtUg/qasMv2aJkbwNddqQuRyZ4z+tIXdnzfNuDyJNGTmnwaY5YS1vY1pqdfBG8YxquDRq0laRh8PLlL395JZPEtSrUZsbnRln4o7NAp00mxHGbI7NaecaEhOlBXG08z2EjlG9uJpiPfDxPnt3HPOYxk4h96lOfunRR7GEsLB9nOeRHvrL/fdqGvI2zBX5vkv8I+jzHDA8pi51wlM93w9G2qAY1ZgK1C0yE9psXh3ccSPdHfuRHJtGv7vz/qsHNNnXbe0qgBEqgBFYTqHBfzeab/oeIG62YOjsdow6NBdaCL1Zhgot7QcT8pq42e4ndiCud7zKLbARNOnmdctx00tHLl+uPfOQjiy9+8YuLJz7xid9U1vwh1s4xvm0t/YlzFCMRGKNIlT/lO4hIXdfV5n3ve9/kHuNFXJsc8zpSjrkP+Ko6Wjed0Zod/rFmR3ypx4NYs+XFoEH82rPwve997yRIpZE2nHBcVLluOXwPm1h8U+dmqgx0k07KtG0aGWRFhCY8iKuNe82MJc9CAxuLR7/yla8szEwk/6N4XsUmz6d4cuIyLmxOfAwEy47sf6+uco7W/XA0gGdRd+SZy/eF2hchrw0lNLgSV9jJI/99vyGMFizvBgZ+6wxUuQeJi7uZQRPXG4PDcVZgWRn6txIogRIoge0IVLhvx+0yd8VSrbPT0enICEcdmWllooUVS8enkySCNnW1IWzFm87e9bpil0WM2BjvJ0YIHcL8tNNOm/KUDn8/4bSfpV8Znass/ZeB940Po0gNw8MWqctcbWwFer9Ld02xC8emeZ6XI+JoWR2FCcYHGZCM1uzUJ2s20Zg0hNrYNtZsOyu98IUvXFxwwQVHdkWJiBOKMyI+4bYiTfuT95GXa4I14jVtcpk7z5z/qs8ZfI7lOIirDfeYD3zgA9MbTrXRxOuZ91yHi3rweT/XErNG46AGA3H6/UidhkMWls/LGuu+e9Mu+NET77lX6LPfIYffJIYH38/pb+P3CXpty7OTcgpZ5p3KZjAiTu3f3vJEPb95O/IYCMgzi7xZym3a5Lys/VwCJVACJzKBCvejVPuxiunkIkyIFJ2YaWiihVjlOz929pu42hDk6aTTYY9il4DQCYs/nXWKK333/viP//i0KM2UeeKKcIpoEO4nnGJJTBzys8rSv2xBbvI1hqtEalwukj/l3FYQnHrqqYv73ve+R3YRMsAhRMNOGq5XWT/H/C673m9AknSW1dGy+Jb9zcAw6yzCnxBUZ2GkHUhrv0GZfcfvfOc7L25605suS2oxCtUIOQNIcY/nKBCXRrTHH7NwM21aqL1GUKZM2w4YJJ32mjIIMdvP1eaVr3zltBjVIvY5S24lsc7nuc8zEDZpT/N7l+EYZ/fCIgvLRxarXLSWPT/izCBPHM64/siD3y1taDxZ4OU73xcafKoT5ZM35SXkv/SlL03+8YS6dikPxD/RbrcuYv7HfuzHJiFvNsD/K1OPEiiBEiiB9QhUuK/H6VC+FbGgo8tJLBCdpt51dixbOspxxxodrf9j0YrQcN/4HcJA50pgRjSks9/Lv/jZz3721HHHz11BI5wiAsWzjXBaZek/yBaJo8tF8jcXqRF2+4kjovqud73r4l3veteR+k2ewy685RljoiXxr7J+HolsxcUoqJLOXnW0Ipo9/8yKK075DyfX2kfyn7J4iY/joosumnaRedWrXjUJrT0TGP4Tx3BKKG2uXBGsCferkyHay1yyZoeV0GnQm7IkJAzjHnKZCNb4oI2P28CmLHG18fze6EY3mhZtrvOiJ0nGmp64hPJu8JpnNmzmb19dlmUDp3AQl7pN/lKfWBjcLjt81/OSNsHibrAqbfeNcWSAPQ4+Y6G3kFa+fT+nhbfYj4M7bjbc8ay90fb8vvlOZh/93W+PZ8miWJ9vcIMbHMm6OiH6e5RACZRACfwRgQr3y7kl6NhjtdIhpzPWufGb18HpbE33+1s6eRbadISxtrpfJ5fvJNQpj2notONfLI1LLrlk8eQnP3m6b5XwOSzhFHEU4RARYvAS4RBBsGxB7rLqWlekinecOZAHi1K5Pux1JM/Jq9DJ3zd5jXBcZf3cK37/Nw5Ikk7qiDAa09lW/EqHMEobSzrajPwbGGorrO3SWyX+xLPfkQGQtMZTPYt7PLe1nGdWa2xLBKVnI/Uh9PkgLxzy7BGfL3jBCyZGBOoocF17Fjc5uOrgog7Ch0DGRZ7DR1oG7Xsd6i11KS485FkcYz7F5TdkfmRwkTiE2fEqvu+Jx5aSDrML0gl7gl6ZWO99Nyf20rSextai4rXNri00lYvl3iyHejMwMvPn/w0avBhOGeTBYHfZmp55Wfq5BEqgBK7oBCrcj9MaZvUeO3adKaHCOkow/dDwrwAAQABJREFU6mx95pOqQ05Hv66rjQ41vvk/+7M/O72YhaXMOcYnXp3xMleU/YSTztv96wgnnb4y5iQIiD8iJqLB9Sad91ykitshHieL7Xve856FbTG3EY+j9TP5JsATf8JtBbABA8t14o5IIhJHJtIZBySbNmmLDbk5/MRP/MS02NIgT9sj/tRd2lbawtztapP0RmtsBOthutrEFzussOMeYkCKU9qksniO1jkISmwsxORGhI/4I5KlYQA81olrgnSTw7McJkLxasPEbepAGTyPsYavit8gwP1jPuPXP+ZTXMvqU9vDzf0jS8I9HIVEdWaewp6Il7bBjkGF9moWkfuUGQsvgXJvxH/yKVQnWPKdZ7DQNjFIubnbyI93DIj/pJNOmlwONx04reLWv5dACZTA8U6gwv14r6Ehf1mgmk5dR0d8E/M6cpZTi9RYx+PaocPfz9WG2PzMZz4zbYvIMhkLfkSEz9KIeEi4TCym8x47+22Fk85eGceOfVyQqzN3brLYkxBQLvn79V//9clNAKvDEo+Eylh2eSeAk1ch4bRJnocmMF0elivTGO/HPvax6cVj47aYxB8LadqBkGhllU8bECoTsbXtIZ0xDdeH6Wozdw9RJ9q0dxSkPpRDvSxzgTn77LMnP+yf/umfXlnErBGR99Q/i/Iokl2v+16EJCTvYx3IO1eX8flOHcTlKffOQ1ZrcSV/4lKfBsNjPjFZNlAXHxGd+4VE+tzv3taRL3vZyyar+i1vecvJFcYgfLzPtSP8EzJILPuesvmdIujlm1CXF/ET+9xtPNtYmKkzGFk2uzAl2n9KoARKYIcJVLjvcOXJeoSyziynzpi1j3WMENdhE5Q6RR2bkyVV5+d+IoZfs893uMMdpv/XkbOQER9xFZmLK51x4ku4zNVmmXAiPriVpMN2vzSXCaexioi8sWNXZoMXeRVXTuVbZkkc4/LSJfl49KMfPVnt5uU7LPE45ll+5Z/lecyzsq+T5zH/4/VBXZme9rSnTS4Kt7rVrcZov+lanWtfIytlIt7SBhJuO9MgUenwvR7TcX1YrjaeBfWbtpRnhxvS2CYJU3van3vuuRu724wvVEr8rMyjSHaN0yZ+3OPzKF5chA7s5T/hfnHjPPq8i4e4NyjPsxQeq1y0xpmnT33qU5MlnBWeoGaRT3sQDyNCykpoSy91IAwfXMKJWPd/4/f8phHz/s+1Qb5nwOfTTz99+r2zCFb8Pvtd2e+3ZQLYf0qgBErgOCdQ4X6cV9A22UtnnA5d5xXRQ9ATWaxXrMwEPesv0WiRJmuq6WffZ0X0f+lAdbym1rMLhHt9bzx14uu42hBOBKC8jeconCIcWBf3OjJ4kY907kRZds+I8Ji7/IzCfVn8y8SjvJrdiBhJuKmrDbEhvym7fMszoYW3eBOusn4uy/P4t3VdmViB73Wvey3e/OY37+uCMcY/Xhs8je3A9S662mjzqROi/UMf+tBk3fbcpB0JCdJlM04jk2XXmTVLGkKiU9tMe1fvnqH9fNvn8ROuaVOpC3/zbKedSsNnAnfVMXfRSl61+zGPrsPAM2i2xq4yD3nIQya3osyYJS/iIdaVNfkR+pz8hE+eY2FmrPI7JCTCU1bfccaV0PPit8nzqw6vetWrToORZzzjGZNrnJ2TuA1xu+EGta7L1Cpe/XsJlEAJHEsCFe7HkvblnNYoStLp6dx0vjplYtKbRFmyTEHrIIn0WMx1vKygXi6VTjQdeXxMxXEQV5sxj+m8CRjpjGnKw16HgUnykXhYFkdLoql2bif/8B/+wyNWwL3izP8dLT9teZbHCCX5VgZ5VvaIeSxWWT+Tx1VhBjlhIq0vfOEL0yDtfpfuZy/uiKpNByPzNHfd1cZiSgMSb0YdrcqY4WfwmTaZ0MB302Pcgz11r20aNI/tfhS466bBgh3hnGfegFndquexvvdrU3HRSvnFh4F8/qN/9I+mwYwB4FWucpXJXWVZHtP+kheh35S4XyU/wuRnnLFKu1UvBiDhLvS7ZbYg+ROa9fD8xNiAq7UEBLu3v/rd8/t28sknTyzMgmGWtJeVoX8rgRIogcuTQIX75Un/OEg7LhbpSHV2tgXUmeVlKixesQQTD0R6XA18372xSOpwc/qbY5za992cBg0RiQmXudrofKXjTMedKfWkJRyn4ZehTZ6lLx7T+vzvWdxGq6S8KGc6+2Vxzf9GXKRcCQ/D1WZu/Uz51QGxIq8RLwTKNofdUlgpf+iHfuhIGbBmwcQBW+kIWYIPskOLOt8FVxuWWm8Ufs1rXrNSxOXZSZ0IiXCc1EnqRbvc9CAsRxGqTRnUEdyJP/WSQfO6aXgOxJV2KlTfmUlKvML9BsgEO04WnBLsidPvR+LJs03gL/M7lx/iPflImPzkfvFlYGQAMP4eYG/Qr336nhmR5F97U5/5vgGIWbzMZPnM0u959+Kot771rYvHPe5x05txb33rW0/fY7U/SLtft276vRIogRLYj0CF+36ETsD/J0Lf8Y53TNZeU846PB3l3Gdep54OMhaq0Spn+lvn6YzIHBfnHcTVJlPqOvkIp01dDmxJ97a3vW1h8WEER0LCRl4jGiJcMxhZp1kQqREkiXcUSGPcm1q3R84pP5EfsRju68R7xhlnLM4666xJpI/lsuuOfMtzQuLI4GrMu+tNxeOYjuvjydWG+DML48Vcq15ENc9/PrPmqo+c2GnnGKVuhKtEbOJZFkZwi1P8aVNZqJr41X12elkWz6q/cR9JPSfMQGSsb3zMgn32s59dPPOZzzyy484Yr8F+2k3ymV1txrhcR0CP97vOLEfuF5/fptyvnK6TH4OF5Dv8M3gOGyEjhP36w1Hoe5hxwRGPQau/GQz7u/U46tG917jGNabTgCy/e/O893MJlEAJHC0CFe5Hi+wVLF6+qSyAOXWQRCkxz1LFzYNo0ZGxvOlUTV2zsGURmg6SK83Yiep4R4vkQVxt4nIgbzpu6Y0uB/Ik7bgc+D+WtQsvvPCbamu0zkc4CJUnwiHhfpb+eeRHy9VmbgFW/v1eUiQvttZjZVznIGpGa600tAniBo+IKeG2MwDJB5Em7pE/62ncKsJfWoe5q83FF188icbb3e52U3kMTrlQ7LfYOfmeh8qBU9qkMK4eaZNCaWxq1c1sVuJP2zeLhE+eNfFv846BVVtUskxzq7vPfe4zDW7WEbCZRRjrkytYBh6pT+Gqdzhk3cYYxziYVM7Ew2I/up+FvzSxCBsh8W9gEY5C3/P7RszjjIUZOgYJv3m2tvz4xz++uM51rjMJ+dvc5jZH1issm1mYt4t+LoESKIFtCFS4b0Ot90wEdMQ6t4groZc5OXSaOjuihXWOlUqnSnT5zCKn89VBxiLp/3WiOl4iJp1fxMnYWbtex9VmFAvpuONyIJ2nPOUpi49c+nIY6WYafirAin8MQub58Lfj1dUmQidlx5vrkfzirR5856EPfeiBxGneOCr+8JnXj/QMclKvKxDv+edj4WpjlyGDT+JOebAj2OQ9bVSo/WziTjUWLL7eqRdhBKi26Ewa2wwYYq1O/MoR95XELX4W5E0Pz7wFnmbcDNjEva3r1qpnO3mNCBeumqXwXXnS7tL+fI773hiHwaRBuQFg2Ajdm++HvwG+WTz/n9NvnBkCYl47Jua1fXXEtfArX/nK5D/v+o53vOPUPnxXHg46K7VpPfX7JVACV0wCFe5XzHq9XEvFjUNHqJNz6sz8LZ0d0aLztN+ztyMSRCyNLOa+r/P1fVawUSgRm9l9QgG3dbUZXQ7y8imiiXV67ORdr2MFjQiLYBUez642yS8x8u53v3tiSvzErWDOYB1r6rIGl/qJmBJm0JA01K963VYAJ93DcrXh/vHiF794einXOMDAR51iphxCn4nXCD1lcRq0bnNII+0/PtlmtcZ91iO6t9kJRX0k70KngVvyndBzN5Z9LIsBjIGNWRovpMqxl+uWuk6+13HdEudBXW2WDQiU17OvnPKUMDNmyhY+qWd1mbwLifllMyh+vzwnuPkdIebNAhn8mQkzOJaOtQBjfNs+W+HesARK4MQjUOF+4tX55VLiuD1EzHtTp1OHx1plSjtuNFe/+tUn0U7M+RvxoiMlLOeL83S+o4/spq42r33ta6eFaWeeeebUuY7i27UOmFUyQjMdvkHIXgeBIL/z+HTsY1yuIxz2im/8v8N0tXnSk560sADPtP8yn3z5x3ee53UF2Jhv1xk0jFzUb9YTREwRNwcVNWlzY1r7udrYyvDe9773tFXgPO/zz+o4bTNCT/vm+jGKM9dcLrY51Ml8wMCaTBBiNaazjUUXo+Q9Yp7LiAGr+JOGwZW/LxPtq8oV162IYeF+rlur4vL3cfYsdYrFJq424xaV8iMe+VS+sY3HnS4DkjASeoZH7hgZdI3lNPDSPrRhv3HavbgYHgwGfJ+rHiu/tK51rWstTjnllGmmx4xkjxIogRJYRaDCfRWZ/v2oE9CxsXIROzpQnaLXmFt4SiwSLXaPYQG0t7zOUqdH5LvP993Llz4daYTGKPqWWd+kJ34C9C1vecu0//S4cDaF18ESZxEKCTP9PXb2u+hqY2Hqs571rGnwkDLPw8McKMzj9lk7IKixjZgSxk9bnYbztgOGpKvOk1bqUloGiepU23rd61630uKceFaF2lra5ijkCPe0zYSbLHQe08PLoHAUk9LitpLnQOjcxvff4Dd1kTJghp00bnzjGx+pjwjcMX97Xe/nuoWNk5AmePc7Vj3bnlvxpN0IV7na+I3Jb5DyKrtn3vM8xuHa7wrXuMyIpA5idAh/6yII8Py/WUdvajYzZKBB/GNh1lHIQGBQ4+VU8sm10GDa4uiDrhXZj2H/vwRKYLcIVLjvVn2dELmN/7vOVEdqn3FWR5Z5okWnzEWBmNfx6UyJChbBdJSEfzpRHa7reQcYVw6vss+Cs3xX6OSmsOxgPYvwS7hrrjbEkRkHPv6bWvlYalPuhIftajMfMGgLRM4oxtSRgd06Im9ZPeZvBNUFF1ywOP/88yf3LWzSBrQdFuhtfM0TP+tq2qbQKT5xp50KVy3KTDx7hcRfhHbSGJ+DpDN/DvaKM//39re/ffH6179+8fjHP36yHKfOCVzP4rxOCPx1j8zChI8yGPzYvSh1IJTGui5CB3W18TujbPKSsrpmOEhZkycCX3phnjrQVrVNLLRl/vAs6/a65xaYeBMqm8Gj/zM48HvmN8rvmzT5zdt7novSQdriuvXS75VACRyfBCrcj896aa5mBIh10+IveclLpi0o7R9tIazOkIsAixcLpv2Wr33ta08inTXONHgEAXEf8aLTdc2C+/nPf356pf155513ZAu63CP+UTy4XmW501GnE054PLvamN3wtstb3epWR8qIybYiFV9iJ2VPeJiuNgZHczGVRZ0RVEL1RGStexBqd77znSf/dhZReZdOToMSLk1pCzhJZ10huSwfBgviH623YxtNWz3ILMM4mE2blhdxJ37hstmm5Jm1+MlPfvL07M3zgtuyGQzCcqwP11zOWJTXOTzvo4sQTp5/+VQH8ixO4X5ua0nvMFxtCHB5SfsQGsSmrPLm2kzEG9/4xsXLX/7y6ffo9NNPX3z1q1+d7lMPZnjyXd937fdqjFc6ZgM8PwY3fsu0GULec+B3yLsXfvRHf3RKY143KXfDEiiBKxaBCvcrVn2ecKV5xSteMVnddXiE6Oc+97nJIki0EUGElQVhP/zDP3zEl5wYj4iJMGcRNX3Nx1lHSmT4rIP0XfHnHp3n3Ad4ldglQJaJ2ePB1YbgfcITnjC9QGcs32GL1LnlXFrcoSJ2Eq5iuF+jjsgTb0SV2RqWzoiihKuszV46xqJsYeqygwsN4Sj+nD6zkBNdzgjhbf3ZpZtdTKSR9kYYjvFLZxMRPC8Pa27iTkgYJv9Cp9km+bHjEEv7da973XlUKz9bhKw+xpP1WB2nvoWbuNoYJIwuQqkHQjZ8xCnvBl/rHIfhauM3ZCwnlxhtz2+HbTP99sjf6BqVQdt43/hM+L6yuMcAJt9TZrN92pg6Y+nXPrDBN2L+9re//dQ2Wen9jvUogRK44hCocL/i1GVLcikBFm6d2Sc+8YlJuLu2c4pOlFWeS4WOTOdu2tq2fz7rfH/hF35h6hBZC1m35iKD+4SBQKb2daYRPpuK3ePB1YZw/6mf+qnFG97whsu0nWMhUo+2qw1BpnzqiNiJ8DGYG4UjgcQl45xzzpn8im9729tehsVeHyIkIyATGpRFSAqd1mFse4wDzbQ3glo5ko72vGomaJ10PSfyn/jNAkiX6CRE73SnOx3htuztxuukkV2jUhdCg9qDutqMbkgpA9evsImYl866R3iMeTV7wfVlbD+uWcQdxPjP/dzPTW4+T33qUy+z1kG+4hqVNiEcZzo8E74nzYR+z8z0pK6FBm3ykrz5LnHPiu/ZVW/WNjBk+Ox+AwiDTILe501d49bl1u+VQAkcfQIV7kefcVO4nAnwkTelzM3Goq83velNk6/0l770pSMLYWVRh6bzNfV82mmnTR0tgZQOksiwm8e842bdi9j13YifTS2yx9rVRufuxUt47HfsJ1IjkoTbitRj4WrDKhlRFIFEUH7mM59ZPPvZz55mZ5ThIFZzQlIa2kHaAxeRkZHrdRYzr6qXDHykkdPMRnzzCXlp+Lyt/794H/nIR05vRh3bpmdkmYDdxm1IuzoarjYs/uogp7JwO5nXgWd+XfedvVxtDGa43NmR6B73uMdS5rGyy0vylUWt8pVTnnKMs0n5HRJ6dn0/v0VmLpQvbTrtzu+SQxtgjPDZ+gFuNSeffPL0m3f9619/Wi+UAUjSblgCJXB8EqhwPz7rpbk6igR0oMTlr/7qr04dmal21zo+lnoihZjTGRNXXG10kEQQFxzfI8rTkbLYpwNNyCrmYIlPJ50wFtlRRKwSu0fT1cYagTe/+c2TNTWigeDbxFc2IjVlI0oOW6QebVebxzzmMYsb3vCG0x7zKccmdbROU+WeIm58IqqI77ENuNbm1hWS83QzE5R0hEQaS3yEvHBd9xRbpNrV5A53uMNlkpLO2P6Vh8VXG077T7jKNekyES75cDRcbZbNXBCzeISPOjDTtq5F2szOBz7wgWlnJgN4vw3iG58ng5xV8cWyP4p5g0v80jZcy9Po8mI2Sf3mN8i13wrlCHuhwZS6yneF2iIhb3CqfcS33sJXv3sPfOADp/vsHsRVZ0x3SVX1TyVQAseYQIX7MQbe5I4/AjoulijW9Q996EOTALHbCgHFWk+sE3JCVjedMxebdJAEC8uhae10pHu52uwldtNZC/eyyB6Gq41O2tT52WefPW2HF/FA4ER4JD+buEccC5Eai3N4Cw2S+GWnXhIamO11sJA+73nPu8yA5TDqaK80/R/OhNQo5rEzQJwLyW2t5sRcdmdK/Zo5MjhL3Sat0WL+tre9bfHhD394cv3Yrxz+f97+Uy/+nnpIuElbGtPWXrNtY+I/qKuNZ1kdpB6E6t5gZ3wGiHGuKPPDjJVFqBbvcr2Tx8SXcB4f3nsNntK2U1/JE/GeOsNyHkcGAdi4R8hIEZc/97qPy5BnJQx9F0dCntHCAMRgWb49O2Ypr3e9602/kX4vPGPbDi7n/Pq5BEpgcwIV7psz6x0nEAHuNMS6vb1ZDz/+8Y9PllkdPsHutKiM+Neh2b9Z52i6m6VqXVebiN109jrtTS2yoztDOuX9drUxtX/uuedO+U21ZkFu8iIc3TAiHgiCdbelOxYidRtXG/eceuqpi/e+9737WhaX1RGhpr7DRHgQq7l2pe5G0aYOxRmBHQG2TEimDvcKwylp8Gcf3brMFpmNIdIsbtzmxU5Jf2z/aZPHu6vN6BITRoStgTT2qWsC9+lPf/q0PmL0VU/ZEya+8XkyQzEOnlKnq1gnjuRHXFyMxjjSDhkYcpgdyWDHPepAWeTX93MaLDI2pI7SBgl0J9ccv4XiNhvid8Mzfbe73W16bm5wgxtMa3/GwV/y0LAESuBwCVS4Hy7PxnaCELBgj2AneC688MJJwH/2s5+drFl8RXVwBBJxZYtKHeSmrjYEtM5WZ52OdFOL7H6uNmYYvD2VeN3Lqju6YUSAbLogd940RpGa8h22SJXmXq42BmMf/OAHFx/96Efn2VvrcwYkYaKuNq2j/RJSh9rZKNoIP5bTCMmIyVXCb780WMbj1vUrv/Iri4svvnjaYlC62Z0nIk9orce2xy662uCDedqpdx9483MGVCObdQa0iW98vsXNNSV1mbrFf9nh90We0vaERLoBxTwOwjvHWNfSTJn8VrlPWRLGjUbcvick8LU9Al47+OQnPzkN/D1Lp1z69leDeX7z3rGx7eAyeW1YAiXwzQQq3L+ZSf9SAhsTILK5r7DAcrMx7fya17xmml5m3WK10rH5fx0nVxsWVJ3kJq426UhHMb+N2I2rzc///M9PeWLdJ0LS4UeI7GVBy4LcUTiMltvRQrzuYs9VIhXDMT7X24pUlRt3hPe///2Ll770pUcWpab8Qjy28e89FgMSbYjldGTvmsiT97Ec4zaE+zVsotoLgizUFYf2lt15IvKELMBpIwm5l6zy5d4vXeXRjsc0XPt74k+4bb149mJ9TjoYEqGJW6jcq8SychjoaTOvfOUrpxe3Ja6E27psiZvPuXocn2/PoHyN7X/VwEl9JY7EI2RMGNuEuPwejUcWz6YcQgNTLjnhIly2RaUyc6sx+Dfzp82YDdAevCfCzAsrPSH/fZf6/PcogRLYnkCF+/bsemcJ7EmARYxgt2NJ9phnlTflbtqZBd53iEMdLlebLITdxNWGKI5FVmer02eJW0fseinMM57xjGmQ4Z65VZdASIcf8cDff9VBaMVyG/FBOGSx5yg+DFjWOcTJLWDMmzhHkZo8biJSpc2Pm7X9J3/yJ4/En3RYFONvLt9OomMbcToOSDato3UY5TvELzbO8Cem8Akjobax7DDoJLrMwux18KceBZ5rWxQS1dpJTqLvIAOs483VxpqXZz7zmYvnP//5U1mXMfJMGxDM+RDP4ZKQuN3vMGM01qd61Z7G+nSdBfHL4lM3Y7twLZ/j8ygOv0HjwSCRcrjHtTbm98n3U45xi8p8zyDJ4N7AyIJb7ZBblkWwRL57/d6Jy/U2g+Qxr70ugROFQIX7iVLTLedxQ0Cna+s4rjavfvWrJ2HzG7/xG5MVWCYJQ52dTpPLja0sdZKbuNoQBCxvEaHptE2Zj521a7uHEK4WoY1HBHPuTajTlZ8xHtPzex1Z7BkxKdRR67DHePZakDuPfxSpydsmIlV8FhayxD74wQ+eRz/57IpXXsNROYj3sfzE6bq+/mMi4Tsykd6yOtp0QDKmE0tqykJ8sazjPvInsO973/suXvWqV23lCsMKbwAZoSe8IrnaGER4NlmOuYJsavnfy2VLPeRcx9Um25qmXapbg6mxPrVRbXWVIFaeedtjYXdfTm1kXk6/X3EbGutau3WfPAj9XmX2Sf6+/OUvTy/II9blySDI4N2MAiu9Nn6Tm9xkcm170IMeNC2qxdvv5OjqM7btXpfAiUigwv1ErPWW+bgjoMMk/ry9k9hhgX/f+943dVg+s4Tp7FiwdGY6vytd6UpTJ7mJqw3/1LGz16HqhHWMN7rRjY50vDrfVdbAbEUXISiUJ531KMINPvY6sthzFA+bLsidx79MpBIPyVdCFkKzIeedd97ktnTrW996HtXSz/NFgvJuhkF8Y/nx28vNaGnk3/gjvvM6wjd5TzqrrOZ7xZ3/yw4kqUMCLAM9rg3yP57bCqcriquN/dYf/vCHT88f/rhlRib1gRexavC47hGXrVEAb+tqI67Up9DJ0m4gII859xpoMhaMz6M4PFNjHNrhssFFfheUxX1Cv1cWOBvY26mIEcL+8dpz2rjfH1Z338HOZ7MTjBnXuc51JuF+97vffcqHrSr9VpptWzUgWZd9v1cCu0qgwn1Xa675PiEI6MQsgmN5JzJZu3RYppwj2LmhEJSEto6RgNjE1YblmsX9AQ94wPR22YiI+Lfq8MUpZMFbJkyImIiFdMijYI5okC+CedUhTfEkDtcHXezJYpf4hMrH2qhMXBoMgsLN3+a+v6vymr+Pvv5Jx2BrdFXKbkPbuo3gm7jDec6XoMqAJHnbJPQWXSLL21LTBhLGzxqfnHO3ik3S2iVXG4MPb0I1eHn84x9/pJhZsD3Wi8EPC7X2rj7CapNB3GG62hhwqMO0GWEGBnkmk09iedmRcoonZRWHZ3kex1hOAwkuRRbAm9Hym+V+z/h4n98Uz1Dy6TueS256mcnDhFuf3z7Pp99Dz5TZsic+8YlTmQxIepTAiUCgwv1EqOWW8QpFwDS5Dot/tt1tdGQs9UQbEa6z4/euwyUUr371q0+d3F6uNhaNWXTnZTI6RJ/j36qzT6fKqpYOO6JEuEyQRjCPHT7BrIOdd9wscKuOTLdHNMiPfEQgJS75WHcXi1g6n/Oc50wWQIIgZeTCIi7xJtxvwDHP++gGI7/yLn51I15iKSHXo22O8BV/zpFv0iCM9uIrbWLqnve85+KXf/mXl84UrHLzUJcY5dTGtnEbkofj1dXm/PPPn0Tnc5/73H05GlgbtKU+hAbf41qRtNe91orgMT9W1UHYJ1xmDR/jIpLlKXnUNuXZ70jylrazqm2Og9XEI47v+q7vmmYdDMw8t2bdHvGIR1zG9SpWffflmTYw1ZaSrrIYMInTd5zZMYfBQlthQGCVN1jQfm1f6vfLANT/cbvhgrPtbNHIrNclcDwRqHA/nmqjeSmBLQmwSBH073nPeyarlDfBEmv8SnX4OnOdrU5Op8fNJttUxnL/hje8YeogWbN0uPNOnDif+7fqfHWopq51tu6JgNCJzw8DDveMYn7TF9SIUz6kG9EgJEZW5Xuej3x+5CMfuXjoQx86bV2XvxG/EfEJWf3nItXnb/3Wb81t+4aEiIFVxEpCvAmWiBZhLI37Rjr7QvjiIX75H/kmjXne3/72t097t3uR0LpHBj/SyMkSa+YnbSDhtuLp8na1IQjVhZd0eV72E8XL2GUQl7aaepmvFVE3m65lWFUHZkPCPuEqES7POKu7MY+uPfPyJY60nVUzUsppK9EXvehFk4C/7nWvOy0q1zbUf/KRcHT1YmTI85Bw2XoSgpw1Pt9JHv2GmTHw7BoY2DUrrnr5beIOZ7Dv908Z9pr5W1aP/VsJHC8EKtyPl5poPkrgKBAg3HXu/FTf+c53TjtJfOxjH5t2edHBEfI6NtYxgotPLOvyYx7zmCMW9wgN35uL+QgNglQHrSONiDNQGIW8a3HPfVN1pES4+9IhE+HyM6anw19m2Q82wkGnPooPce6V72XCPfGN4egukHJKy2Ja+Uo5hXsJpDHOXBMZyp2yCw26IpSEzlVbACaeVWH44iJu+Zf3CGxxsyafddZZk6vMKKhWxbnq76vcPLSzCLaEu+Bq89jHPnbysTYLhd86LiKr2Mz/Hp/w1ItwrPe0/QjQ+f2rPq+qg212tdE25WvMI5GvzahHoXxqS694xSumF9RZ7M43fTyIcO1uPP3mpC0kHGeH0m7zXHC1GfknbQNfu04lj75vQG3A5ffCzBRBz41JOnb08uIog7JzzjlnemeBN8MaFMx/m8Yy9LoEjhcCFe7HS000HyVwDAjoLFlludLYi5rg5iJj2l6HrwN0sEYR5RaSpYOM+02mr3WU3CLmnXiEnxmAiNyEpsRZLUehy71i7uJChI/T+dIShzxF0CRfhPlehzK6Px37mG/bc97hDnc4snPPJiIpA4WULSEhESEilN9NdstRltGnnRBxmmVQ5pRbSDBtc0TchYn9/G9605tOA7z9BNU26a1y85jPYhxPrjYGuBdccMG0y05cjeIioq4jKOMiMm+XnpdNj9T7GL/6SJ1Lw/U2axlW1cHYVl3vN6tggfv4PBHUDAR+C+xMJX9jnKueT8JZOcczLnDj/a4zYA//tFsh/n5zDK7CB3uDhdSRUJv3PYNI8bhXvRL10jCYfcITnjD9NkrPIIL439b1a9O67/dLYF0CFe7rkur3SuAKTsAiWJ3Xu9/97qlT0yGyyhOHOjBWZ4JeBxkhYYpaJ+g+naNO2PfSeed7ERr+Ly4u6bDdq0PVeep4Ey5zr2A1i2hI5030z0XTftbp7D5jO0jT53xhxWdQkzzIh1MHHuG2ThOIQBKfMgrNeiS+lG/TeA2ERiEiXvmOWEm4qT++gQ3L8pvf/OapeNsIqnW4zL+zys0jMwEjr2VtYR7fss/butpoB/e5z30WZ5999uQisyzu/M0AbnQzUS/OvLsg9SL0vGx6ZC2DtpT6JzYNesSZ+DdtT/Kxqg7WdbUx0LBw14D6cY973GTFznOdkPV7rEvX4l/mqjJ3xUsce7na4J/3PISP+/xmhY2Qe4wZxXxHqPwG6wbbBkieJ8+v3z08fedRj3rUNDiwq5DycjMk/nuUwOVFoML98iLfdEvgOCdAZLOkcbER6hx1hq511DpTHZgpbSIiFi8dIcFEEKaTJDrTeUfMs+yZmk7Hq7MleBLGvUKnm3uXWZh1tBFLQmkSAGOn7drgYX787M/+7OS+c8c73nH6r1G0Ji/xEZeHMS+rduGYp+FzBgYRIsLRujjGS0SseyReVs+UfRR1c9bL4uXf7t5xx5T597YRVPM41vmcmYCRk+u0hbQD4dF0tSHQDOi4Um17aDe45tQuiVV17UzdbDobIz9Zy4BNnrG00zH++VqGdcqyqg7mrjbelGvAx+3krne968qoDZLn9WnxqtmVsT59XrVmRNnmcew1MzT//cHImcFU2Putsn4l/6+u/FYxJGQW0m+CHW2s2fFdv3d+u6yNYbQQh52pfL9HCRwLAhXux4Jy0yiBKwgBnZjO7eMf//j0RlidGeFnOlyHr3Mn6FmyCB8dmk4yFnciexQacZuJ2BiFRizX6bClS6jG0hghzTLGP3U8dL6+L62IG2LBPem0pXnxxRdPAvrRj370ePtlronW+OCLU3xmI1hPR+Ehvk0squIVj/jGeA2KUrbEv2pB4GUy+o0PEXUpv5CvMtYpu9BnbgAWpN785jefXGWWxbfX3zYVVHvFtdf/zdsCZizR2kIYCQ/D1UabMaAzgCK0R2bSMKOx7UH4qY+c0vKsaDtJx7VnZ5lFeq904xOeuIXbrBVZlcZYB2bn7EBkxyovo5JnJz7rWKOVOc+UunSatSCCx/p0fZiuNtorLvkNEmZdAf5OxoHMcuS7Bh9m8YhzgwKWe39zTbwzcmiL9pmXxlWucpVppmZV3lcx7t9LYB0CFe7rUOp3SqAEVhIgFHVeL3/5yych+slPfnLyEyVSdGg6Y5Z1J4u93Tl0kBHco88sq76OM0IgYazQprBHoatjHS3XY6cfv9hknFhIRywOnbbt5IjXvHQo6cnnXkcsevO8uCcCJmEGLXvFl/8b4xV34jcrkfiU0fUmLjHjft4RLdyOxMGaaHGeOgm/TeJO3hOOsxYpw7p1lDjWCdVn4k9I/B3U1eatb33r9IbPZz3rWdPbSNNmhM7MHqmDMDMI2nZhYwbD6kU5hJ4dgxDxS8cpjfkAdT9O2s1hrRVJWp53vuAEu51j0p6wib958hxG61ijDfw9/6nLhEfb1SbrClIOoUE19uFvIKXc43e0aQPqLEYXD+OAUz2ZEXjIQx6yuOiiiybf/7A4yOAyddDwxCZQ4X5i139LXwJHjcAll1wy7X/N1Sad3Ec+8pFpISpLFMs8YcFK7wVIOkmdGotdXECIAZa5+KtGEPiu+x2jG4fv6/DdI42I3IRzyzXr2H3ve9/JP3f0UybCck/E7DoCPIOQiA6hvynXGB/r3CaL3ri/pGzidE3czS3OPq9yN5hXNG7cnp70pCctfuZnfuYyginCMWUXinu+iHge56rPYx2NbNThmIZrbgrbHqvcPNZ1tTHQvNe97jW97EydLTsyYIiIUxdmNAxEI87Ca926mKdD9OEkjYRczwjIiElpSWebOtlrrcgY/3ytCL58vqW7bJbK8+w5GtngM2596V5p7Dc4DpPLw9XG4CxlSOg3KfUrNJAyy6F+4qpmvY5yKS9LPkMD1urT7xx+2pj7s5D3IPUYRg1PLAIV7idWfbe0JXC5EdB5EaCf+9znFnbs4Gbzyle+cvJVZmljlctiVxYrYt5CMB29/3M/QU4I6Ex1hOlIIwbGveMJHZ2q7wudOk7fzel+29jd4AY3WNjnOQfhmnsSh85cZ52OVriO9SwiLPEIM7MgH4nPdax3ycdeIQGQPKaMhMMmW1R+5StfWbz4xS+edhga0xrjThost1lEPPLj2rPtYeCU+BPilfgTEsWbLBCe52d080g6y1xtPvOZzywwtOByk8OMRtqmunCmjtVvxLDyZPZok/h91+CHRVvbVwZh6iTxJ635bNM6aWEk32P80kycQgOg97///YunPe1p60R55DvqWbxh41p9Jm5clMHs3DrH5eFqM86MhNO4nsQaH78HZs3UT76jzjzXToP1DO5Z5vGMuw0WXI+8OMrbi8ffsnWY9DsnDoEK9xOnrlvSEjguCRA9rPKsVl6PzgrLSuUkFFktbe/me3zm+Y/q5AjGWHLTSRLmczEwLmIkvtOpJjTFzb3iFre4xRGBtWwrP1PlEWe5l3Vx3R04RvjySSCKJ6cyEHXyT8gkXFfMiJ/FM/GKL/kUb0Rw4ibwf+3Xfm3y82d13++INTX5TZjZiTH+XXS1ISadd7/73RcnnXTS1BYOIp7U8eimIm4iLrNHEdvCTQZsYz2pEwMEcavvnJ6hxJ/nYZsBludFnOLnAveud71r2qPdszjWt2uD2k0GVwbHY75dG7Qlv+JUhnXbEt5YpF0mPJquNn4Twlz+nfzfsQh/5SD6vRTPC6oYHLzl9dOf/vT0XTNZnk/fMcAxe2PgrE2I49rXvvbilFNOmVyTNpmlG9tJr69YBCrcr1j12dKUwBWCgA6YaPilX/qlaepdJ6bj40vP+k5QWbyng8tbYHX4hL4OPK4AOlKW1bkYsCNGfJKJnzPOOGMaEBATOmJpuCf3CZctPJ0LcPcSDCyeOmz3JVzHBUSnnzgSEgeJR1xOwiD5X6fCY02NmBE3qyVLNn52BtlWpM5nJ6Thb3EPSp6Pd1cbAx5bQN7vfvc7IlbVb9qAchBS40BwHfbjd1hX0zbVgfYpJOYi9JLe3K1rjGe/a65piVv8TrNY4s4pvXXapLTMXtlhh9+/wTORmbaUUJpEdupbKK1NrP/iHfPtmoVa2xn5bDJIONauNn6jMMH885///DQ4Vpes854JVvUw4n7nmc/3hdohw4H6woNhQRn8DjAweF5ve9vbToYLgl7b6XFiEahwP7Hqu6UtgZ0kQEAR6azy3GxYLX/u535u8iFlpWNVI0KIcKcOUQdJOBATBBNLls6UGCBkR6sY/1W7ZLz+9a+frF8sXxE8uWeTrfykNXbGrucCXN4I5/0E+CiS5EVc8mfwEXEUIbBJJ67MdgR629veNg2CDlOk7qKrjcXV6vjBD37wkWckawvSFrSdcSAYETwOBI/cvMEF8SZudSuUnvoYxaprwm3bg/hLORJ6dpJGwvlaDt952MMeNg3uTjvttJXJZ/ZLGcbToDvtM+Ems0jST37DxiAB8+RZPWwyMDzarjby5vdHm7LV7D3vec9pNsIMTNgo07gWJ88ycZ8y+27K7jfMbwW/eet3vvjFL07C3oD71FNPnYQ+Fxs7RHU3m5XN9ArxHxXuV4hqbCFK4MQkQCzwSxZ+4hOfmKyZOncn/1FT0KxdRLMwLhAEs2n9cbr+Ax/4wDQ9zdc9AkMYsRRrfDpSaYg3HW5ExKqt/CLA3Z8OOYsak14EyH4C3KI4bheJR+jzuEWluMS7bKYgreV5z3vetP/+bW5zm2mGI8JIHl2PIlVcyritSDWg4lokr+NJjKT8Cdd1j0g5xjCcxzQIPfWS+BPGGkwUmXU477zzpvKN8c2vib5wSjgfCGJPgB3EtcGgQfzKkXSUTdw51Ydy7Tf4m5chn9Vv4k5ao9+2+A2U1YcXEG1zGGSOdeE6z03qQbiJFd3zHre15J+lmvtX2CRMHe+XdwOlw3C1Mfh/1ateNbU1MxV+a/LbIFRWv005shYHl/w2sNrL/8jHPco8slRXLPN+L1jm/Z74m1khv3X+bvcfboDYbLrFaPLY8PgiUOF+fNVHc1MCJXBAAqbWWXz54+rkWOMvvPDCKVaCl2WeoPIdolYHl4VlL3rRi6aO1t/SQbJMs+aNnSiRIQ5CKkI+YjduIumsdcC+r4OdH9l7O2kJRwGezlu43y4cxCcRkM4/oTTHeJQjVtVRuM/z5vMoUlO+wxapeI3ldx2GI/NNLKrzsqyyBmdXG6KIaGMh3ebg8y3fYSQ0SCF4sc+pPPsNyvZKn7U1AjuCVX0YJCQN7S7tc6+4Vv0fUS3/TlZd609YyLlvjPXhelu3oVWDK7zGNJRpXeFtYBiLdtioE779Ixvxb+Lvv66rjd+VpzzlKdOM32Me85hJrBsMeJ7HduGz3XrkSV3ld2Is53wtjnLIh3p1nzIIxcP1Km1PqB3baUh8ZnIIes+T3zR1awZAGzz99NOn30K/jz12i0CF+27VV3NbAiWwJQHWqi996UuTAHnuc587WZN1kKalWeNZ4FkuWQh1ckTJKZf6kLK4s1TFF1XnqLP0/3ORQdyIz3dGgUVQr7uVHwE+74x1/LFMp+OWdgT4Xkiyi4U85WSVIwKInZNPPnnymTU7sc6xSqTKS0RI8ritSD3Wrjave93rpt2O7C6kDNgKD2I1ZzUl0tIW1CFhqa3h40xa2y5OVV9hJf6c80FD0hktvevU9Zlnnjm1jzvd6U6Te1naT0IW+/mgdltmqwZXB3W1ybMUMY8RsTqvg3X9/XGbu9rYVpU/u/ZDEKf9L5txycxT8sP9D88MMNRV2oaBZQ71nFmG8DfLIN/5HXIfC7/nO99RXvf5/cAYTy/QcojTOxz83zWvec3FzW52s2k3r00WGSd/DY8dgQr3Y8e6KZVACRxHBFjDvHyIuPzwhz88WUi9LEWnRqgTqHaw0Ym55ksaAUT0smqNlkMdJCtXOtGEhL8Ok4gbxTwRp9NNR53OerS8jbjmlmnpGXgQSklLHOsIJ5Y3nbmdLT760Y9OHf2424n45GsUDmNe5tdEqvLIUwTJXKTKm3NbkRrBE0GSMAOaMBBu6mpj4aX92w28lCHlIIAPc0AyliGclEOdh0/aw14uTnP+888ZNKQsQu1PG56no8zLDms+uMlYS7LqIGBTDwkx0+bH+nC9bluap3U0XG3MUshv6gAfs18jm7SjeX7mn81KPP3pT1886EEPmhbPj3u6G9ynPhOuGjwZYKTdJfTbZDZQvnL/2C60p9G9x31Oaci/+1IPDAL+T7kT+v2Shnok9g3eGRlud7vbTb8PfPMt1OdK5/5ls4ZzHv189AlUuB99xk2hBEpgRwgQ6ETPBz/4wcVnP/vZyRL1C7/wC5N/KEFPFDtYTVmriHriPp0kcSIOojVCZpWrjXt1uqOY16GKI510OuxVU/sEeNJJh0w4rZoNmFfDW97ylqmjZlnVYY9CxrVOPXlQRvlad/eZdUWqePHc9pgPaHDYxNWGaLnLXe4ybdU3t5AuG5AQwPI71hFG2w5IlDviNPyFBo/iHflnvcU2rFIf2th4ZgelsTxmjR7xiEcszj///Kntb5KeATFL8NguXUdMRkgKtdNtjnHAnHQOuquNQfDIxbW/yWfqQMiibbDosC7mpS996eQic61rXesyRcHB78BYp9rO6CaTeFcN1rNoeYxD2rkv4Xy2IAOTsBFiZnbEPSmT35rUlfL6nt8Pzzi3LELdi/T4x7vW/rSTm970ptPv3vwFXZcB0A9HjUCF+1FD24hLoASuKARMhZteZzm38Iy1/Rd/8RcnKxQR5/9YrIn0CK50jjo71irCIh3pXq42vpeOOkKCyB+Flet5Zx3Wo3BKZyzdzAaMHTdh4CVYfPuXHf4/eRDKl/gjGITOTQTYXKSK15G4lA27g4jUuI+Et5CIGt0KUj+ECT/u5zznOcsQfNPf1CVxEx7C8E0ZEh50QCLu8TTISL7THswuREh+U2bX+IP6SFmUQx2zvmqH97jHPY7UizIdpDzLxOTx7mqD98gfG88E8W6gZmH8Ax/4wGmv9XXWYGTwlOc7oV1gUp9C56oZCoPS3Cd0MhbkPvXkev5MEuLqV3kSquP5om0zTHnufS8na7yBrNPLo/wG+t0zI+C4//3vPw30r3a1q63R6vqVgxCocD8Ivd5bAiVwQhMg4j7ykY9MbgjeKGmaXAfHks7flZAnmHV0FvjpVAkvHb9Ob+6LGnHtOzkJWAvM0llHSLCK6qAjEl3v5fO+bItK+Xvve987bQkpHuJj1VR+Klqek4fkadx9JvnZZPeZWM0Tn/jnIhWPg+ygEtEUIZJQmg996EMnP/9N8hweCY/FgITVNOyF8m4NQxYtpj34vK1bA4F35zvfeXHWWWdN7iNjnShr6jfhQQZY6jj1kPB4d7Uhkt/3vvctzjnnnIWZqjxXqwaGq2bL0m6EWVSOdU6zXanPhKsGTn5fcl/ahbaijtyb+z0/DAs55usK3MuFzkDC8+Z+oZlGvzf+Xz0lDW2FdT5reL7whS9M22CqQ7NY4rGFqDZC8G/bJpPfhn9EoMK9LaEESqAEDpGAjl0HplPkiqID5m6jAyfeCWOdp86Wf7FONZ0kK54OUucZIbPK1YabzCiqdKZEdabD01kbJLDYLzt07sSH75oFMG2+yVR+4iTAkpeE4y4YEXnr+N8nzrlIVT4C/zBFqrRsA0lYYMcq/P+3d6bNkhVlu644/+D1F/hNFFFRQRRlsIEGkVkEZGqZlLllHhoQWmhoBkFABJkHmQREQEQBWwghBJEgjPDz8Ztf5DecvtJz7zdZXbV37dq7m86d14ooVu3qqlyZV2ZRdz5557MoP33CeTF1Tt1zHjchQeyER66zlAkJ4yViKoIqQorycy3GGFHShY5f/vKXxVZx/vnnb/HWbdGeesUo3wHO24vVBsvcpZdeOrr88stH5E3PMWliOOseDKLe+S7lzLXo0/Qr50krb4wzPpfPcqb/+P9D/XnG+3DFhvGTMZU+QHhHyOf/VwQfsP/kPQQu+B5RHv/fY98A/58iIMEqGN55Xt93331nTisb3j2fFe49975tl4AEtgkBftQRouSa50eRDaH//Oc/57yk/BDyQ0sEH+HPjyuv8cBfyuv1JrRJVhsEOuItAo4fVCLBRJL50c0PNuXzo8uBTYYJw4knnliyzHCdugyeL8Z3H6C1XSXigUhcnSKR+lAXfsynOeYTqXX74DaNSOWaRAS5Qy/iAvYRLGFInbNBlXKpM+dp6zxsFxOxlB3OwwkJ5TNhmDVCOetmaDzdjIP7779/alvMuPawQkT90ydLbQ8MtwerDX2/cePGLUT7sI/rvzPZibjlzGvwgUsefA8WGrN8Lt+lnPme5XvNmcfQJpP6JGpejz/+/8Dkvi5j3GSVsZHvRs7p57SB/k6KSq7B+5joYMlBzBOdJzjA+8nCc9JJJ5U2k9mKiQHZvGjjpJWFtKP3s8K99xFg+yUggY+NANGoTZutNtgdOCPQ33rrrdGOO+5YIu/80PEe/p2oLD+M/OgRJWMjZS1m+KEcZ7XhR5AIfn6s+THlx5MoM2WxORFbBBlmUu4QSHz3fDaCYTG++5THj3MidCkHiwF1pG0RepwnZTtJWTlHpNK+tDG2hYiRlAuf+sDic8IJJ5SNqfXr9XPqTHl1+fUGVRjmOrNuUB1OSLgWk7P0ecpH3C1kZarrXj9n8rjQZmgmlVi91qxZs6TNtpm0pY/HtQduPGZtD23b1lYbNqPyHSBtYvqEsbWYO8FS7/ChrDwyZsOFM2UvZLVh5S7jnjNR79hkMu45T1rVYbLK/x/SV5zrCXay2lCf4cRiXDv4f0v2knBdPvfpT3+6iHf2BBCRf+WVV0Y77LBDSZ3J3ZtXr15drs8Egu8bEwLu1usxnoDCfTwXX5WABCTwsRDgh5hl8ueee678UJKikh9WfsCJfPPgBxMxj1DMDz0/kvxNBDRigPM4qw0/4ojx/OATYeUW7dhbchOcCBPKHyeu4rvnGvnRR4DmcxEN8/nuAVxbDFIO9Uq2k5TDuU6FN1/nTCNSKY+J0l133TV66KGH5itui3/jc4gb6hmGnJkY1O3nGrNGD8dNSBBFs1iZtmhA9UI9Kbv77rtHZEfBt82KQsZWzkvxsw/bAy/E6rA9MKPvZz22ltWG78j7778/uuKKK8r3q+734binDYtNSVp/D+rv7yxWm9hk6jomOh4hzjhFKI+z0WWCnc/zvaSvmKBkfHNmXAwnw/nu0QY+z5n6kImGQMO5555b/j8zyeJDvzPBJCLP+4nKZ3Vw1jGx0j6ncF9pPWp7JCCBFUeAH8O//e1vRSzyYxaBSwQMIc8PG35SRD8/uhFaCAisNogmfngjCIZWG6Jg2HfIMFMLen54I64os/7RHieuiGBTN66TOlI2kWLqwmM+wVB3HEv4XD8PykvGnpST9tWfm+95LVIpDyFGLv/dd999jlnYwW2xB4KX+qbtPEfkh1sYzCqAI4pqJjyfxco0bBtjYu3atSPyt8O5Xs3JuKF/wyfnSas0w/LH/T2uPVyLCWjdx/BbKPI8rvz6tUntYWymLZzH2URef/31Ed5/JjbjVlWWc9zXdeb5clltmOxnbGZ8xiZTs4bHMC0q9aCvmDimDM70Fdm0Mr5zDiNW8XbbbbfRk08+OVq1alWZxPIdITBB9pn33nuv2AexZz344INlVYA9Jzm4YR4HQQWP/yWgcP9fFj6TgAQk0BSBiGx+RPODyg8sIoeIKdFHIu74U2O7QJwgtvBP8/mIst/+9rdFLJFhhR9g3keknfISXc4PPteKuIoY5TP8iA8PrD6pX8617z6iAcGwUGQNEZMyOFMfyqeuKYczba2zZwzrlL+ZrGB/OOOMM+Y4hAc2jKGoI0I5TtSkvHFnVkZS19SdCGS45TzJyjCuzOFrwwkJ11mslYk0p0zw5rMoTLKm4KmmD+pHxNuwrtP8XY/rjLlhe+C2WIvK8NqT2hMbGe3he/LII4+Mbr311hKhHpYx6e+Me8ZT2jDruB9eY5xFhQl2LCrpBxjNN+Fhsj+0yRDtzj6UCHHKG7fqxqSUCV/alzPlknnnwgsvHN14441lPw/jge/3Y489Vr6z9B0TTuxZrEoRCPjLX/4y4qZP5MaHN/8Pe/HFF8v/p7jD6zBX/pBLL38r3HvpadspAQl0QSDilh/RiAaEIj+O+Jc5+Jv35W6p/DBjafnpT39aNpARycfHjcc+wjI/4vGeI0LyQx1hirjK+znzmXHiKoIhQpYzwgPBlM/zWeo1XIofduIw+wx1om1ETlNnysxkpf48wp275uLxHx5DyxEsEZTjRGqYDMuY9Ddlh1kYxMoQbrSdNsy6QXWxViYinddff33hNKne416fZE1ZbqvNYtszrq7TvDZsD+lSsavsuuuuZWxmTC00LsddK+M+38uljPth+ZlgU3b9WKzVZmiToY78v4BJAW3PY9x3k/cyfq+66qrRzjvvXLLIwJOoOxllDjzwwDIB4HtOqsjhwYohG/iZ7LKPAAsSBxNmou9E3hea3A/LXIl/K9xXYq/aJglIQAIVgaG45QcWPzv+YiJdCG5+JIl+YR059dRTS4YH/o3X+eHmMzx4LeKSM494zxHMQzHP5/O+fG6c/xfhgXjPdTgjQIgY5nMpZ9yPftXcUueIo5xpG1HtCC/KYvJBlG+ccK/Ly3Mi0tgFamFExBIRh5CpH4u12iSKWvMbbkpoX+wAADkWSURBVFBN+eOin6njfOdJlg4mcKw8ILjCelwfzVf28N8mWVPShpyXYrWZ1B5WSjJW6G+EH2N8sQd3T77llltG69ev32KDN2OQsmlHxtR80e1J115o3Kc/OC807sddg+9kPV55nolt+oAzzIabT1MedczG5oxPysnEn/Z//vOfHz3++OOFFZ+7+OKLR2SLwSLDDezoZyLsPOe9pMzl5mdHHHFEydJz0UUXzaW2ZLWCsUiWGSaUTF753rGKRoas3g+Fe+8jwPZLQAJdEohQRCDzY8wPMZYYRDh/I1L5YY5Hmx9nHvz41p553hvveQQMIiPClUlDfuxzLSJqCAXeH+HDD/s4cYV4zeeoI2UhMGpBw3MmIfMd1JkJCJ9POQgHxDvioRYxC22oHV4nN+Gh3DyWw2oTzjW/7DlI+8OPCdUsByIJ7zYTtr322muO9WL6aNrrTrKmjFvFmNVqs1wWFSacazZn10GAjrNoMBFkXGZscsZGVY9p+mi+TZjzccu4r6+RcZ++n2bcj7tGvvsZq5wXa7Xh/wswYGwSJef/FdxFNqt6ZIuhTDajkjHry1/+8ujtt98e3XPPPUWIE4knqs4qBH2dsUHQgCw0+ONpO5Nt+GO9oZ6XXHLJFnnnx7VxJb+mcF/JvWvbJCABCSyCQJbJ+YFkoyp3f2UDJyICOwiRL35osXpg4+AHFqGCDYeoHO/js/yY80NcCwyex3uOKIog4cz7saEQTauFz6QoINHcfC7XQ+QOr4cAn+/44IMPSkT19NNPnxPclIdopX21mKcui1mm31pWm0Q/a348R/wM24+YmuZYt25diYyS+SPHUvso5Sx0HlpT4M9jOa02sajUzBCV81mzsI3BetyNqCa1iVWsXCOTLdIt1mOaPmI1Y5Yj476+xizjfty1aSsT9/DPeT6rTT7zj3/8owh2/OhY45jsnHLKKaM77rijMNx///2LsMe3Dg8mM1k9oP5M2B944IESNMgElLFLxB2LDIKfu/kyKeC9s644jWt3i68p3FvsNessAQlIYBsSQMRhCcmPOWdurMKPKFFAxBdClcgp2SIQKkTcicQnGo2QyRI9/46A4UGknQkBP+BcoxYlLI8jBIbCZ5y/mA24fJbrUD/OeGYTkc71sE0gRjiIziIIXnrppY9sZh3XXoQedanFPGVGgEzTHbSRNtUcl8tqM2lDJ3WseQ/3HCC+DjrooGJzWCjKvdQ+moZR3rO1rTa0mz7NeONMv2B3Yewynr773e+WfOMI7YyZ1G/aM2Mw14iYp2zGUcYkZ74Hs1xjlnE/bd1533xWGwQ490Fgws3/A1577bXyPWY8sbpFJixWcbA0sV+G9/Dd5eZzCHRWKEh3e/TRR89V6cwzzyyTyMMPP7y8n3Lgj1jn8+Sp/8xnPjP3/h6fKNx77HXbLAEJSGCJBBA+LJXXgp7IG0Iiy+VE3RFCbCojOp/MKUS0I2bGec8RNUwIuAZCN++NKI+/uBY+4/zFXJ/PRjDxnFR0iPeIWaLNLOsjnOY7qMswIkm5iI9azPN8e7HasKGzZsdzJiVpO/wQQ+Sy574BsxxL7aPFXDN2inriQ58sp9WGVaOf/exnJVUhHm2uhXhlzNT9zArMrJHftKMel1i2GIP1mF7sKk9Y1uOe+nOd4bjnOpS/2CxJXAOrDTYzNnb/6Ec/KnYzxsFTTz01Ou+888q/MYHne4WIx8/Od+InP/lJWeWgrYw7bHe8ThSeCPuazdYkWFMuEx4CAwh+xu3BBx9cIu9E4PnOjvu+p/0r/axwX+k9bPskIAEJbEMCeNprYcVmNP7GZsIPMT/6CJ6ddtqpCHrECv9Wb6BNdLsWMYjNRNrjL66FT/zF9WfG+YuHd4p8+OGH55bua2EWAb4QunERye3ZajPc0IkNASFF1LRmB++lbFBdSh8txLz+dwQgk7t6zPF8VqsN4/D4448veduzb4IxW09QKZ9rYhEbjpls1K7rOM3z2HnqMc2G0NrOk/7JxHiacvOeetxTf65D+Ux66okc14DdfAcbuoma8z6+k1jOLrvssrLBmYk7ov22224bXXDBBeU1roPV7hvf+EYR66zO8f1njPD/BHLkM7FH/JO9Z5dddin3lYA/r7Myhg0JFkxGmdTDvtdD4d5rz9tuCUhAAtuIAN55frwjrojWEZ1HECHasWBw7LjjjiWNXMRDLCuJGhNpj3iJ2EjkLf7iWvggVvK+fG7oLyYqSF3IX5/65UzUb5zXfaEoZeqdcjhnMlILPer0cVttyFGOaDzyyCM/sjIBx2xQDTtYMtFCbM1yzNpHs1xrVqvNL37xi8LjnHPOmfeyiMzs6aj7mQ/VfczzWa02mZTUY5oJBNFp+oT+oHzORK8Xe1A+43JYPpOP+nvD89io4Io45/q0/4UXXiibRxkXjBcsMDyHDx53UkBSHp/HOocIR7gz8eF1yuEgdzvRdyL0/P+CCSY+efbakLYVsf7tb3+7CHdWFFgB6fVQuPfa87ZbAhKQwMdMgOhZIpl45llSJwoXmwzCgh92ckITxePHH5EZsYFgwh/Pe3hEbCTSHn9xLUwQHYidvJ8oHhsQn3766S3EDwIh9Ys4YwKCB7oWZ5S1kHBCyGyPVpvrrrtu9KUvfWm0evXqLUYDE5BMmjjDcTGbiLcocMwL0/QRrBGDs3jA60vGopK+5FxbbfD/c+dYJjOzRs4Rr3X5PF9Oq02dzSV9Q78Q/c6YjpjHZrLYY3hTpVyDKD9jnA3r3CQJEY7/nO8HDyZz/Dv9yX0iWMEhkwwCHK6kd0RsM0nm33g/3z3E/4YNG8r3mL0mfA9ZBbjiiitKWUT3yT7DyhDReDLYEO0nwt/roXDvtedttwQkIIHtkABRcgQBgocUhX//+9+LYETEIxaIxuGVJxc0ghOBFVGMgOFzRPIR8REwCJr4ziPeajFPDnOW7pkg1II8KS1rTNSjXj3geogbJhv1Z3nONRc6Pm6rDf52fMpYEqY5tsUG1XF9VHvA07ezesDrdtKfRH/pR1IQ3n///SX/OGPmU5/61JwYjk2r/uy0z7eF1YZIeD2meZ6Jb3hxRhTPcjBh4+7KrJadffbZZeMplhYmDIjpPfbYo5TNd/GPf/xjWUmCGZF03oM97oADDijCHQsMop1x9/3vf798b956660i1uu6sRGV7yA2G777r7zyShHvvM5NnXo9FO699rztloAEJNAQAYQb4ur2228v/lYEBKKXKCwChage4hsxgTWByCEZbSLmP/zwwzlhjYBBmBEBJPJH9ourr756dNZZZxW/N9fhQeRwKMaJ/BLlHx7YQPK5nFuw2nBnUCKoEalwiS1i2MZJfyPWEL+JzoZ5NhHDMMxjbZpU1qTXF/KAR5xS/1k84Fz3x5vvoMv4wbJFW2gHD56nLZSftizG5jRsF8y2ttWGMZ8+SXuIgNdt4DkR8IVWM15//fXClRSNiGzGC5MA+v35558vN0piAsw1yQzDd4AVNCbX2Gf4fvKdZGLO60ySmewSSX/nnXdGxx577Ih0kvBmjDB5oy8y6UH0c/AdZ5KSVbUh1x7+Vrj30Mu2UQISkMAKIYCASz51fty5syU+dDbBknGCZXtEEQdeYFLHIR6IKCNOEPsRYwh7xDvCks/x+pNPPjm38W1cLnasPETSa0GP+En+6Roz9aPcCHnO25vVhnSYJ510UhFgiDvqSKSUNkXg0dZZNgNmg2pEI+dpNxHXHCc9Z8KGbYpy84B37QFPOxayMuG9Jv0j/T8uup62ZOxwJoocEZ/zLJzq9m1tqw1jsm4D3BDCTEjTBpjxncpeDjLSsGmX78qNN95YhDWrE4hnBDfvw3LE5lOi70xi+T4ecsghRZzTJ4hz7HBMComW857TTjutCHqyyLC3gO8yqyg5uC6CHx89Z0Q/kyrqQLR+FitQym75rHBvufesuwQkIAEJfIQAS/pEBBHoCAUEAnYbon08ENgIFKw2eHARX8m0greZf0eQRPDxXoQrS/sc43KxI3b5XC3med6C1YZIJqkg4ZAjqxsReIg7jklM8rlpzvQH5dVlT7OJeJqyeQ99TCQ7Qj7XqT3gtIN+rUU2Kw+Mm2uuuWbaS5UUiyk/Zz6c8rkGj6VGhxN1rieARLqp/3DMzeLNhz9l1/2CEGflCnHMRPnSSy+dGyN8B8gagwCPCOeOqGxEZdKMOGeixKSKTd+MLfZQvPHGG6OvfOUrJTc+vPCsk5Hm8ssvH915550lms4N3/DBE7VnsoR16eWXXy59wp4YUnUS7T/uuOOm7qeV9kaF+0rrUdsjAQlIQAJliR0MiAZul86yOxveyCmPVxaBT0QPoYeoI9KHIHjvvfeKx5ml/KS2RNBgmxkK1+Sl5zq50VQtrlqw2hxzzDFbCHfaMzzixY9AhQnRW4RjhCrPaybDMib9vdAG1XBfygZV+noo5onYI6wpn02pa9euHXH32HoSM6nOk16HUwRwWGXPRThxnmb/w6Rr8PrWttrkLspEyvl+/O53vysbxM8999w5W81NN91UrGUnnnhi2WtC5JwxgR8d3rDMRJkzgh8WeNb5TuKF5zrcpZYIPt852sX1sNPAiVUyPsMmVVZF9tp8Qydu2kT2mV4PhXuvPW+7JSABCXRKgGglkUmW4NnohmDHIoEwIGMFAoPlfyKlX/va14qAwM/La4hxNs8izhBpiMkIMoQrFoN44Fuw2rAace211xYGtGMxEds6935E8ZAJZU7aFzDf8EMAMgmK+KX85d6gih+b8rnOrbfeOsK/TZR3XCS7js7PV+9x/zacmHBNXsukIedZJj3D6y2n1YbN4Yhx0jKSk/3rX/96mQCTopEbLSGu6RfuckpUfPfddy92GsYFN1tiVYvvBGkh+S4QuWeViwxRROr5Hm3atKlYbJggJFXkYYcdVibCCH8m2exn2WeffUoUH49774fCvfcRYPslIAEJdE6AKB/L8EQKuRkMvnisAAgJon8s+7PhEUsBwj1iHaHFBjteZzKAiMGmwesR85yJ5ieKu71ZbU4//fTiG6beCEoinIitiEnqP87yM2nIkEIytgt4UCZieMiEa8BuMcfW2qCKQN24cWOxZbACQ33rlRPawRihzvVjKUKbiQmTxjDizBhk4hf2TCg/+f83UC+G0/C9s1ptGNeIbTZv034mdaQPJZ86Exk2tfJ9INvMvvvuO8JuhGinX0n/SMaiJ554ouzrYIWLSTAbT2kX/nZSs5IC8sorrywTZtqPzQaurGAxscbTjqUm919gj8j69etLfvdhO3v5W+HeS0/bTglIQAISmIoAIgWxg1i/7777SmSdZX0i7ogLBD0CC5GHIMcjj/UBwYXQ4nNYACKGEfWkwKvFPO+tN0F+XFYbbjR08sknl+gocGqrB2KSByKzrjvPEVdMdKY5mKxklSJCFf8zKxoRqSm/ZjJN2dhd4MsEIfUdblDNRGTSBtVHH320CM4zzjhj4iURmbWY5zl2ECZxtZjneSZpEwub8A+MufDJmVUGxlT4cGYiyFhcysEYZ3wO20SZtIExji0F33pWOt59990i1tl0yioNYp3xQrQdQY43nbHEJnHKpW+JkCP4uYkS5dJXRNcZE+yvIKKP7QUrDG0mEs/3irHBJuNsVuUOx/DhOnwO602vh8K915633RKQgAQksGgCWBHY9MpGRsQJEUlECUIj9geELpHICFNEPr5exBJiLyITITkUrgiTHNvCakM7Vq1aVTKA5LrDcywxqTcCC8GGqEJI5rEYSwwsiJ5SJhxT9kJMhnUb9zfCD1FKPfOgfFZPagHMczZf4m0nOwr7IBZzEJHOPQcigJk0LKfVZrjKQDty0yjGTsbPUiYMdZtjtWHlBPsYfcr4ZW8IwpnVKIQ5/86EFRHODcwYR1jEmOgi1Bn7RN75fiD4mQgQNScHPBu9EeKI7z333LOIeerPyg6TAG64RJpWrsceDMQ8fcVr+OCxNbFJtddD4d5rz9tuCUhAAhJYFgJEfRFwv/rVr4ooYaMjApQoOmIGIYcAQ7xgBcAqgFBBpCNg47VGZCJOIsYiMhFBOZbbaoOAok4IKK6Xay4U+R7eVZW6Y4eIJSblIO4XY4mhjKGYX4hJ2Cx0nrRBlUwmWIaoM/3CY6H2T7rWtrDasJqTuwdnwsP4y0Qx7DnP0o5nnnmmTDzJAMNGUKLhX/ziF0s2GIQ94p0xzP4IxD39y5glpSPZYBDXpJjEA89rrEbRh1hrYJuVK+qGfYaoOwKf+yjwncCmRjrJHXbYoXyHiOyz0nXUUUeV7xHfpXqCO6kvVurrCveV2rO2SwISkIAEPlYCES9YCIiSEpHnhjNsziMizw18iGYjZBApCK3kpibaHlGGSB6KecRQbVWZ1WqDf5nsINzBcqmRbyYVRJzrKDfWCHJw07ZZBSWibSjmp2EyTefTN5dddtnohz/8YWk/DGgDE6+I+JzrCdQ0Zdfv2dpWm3oFA/7hNcxpzzhiojbpYOLBmOQ95GTHpoNAJ/r91FNPlTuk0o+M41NPPbVE3ImIw+bmm28uUXTGLhM2ViTIHkP/wTSTQ/5mkyqpQbHSMNlj8osvnvstfPWrXy12GVZAhgKdjap8R7Ce9Xoo3HvtedstAQlIQALbnABihUdypyOyEDVE47EQsDkUUY+QiZjP67wHYclniNLXVhUEGSKLyGaOaa02GzZsKPnLuV6O5Yp8IygR77WYpw25EymiOJOSoUhLXcadk3s/5U7LZFgW0WQ2SLLpsj5oP/WsH4jXiPich8zrMhZ6vrWtNon+ZwKYM3swYB7unBH4HKRlZELI5BKBTftyMP6YZN5www3FzoJlhgf7JGDImCUrExF3ouJ447FDsaJBphjKJnUkqSU5E3HnWlhpGCeka2UiiajnIMc7EzQmPa+99lp5nfKw29CGXg+Fe689b7slIAEJSGC7IIDg4Zby9SZObAYIpWwCRcDwNxYFIp68jg0HMRlhjFDCjlBHtxH32BByjLPaEBXFw8xdVBFxiNJxFotEvmuxPGvkm8wtKSeCElGY60dULibKDZ+UmfNCTLB6MAnCKrPQwWShFvI8p3z6IkI+53H8Fiqff4/Yrq9DWxC2KTtnrstEb7EHqzOUWWe1YcKHl527DDOmEMt40plk0hZSPSKqubssNhbGFRYX/o2UjUwSGXuMLz5DX5BtBo88kwK860TS6U/GMGVxp1VsMKRaZSxTDtYZ7oqKz52JHGObFRvsOewdIcUk7e75ULj33Pu2XQISkIAEtksCRCwRb4jliNAXX3yxiBhsDAgtIrbYGhBcCF1EEn5jPNBYc/gcXmgi9rWYR/jVwpJ0iFdffXWJlCYVIqKp/gzPiZIPj+WKfFMugi9tjZinjUMxn9SAw7qM+xuOtX1nyIQJ0sEHHzzab7/9ZrJfZLJVC+0WrTaZlJHL/tVXXy2TBFYjEPD0C8IaewoZc5ho0iesGt1yyy0lxzt9QrtZLWJPB/sJnn322dIlpHNkIyorOj//+c/LXVj5d6wzcMP6wnhkAzfReTakMn6xxTChIuvPEUccUaL6ROOZZPZ8KNx77n3bLgEJSEACTREgOhxxi+ghakrUFzFPxBohiZgniplNsNgKiNjyPj7L5yLME9nGx4zf+/bbby/2hXFZWZgUDMX8OK/xQpHvXHO4GjCuI3LzIuodMY+YZPKRunBm0jJt9BkWTGgoE/HJJAhxCjvKSv14PusdTlu02nAHU/oE4U2km8nMps03SDr00ENHzz//fIl2M7FjPLEZlvfefffdJQrP+7C9EI2HJ1F2Uqj++Mc/LtYYJpMId6LniHsi61hn2FsAe8Q7+wr4rMf8BBTu8/PxXyUgAQlIQALbNQGEMmI8ohyBy98ILCKkiCbEPGn62PyHMCW6yYFo4r18BiHFv++xxx4fsWXErsJmW66RB5+J2K0F7zixW0e+U796NSBiebgaMA48lonUOXVhUoJ4px55TDMxwFe9evXqcldQJgSUl/pxZuJAnVI/ysb3Pe0koa5/q1Yb+g77DOk0meARQWejKl52bFZM6Mg+g1i/5557Cn+sMBwIczLLwI8bNzFhpCzKZNJHlB57DuWQn50zKyBMHCiPskk9SqSdaDw2mt4PhXvvI8D2S0ACEpDAiiOAWE+O8Yhb8s8T0USA4aXGl8xz7k6JsMIKg5UBCwPWB8QxD4QW4rV+IF4pK2I311iM2K0j3xHLXA/BNhTL42w6dadlYkA5qQsbGWubUAR9vbGxFu51eXnOJGEo5rF50P5azDNJYMVjscf2YrWJderII48s2V04MxbwlNNPTGAYE6SDZKLI5O6xxx4rmWXIPsMKA+1n3PFeUqLCmffSlwh08q9zZkMr0X3GH5/hvPfee48efPDBknby6aefLszx07OihKedOnzrW98qHvnFMl5p71e4r7QetT0SkIAEJCCBMQSy8THCljNZQNhgGuFGVBjBT1QV7zy5vIm4Y4OoU07OtylzKWK3rmPEPGdWDoZifpxNp242Xmwit7WYRzgyMUDEI7zZQEmGEzZKhkFdxrjn+O4pp64fkwTsSbWY5xpMjGY5trXVhv0TCO7TTjutTMhIEYqvnAkTXLC4INzZ6Iz3HMsWqw6/+c1vShvfe++9ciMysvOQXjPHcccdV8rhHgc/+MEPSopJWK9bt27EnWpZBeLmTSeddFKJwvM3Vh0OJoVvvvnmaK/Nd3Alkww2rvlSWeaaK/2scF/pPWz7JCABCUhAAvMQYGMike4IeiLzbA4k0o54R0wj6vAhI0wR0ESc2bBItDSRecTspPznSxW7senUIjw2nVosj7Pp1E3PxCDlsBET2xDlD33/CO+FIv0pm0lCbooUjvBAiNb14/ms4nNrWm3IroOn/a677hqdd955RZSzogIvbFYwIu0jKwtM6rhjKtF12sLGU8YLG32Z6OF7p+1sdEXwE1XHJ0/9WRkhQwyin3H0yCOPlKg9d0LlzqmHHHLI6PHHHx9deOGFZfxhlWHSRj30v/93tCnc863zLAEJSEACEpBAIcAGQsQcwhVhnggzIgoLBNYFIusc+OIRYTwQeIgzIt0R9JOsNnw2Ypf3IqYXI3Zj04kIRzAzwYglJmcmGZM86ffff38RhETdsyGX8lKfbMitxfdCkX7axYHYpMy6ftQRfqkbZ8pOlPm/n5z+v8thtaEf2UiKuM7xxhtvlP5k3wN517HMkC6U97Evgr/pa/K3Y2VBvBOtZ9wcffTRJfMLUXzsLbSPfiGyzthgFQI/OykmidhTLtdgHN1xxx3FqsUmWD7D5lZWRfC9zzrhSZtWylnhvlJ60nZIQAISkIAEtiIBxDqR1QhyRDapJBFriDjEMSIdIUhkFsGGmF+M1QZRO07sIvZq8TxJ7HLtoVDGk15vXOWzrCQQCUagIkbXr18/llwd6Y+YnyXSXxeePOqJzHOGbcR82ok/f9ZjMVYb+o1JBn7yF154odx8Cb85qyS33XZbuYkSkXPqyAoLmWNYlTnooINKlJ2+YYJ30UUXlTMTG4Q9G0qxJWGvIYqPoEek0z9E6xH9a9euLRYcxhVjBpHOZtVnnnlmxJ1TicRfcMEFJco/K4uV9jmF+0rrUdsjAQlIQAIS2IYE8Dsj4hG2icwTSccbjWjDRoJNAqtNovOLtdogvoeCvBa7iVyPE7sIUOoWoUw5TA7wpBPpJlMKfmvKYKLBqsJ8Rx3pj5gnOsxnI7opa75I/7B8Nn3W9aNcLCpDMT/rTZe43iSrDe3h5kls1P39739fNogirPGiI9SxqDBBI/pO+9g8iiUK4U4KUSZFTNyw2SDgSbFJ32MTwjqD/YXMMETZ8azzHE87Xnn2V7CR9dhjjy1tZeLHRABRz91WidLjrYeDx38JKNwdCRKQgAQkIAEJLCsBotKIdwQoDwQ9Qg2xTVSdg4wjHGS1iWhejNUGsRyxm/O0YhdhSv2IMieTDlFfNuYywaA+tQinXvMdRPqpQz25WGr2GVYyUh5nOGJTYbWgniQgnFk9mOWgn7BE4UdnAoZIJ8c6App/u+GGG0r+f6wqZIPh7qcIctrLdckUw5lJCgKbSRATJf6dzDRYXvC+s8rAZlf86+yNgDHXwwrDjZ7Ya8D1TjnllDIpYPLESgCTAMqZtX2zMNneP6Nw3957yPpJQAISkIAEVggBrCe1mCeSi60DYYxoxAONoMc2wQ17Fmu1wfIxFLtcE7Fbi/Fa7CJO+Zv0g0wsEPAR4dSV59SvFsuUhYCd76g35GZiQdlE+vl8/SDKPM2BoE6dIuZZPUA01/Xj+UIrB7nexRdfPLryyivnsur8+c9/Hj3xxBPFp07ZRMOJ9BNdZ8JDjnYi8ZdccsnolVdeKRMyovlsboUjEXSsMmQeol0vv/zyaMOGDaMPPvhgrh94Tp3ZC8F74IIFh7axwZjMNKzUcCja01P/PSvcP8rDvyQgAQlIQAIS2IYEsEsMrTakqUSwsTk03mpsLZ/97GeLQCXCO21WG2wd84ldrsGmSPKR4+Ued+SusxHLnIkI12IZIU5mlPmORPoj5DnTdtoWIZ9I/7SbMbO6QVmZtLCagNe8rh/lsol00oEPnfoTVUekn3DCCYUbN1fC4sQKApMBssLQPwh8LEZs8OXfWK1g9YQbJVGX/fffv/TRueeeW8Q+4h87DXf0JYrO57HWMDGIOL/vvvvKnggmRffee++I9JK5Adikevf2usK9tx63vRKQgAQkIIHtnACRc2wWCG4esdqQupIILd55os8ciHnEICJ1WqsNUe86sk5aQoQlwppy6gdR5HGpCPFq12KZ51hEEOAR3zynXPLgTzpoa+qS8mhznX0m5U2bfWa4ckC5PJgMZILAmb9vvvnm0caNG0fXXnttYfnNb36z+OsR6XB6/fXXy51liYjjc1+zZk3ZxIrdhUg7XncEN7YjouSI7tNPP73YZ5gA3HLLLWVjKneoxf5Dv9EObE0IefjSXjau0r/44h944IFynQj6Sex6fF3h3mOv22YJSEACEpBAgwTefffdIuKJdiPmsdoQ4UUIEoEn+kwEH6sN0V8E+DRZbYioYwHhjp7YNzJh4IyVJ1aUCHpE77gbNiFGI74jlhH41KcWzIhV6jvfUWefSSQdkY+Ipx4R8+M25E4ql3amLOqHZQWRTzpGMsgQQWdixHu4qRL+8zPPPLMwIEsMNiYyypD1Za/NN0ZCmHOTJepQrxDgZWfi9bnPfa7YYxD1CH8YPPzww0XUs0EVYc6GWKLuROy5Bisf9Cvi32NLAgr3LZn4igQkIAEJSEACjRBAdBJxR2Qj5jdt2lQ2cSIyEZOIXSK9iHuEJOLxk2OsNs8///xon332KUKU9yDWOWJFqcU8zyk7Qj7ncVYbJhIR8TkzGSASHzGPCEfcY9uZ7xiXfQa/OeXUYp6ymdwsdDAReu2114pfnffyN+3lTrCkb2SlgJSZtAuxzorEWWedVdp+/fXXF9540mkXQh5bEp55JiVXXXVVidbjnyfKjsVm3MEk4dJLLy1Rfxh4zE9A4T4/H/9VAhKQgAQkIIGGCOC/RsjiW8evTeQYQUraQywp+KoRtWweRZhitcHDjS0E6wYiFbHP+yknkW3OtSAmej0U80wWIuJzHme1QRwzyYiQR7wS6efatZjn+bjIft0dCPe6HJ5jORlmn+Hv+aL8RL2Z0Jx88snlzqhhgh0mgvqmm24q2WWIliPUsRgRsSeazr+df/755WZJ5G+HK69zl1V44rlH+JNlhnay8RWbDcezzz5bXosViBtieYwnoHAfz8VXJSABCUhAAhJYAQQQ6Ihb0kfiQccfj8jcaaedRtzdk9d5jWg30XHE+IEHHjjae++9R//zP/8z9xqCOOkYI+gR87UwxyozFPPTWm0QwIj3WoRTFhMNrlNH1KnXfMcw+wxlIpTrKD9toN3cdOnss88udz7F755sOWR24W6od955Z7kUqRqpDxMj6rlu3boSYceLz0Sk9qPja0ek8xr2F6Lt2GV23nnnMlkiGw3iHT97DlYT6ItMEvK6548SULh/lId/SUACEpCABCSwwgkg0PFyP/XUU0U84uUm+k50Hn81WVmIqJOSEnGLFScRdwQ+whjxihhFmBOpjpjnjMiOkF2q1QaveC3meU7ZQzG/UPaV1KP2uBMRJzqPGKdcNpySb5+7l9JGov2bNluPyO3OpIQHqxb40FmRWLVqVbHDnHPOOYXXQw89VHLC44M/6qijSpYaViHYP0AeeCLybCBm4ysZYxD3e+65Z7kBFJ/FXpM8/yt8CM7cPIX7zOj8oAQkIAEJSEACK4kAgp2oPDcSIgKMMOfunVhMEPCIY4QoDyLDCHtEO0IUEZrsMIh6rDcI/gh6xDzvy7EUqw2R/6GYZ2VhKObj0881h2cENpYiouq0FzFOZB5hzp1TuQ53VUV0M7E55phjipjnPUTkEfdYYvC7sz+AyDo53En3yAoCkwJY4X1nT8A999xTIvBE4R988MHyOl56j+kJKNynZ+U7JSABCUhAAhLoiABinBs4IWpfeumlItIRn6SHxDbCxkxyo+PhRqCSBx3xiqgncsznkx2GrCn4vCPkc6497Eux2tR3kk1UHSHOhIFr5YG1Z7hxFSsRqw2IbSxCiHRWHqgbGWPwoCPimcDwXnKzw4ByuGkWExUmJVhxONiQSmrIfffdt2wMRswTzWdShBUn1hosS5RLRP/QQw/taGTN3lSF++zs/KQEJCABCUhAAp0SePvtt4twffPNN4s4JTKPOMd/jg0HSwhCnL+JSiPmiTojjkkRGXHNv0fE50yEOkcsLkPv/DRZbRDKfC7XIkpPpB/xHiHPqgIrCWxexa5y9913l/zspHqkbUTHEeSsOJBhhvIQ69w5lUw8bCQlrSRlknGGVYgjjjiirFYQhcdDzwoGEfoLL7yw7C1gQsAmWDYNc+1Pbl618JiOgMJ9Ok6+SwISkIAEJCABCUwkgEhH0JKXHIsIPnpEMFF5ovbYZniN9xCNT2rKiPREzBHZCH9sL3kgsrNpNBWY1WrD9cloEzH/3HPPlXoyuWDl4NFHHy1CHe85Qh07zH777ZfLFvGNB54VCN7DTZkQ3lh1iMDvtttuowMOOKBMUGjv008/XbzwbEb99a9/Xew2XIeJD5OZhbz5cxf2SSGgcHcgSEACEpCABCQgga1EABHP3UcR8Nzgicg1thTEORlj+JuoOmKWTDeI9aRFxJYSkY0oTkQ+56HoncVq84c//KFcm/SOiHj869/73veKR58JBzdmIuKO//+GG26Yo0T0HpsQPnmi7Ahz6kg71q5dW9rHZlP87/jY2dT76quvllUH6s/Kwy677DJXnk+mI6Bwn46T75KABCQgAQlIQALLQgB7ClaaP/3pT8Vmg3hGCOMLJxpPdB2bC3/jmSenOsIY7zlRbCw5vJ9oeB2V5zmbYutjGqsNQhoPOtF/yifbDDYZrC+8xrW4ARN1It87Xn6E/B577FGsM/joaQO+eDazsikWOxCRemw0ROXXrFlThP3GjRtL+knaT3s8FkdA4b44Xr5bAhKQgAQkIAEJLCsBxDURaHzyROgRyLfeemvxneMPx3/OexC6bHjFYrLjjjsWkU6UG5sKGW2wvxB1R4jzSFYbIuZDkRyrDWL73nvvHa1fv360evXqItxJk8mNl0jzSF1YFWDVgNewvhx++OHF8sOKAdlhiPwTVccXT+YZVgrYdIodCF/7mWeeWSYeRPNpB1Ybj9kIKNxn4+anJCABCUhAAhKQwFYlgO+dHOtEuG+88cY5AU0edwQ7Yh/xjLgm0o5QRqTz7whkcsAj5ol+I/aJyCPoOX9ysy+dzDAc3M0Uz/pFF11UxDk2Hu4iSy728847b/TEE0/MvZc6vf/++8Umg/0FHzzvI2LPgVWGunB31WuuuaZknKF+RPH333//slm3vNH/zERA4T4TNj8kAQlIQAISkIAEtj2Bf//730WsYz/ZtPnmSP93cypGrCxkmfnXv/5VItvYXRD1eOVJxUjGF0Q21hs+z/uJuCPeazGP/YXPHnbYYaVcsszgcydzDP70yy+/vKwIUPbQX3/ttdeWayPYkwceOkToSSmJ3ecTn/jEtge2wq6ocF9hHWpzJCABCUhAAhLojwBi+p133ik3USI6T2QdDz3pJhHsCHei4UTTv/CFL5T87jzn3z788MNyx1QEPl50fOqxyPBvf/3rX4t/feeddx5xl1lSRJJRBgsMn7n44ouL1QaBzmtYZthUi6WGOpAb3mN5CCjcl4ejpUhAAhKQgAQkIIHthgDCG987whohj33mySefLJFyou145bG3sMEVDzs2GzaVIvCxumCzwSbDjaWwuSD2ybtONJ1sMoh4PscNpg466KC5dnPTp1WrVpXMNBdccMHc6z5ZHgIK9+XhaCkSkIAEJCABCUhguyaADQZhju8dAU52Gx5krCGLDH55hDx3QUXIb9iwoUTjyQAztMbUDeWzCH0EPxMF7rCKL99j+Qko3JefqSVKQAISkIAEJCCBZghgs8EfT0aa6667rnjf2ayK1QWrDHabdevWlZzs3Fxp1113HR1//PEj7oz6ne98Z/TAAw+UKDyWGGw2HluPgMJ967G1ZAlIQAISkIAEJNAcAdJL/uc//yn+d9JFEnFHyB988MGjl19+uWxSje+djavJTtNcQxussMK9wU6zyhKQgAQkIAEJSEAC/RH4P/012RZLQAISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRJQuHfY6TZZAhKQgAQkIAEJSKA9Agr39vrMGktAAhKQgAQkIAEJdEhA4d5hp9tkCUhAAhKQgAQkIIH2CCjc2+szaywBCUhAAhKQgAQk0CEBhXuHnW6TJSABCUhAAhKQgATaI6Bwb6/PrLEEJCABCUhAAhKQQIcEFO4ddrpNloAEJCABCUhAAhJoj4DCvb0+s8YSkIAEJCABCUhAAh0SULh32Ok2WQISkIAEJCABCUigPQIK9/b6zBpLQAISkIAEJCABCXRIQOHeYafbZAlIQAISkIAEJCCB9ggo3NvrM2ssAQlIQAISkIAEJNAhAYV7h51ukyUgAQlIQAISkIAE2iOgcG+vz6yxBCQgAQlIQAISkECHBBTuHXa6TZaABCQgAQlIQAISaI+Awr29PrPGEpCABCQgAQlIQAIdElC4d9jpNlkCEpCABCQgAQlIoD0CCvf2+swaS0ACEpCABCQgAQl0SEDh3mGn22QJSEACEpCABCQggfYIKNzb6zNrLAEJSEACEpCABCTQIQGFe4edbpMlIAEJSEACEpCABNojoHBvr8+ssQQkIAEJSEACEpBAhwQU7h12uk2WgAQkIAEJSEACEmiPgMK9vT6zxhKQgAQkIAEJSEACHRL4f0jCHr06vRwZAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 8, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='conduction/rod.png',width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure Rod**: A thin rod can be thought of as a model for a one-dimensional\n", "rock.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Consequently, the temperature varies only with position, $x$, and time,\n", "$t$, and can be written as a function $u(x,t)$. The temperature in the\n", "rod is governed by the following PDE $$u_t = \\alpha^2 u_{xx},$$ for\n", "which we have to provide an initial temperature $$u(x,0) = u_0(x),$$ and\n", "boundary values $$u(0,t)=u(1,t)=0,$$ where\n", "\n", "- $\\alpha^2$ is the *thermal diffusivity* of the material,\n", "\n", "- $u_0(x)$ is the initial temperature distribution in the rod, and\n", "\n", "- the boundary conditions indicate that the ends of the rod are held\n", " at constant temperature, which we’ve assumed is zero.\n", "\n", "Thermal diffusivity is a quantity that depends only on the material from\n", "which the bar is made. It is defined by\n", "$$\\alpha^2 = \\frac{\\kappa}{\\rho c},$$ where $\\kappa$ is the thermal\n", "conductivity, $\\rho$ is the density, and $c$ is the specific heat. A\n", "typical value of the thermal diffusivity for a granite bar is\n", "$0.011\\;cm^2/sec$, and $0.0038\\;cm^2/sec$ for a bar made of brick.\n", "\n", "Using the method of *separation of variables*, we can look for a\n", "temperature function of the form $u(x,t)=X(x) \\cdot T(t)$, which leads\n", "to the infinite series solution\n", "$$u(x,t) = \\sum_{n=1}^\\infty b_n e^{-n^2\\pi^2\\alpha^2 t}\\sin{(n\\pi x)},$$\n", "where the series coefficients are\n", "$$b_n = 2 \\int_0^1 u_0(x) \\sin{(n\\pi x)} dx.$$\n", "\n", "**Mathematical Note:** Details of the derivation can be found in any introductory text in PDE’s\n", "(for example, [Boyce and DiPrima (1986)](#Ref:BoyceDiPrima) [p. 549])." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We do manage to obtain an explicit formula for the solution, which can\n", "be used to calculate actual values of the solution. However, there are\n", "two obvious reasons why this formula is not of much practical use:\n", "\n", "1. The series involves an infinite number of terms (except for very\n", " special forms for the initial heat distribution … such as the one\n", " shown below). We might be able to truncate the series, since each\n", " term decreases exponentially in size, but it is not trivial to\n", " decide how many terms to choose in order to get an accurate answer\n", " and here we are already entering the realm of numerical\n", " approximation.\n", "\n", "2. Each term in the series requires the evaluation of an integral. When\n", " these cannot be integrated analytically, we must find some way to\n", " approximate the integrals … numerical analysis rears its head once\n", " again!\n", "\n", "For most physical problems, an analytical expression cannot be obtained,\n", "and the exact formula is not of much use.\n", "\n", "However, consider a very special case, when the initial temperature\n", "distribution is sinusoidal, $$u_0(x) = \\sin(\\pi x).$$ For this problem,\n", "the infinite series collapses into a single term\n", "$$u(x,t) = e^{-\\pi^2\\alpha^2t}\\sin{\\pi x}.$$\n", "\n", "Sample solution curves are given in Figure [1d Diffusion](#lab1:fig:diffusion-1d)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4Aey9C3xUVZb2/dQlkAQSIMhFIgQMIIgJGlBQO0hAu6G1DaPQ2hD6I9oCQzOAr90yOMLbE3xltGcGcBwHsBVbg6OA3QRbUVsTBS+gghKUm9wiEC6BBBJygVRS39qnbieVqqRSqSRVlWfzK+qcffb1fypV66y99loGqyQwkQAJkAAJkAAJkAAJkAAJBDUBY1CPjoMjARIgARIgARIgARIgARLQCFBw5weBBEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdngARIgARIgARIgARIgARCgAAF9xC4SRwiCZAACZAACZAACZAACVBw52eABEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdngARIgARIgARIgARIgARCgAAF9xC4SRwiCZAACZAACZAACZAACVBw52eABEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdngARIgARIgARIgARIgARCgAAF9xC4SRwiCZAACZAACZAACZAACVBw52eABEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdngARIgARIgARIgARIgARCgAAF9xC4SRwiCZAACZAACZAACZAACVBw52eABEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdngARIgARIgARIgARIgARCgAAF9xC4SRwiCZAACZAACZAACZAACVBw52eABEiABEiABEiABEiABEKAAAX3ELhJHCIJkAAJkAAJkAAJkAAJUHDnZ4AESIAESIAESIAESIAEQoAABfcQuEkcIgmQAAmQAAmQAAmQAAlQcOdnoI0JWHB420Zs3lHYxuNg9yRAAiRAAiRAAiQQ3AQouAf3/Qnr0RXs2IhZ4yIwcMwUrPjkeFjPlZMjARIgARIgARIggeYSMDe3AdYngaYSKNy1Gf+amY41+a6asZERrhMekQAJkAAJkAAJkAAJ1CNAjXs9JMxoOQJVeH26AfEj0hF99wKktVxHbJkESIAESIAESIAEwo4ANe5hd0uDeUJmjP3DIRSvTUQ3+eTt6n0UI+bnBPOAOTYSIAESIAESIAESCBoCFNyD5la0h4GY0Scx0TnRiI4xzmMekAAJkAAJkAAJkAAJNEyApjIN8+FVEiABEiABEiABEiABEggKAhTcg+I2cBAkQAIkQAIkQAIkQAIk0DABCu4N8+FVEiABEiABEiABEiABEggKAhTcg+I2cBAkQAIkQAIkQAIkQAIk0DABbk5tmA+vhgkBi8WCYcOGobS01OOM4uPjYTTyOdYjnFbKtFqtMBgMrdQbu2kKgVC7N6aOQMcuQERnAzrIHnjHu1HCRRjc/sytNUD1JeBKuRXVZfJ+yfZ++WJTCLVt2VC7P21Lq/V75/1pfebuPRYXF6O8vNw9W/vNefzxx7FgwYJ614I1g4J7sN4ZjiugBNQf7MGDB9G3b1+PAnp0dLTH/IAOgo15JXD69GmcP39ee7jyWogX2ozA/v37ERMTA/WAG0zJYLIiJgHodDUQ1cuK6F6QlxVKcL9SatAE8mr5rdZeIpzXVMnorW4zEEE++hoR7jspAd/2bo6S9xgrKs4YUHkG8i6v0waU/SjtXgy+h8tPPvkEt99+O8xm/qS73d02P7148SJ++OEHjBw5ss3H0p4HUFFRAaXAc0/Hjx/H6tWrKbi7g+E5CQQLgT179qBLF1HFMQUVgVdeeQXvvvsu1q9fH1Tj4mBsBGbMmIFbbrkFc+bMaVMk1ajCeRzGOfurBCfQDf0Qi16IQW959ZLj3oiW3OYmCy6jDGdQitPyrl5FWr9mdEB3XIseGIirkKj12dy+mlu/Q4cO+Nvf/oauXbs2tynWDzCBzz//XPu7+fjjjwPcMpsLBIHu3bsHoplWbYOP562Km52RAAmQAAk0hcBFFIrY/D1OyatU/u+KvprAfD3uFgF6AEwQ+5cWSGZ01B4K1IOBPilh/hyOyOsQ9uMDUeDXyqPC9fIahp4YDFWPiQRIgARaigAF95Yiy3ZJgARIgAT8IlCEH0SX/o2I6d/BKKK5EoqHYoImGBskpy2T0uqr1wDcqg2jDGe1B4vD+ARf4VVNG98HSbgGKaKbj27LobJvEiCBMCRAwT0MbyqnRAIkQAKhRqAcxfgRX+IYdogOPRIJuAWp+G1QmKI0xDJGHifUaxDSoMxrzmCfrBHskX+b5YFjqMxjtIj5Q2CQf0wkQAIk0FwCFNybS5D1SYAESIAE/CKgzExOYjeO4jNckKO+oqUejYfERKWvX+21dSVlJhOPG7VXNSpxHLuwF+9iJ14XAX6UWMSnIgrcY9PW94n9k0AoE6DgHsp3j2P3mYDJZNLKOt59rsiCrULghhtuoEeMViHtXyc///nPNY9M/tWuX6sG1aJZ/wIHkSfGJF1FoB0DZV5iFAvxcEkRIqJfi9u1l9rgWiArCX/H0zLPZLGEv1PbUBuouT722GOIjIwMVHNsJ4AElCcmtbmbKTgJdOrUKeQcVhjEv6i7c6zgpMtRhR2BPaunI3l2tjav9JU7sWleSovNUbmCUn+gyi2kcv3IRAIk0PoErqBCtnR+Ij5htskG02txnQiwcejf+gNpox7V/NXclT18N9HBq/krzzRMJEACbUMgKSkJ/fr1wzvvvNM2A/Cj1/BRb/gxeVZpWwLVlyXaiSN1bBnPEI7m+U4CJNB2BJQbx4P4SHyxfCoa5+EYiwWaXXjbjahtelabVYfiZ6JxH69p4Hfif0Uv3xU34BfyACMO6ZlIgARIoBECFNwbAcTLgSZgQVVZGY59m4Pfzc9xNp7zwvPIveP/4rb+PWXJlx9LJxgekEAIE6iR7ZqHsRUH8CGuFs8wd+KfaeMt99MkJkEOM5qjYjK0HS9pbi6VAK/80DORAAmQgDcCNJXxRob5LUJAbx7jrYP0VWI2MyuwZjM0lfFGm/kkEHgCVvFurmzY9+E9zRf6ME0glbCmTB4JqAecI2JCs1+s4NUDzjDxUa808UwkQAItSyAUTWUouLfsZ4KtBwkBCu5BciM4jLAnUKL5UnlDfJhHiQBKE5Cm3HDlTlKZFB0WkyJl/z5IjIra2m99U8bPsiQQagRCUXCnTUKofco4XhIgARIIQgJK6Pwe74jY/rX4h0nX3B8G4TCDekjKneT1+LmwGy2OJN/Q7OBH4FftagNvUN8gDo4EgoAABfcguAkcAgmQAAmEMgHli/1bbNQCDv0UTzJiaDNvZicR1VMxR1u7+Bwvai4kk3CvBKaKambLrE4CJBDqBCi4h/od5PhJgARIoI0IXMYlTTN8CUUSXihTc/HYRkMJy25VQKreooP/Dm/jA/EBn4IHNRv4sJwsJ0UCJOATAQruPmFiIRIgARIgAT2Bk8jHN3hTvLCP0qKd0hZbTydwxxGIxE2Ygn4YiS/xqsSX/VYcat4v2ncGXAocZbZEAqFDwBg6Q+VISYAESIAE2ppANSo1AXIPNuE2PCI+yO/lBspWuCndMQB3iTtNFV1WRWA9K042mUiABNofAWrc298954xJgARIwC8CSlj8Gus0m+u7sEj8kTNwml8g/aykNq+m4AGccd6HJNkI/A+aX3g/m2Q1EiCBECNAjXuI3TAOlwRIgARam4Dyy74XWzSh/WZMx42YTKG9tW+Crr9e4ixSPThdkdWPPPwHynFOd5WHJEAC4UyAgns4313OjQRIgASaSeAyysSr+H/L9tMfMB6/Rw/xLs7U9gSUh5lb8GsxoLkVuSK8qz0HTCRAAuFPgKYy4X+POUMSIAES8IvAOYnnuQNrZQPqaM2/uEGs2ZmCi0Aixmh+3rfjZdG7H9J86BtlPYSJBEggPAlQ4x6e95WzIgESIIFmEVARPLfjT+LLZJpEQL1bRHYK7c0C2oKVu4nPmTuxUDOZ+QQrxYDmYgv2xqZJgATakgAF97akz75JgARIIMgI1MBidzu4W0xjHkcvDAmyEXI4nggo05nbMBPxsgMhF/+OYom7ykQCJBB+BCi4h9895YxIgARIwC8CVSiF0thaUYs7ME9Ewa5+tcNKbUdgMMZpgZo+wyr8KNuJmUiABMKLAAX38LqfnA0JkAAJ+EWgRMQ8pantI1bSozBD8xfuV0Os1OYErhbjpjswH9/jHYm6urnNx8MBkAAJBI4ABffAsWRLJEACJBCSBJRm9lP8jxhZTBHDmJ+G5Bw46LoEYtFb8wJ0HsfwhexVqEZV3QI8IwESCEkCFNxD8rZx0CRAAiQQGAL7JQ7nXtHMKtMYpW1nCh8CHRAtPmfmislTFzGBWiGie1n4TI4zIYF2SoDuINvpjee0SYAE2jcBFVRpN97SXAim4XcSk7NT+wYSprM3iNGTWklRD2jKFCoVv0UMeobpbL1PqwoHcVgolOCSVihazIkGYDi6ea/ShCuXxI/+LhTiBC5rteK0TcIDZNWDiQQCTYCCe6CJsj0SIAESCHICynPMV3hVhIxLomlfgAhEBvmIObzmEhgisVajEKttPlbeZ+KQ0NwmQ6T+cXwsgcN2i2htS/HyeT8ppkPANnkl4Hn8QgR4fz3fn8Mr+CteQoW99WhZ3agQd5w7tfN03Ct/XwNAUcuOh28BIMBPUwAghmMTZYX78dXX3+HHYpt2Iq5fMkbenII+MQGYbVURdnz8CXYcLJTGqlBVFYlrkn+CiXemoBs/kQEAzCZIwDsBZev8OdaIhr2zaF/ncBOqd1RhdyVBth2r+648ztyM6aIPvj7s5lh3QsfxN0wVTbstDcPr4u++r5xU4YCsMr0n4nyBmBL9rwjvGSK8NzWdkxWMdcixV3tYIh7MwFVydgVbsR7/gvNybbPsMbhX2h/Q1MZZngS8EKCNuxcw7Ta7qgCrHx2H2PihGJ8+BZnLX8XyzEykjx+B+FgDnnh9l+jq/E8F21ZjeFRPjJ44BfPnv4Tc3PewcOF8TJs4AnERk7B5f4n/jbMmCZBAgwSUjbOyde4i1uyj8RCF9gZphefF3mIicjtmy3bkbBFav2zWJKuklQM43aw2WrLyAdG0O4T2XrLCZBPaVY+RuE7+Dm6TvwSVzovw/qndhEbL8Om/L0TT7hDax+JBu9CuqnaQnQW/kr5tabcI7xvlUYGJBAJDgIJ7YDiGSSsFWDqqP2avyNPms3LrMVh352K3tRJbV2ZoecumjUDm6l1+zXf/xkfRf8xs5Evt9Ge2oNS6G5s25aLy5FbRdqiUg/ShcVi9i8K7hoP/kUAACahomkpo74sRYvM8OYAts6lQI6DMZJSJ1Peijz4q6y/+pYPYhEclvu4J/6q3cK0a0ad/5DSPGS5CurvO2yw69qnOUewUbXy586yxA4v8jv0/p3lMd1m96OVWxST+9Ec481bKg8EF5xkPSKA5BCi4N4demNXd9mwmliipWtLMDYcwL9VhAxmJ1HlrsWFmsnYte/YIvLK/ad4JLAUbMXTKCq0+0tfitccnyAYpW4rsk4q1J7fA1jowe0QmtlF2t9PhGwk0n0CFbMlTQvsA0bVeJ7bOTCSgNqiOFcF7H94XrbSy9m5KuiQuJh/GGakSJRbjwZh+xAbNjl2NLQL3yGbR+qkDbtXlvybCuK968W/Fhv2ivcEuYnB0bf3GxSRpiBB2pO/FfOaK44TvJNAMAhTcmwEvnKpaCjdj7kKbph2i/557T6Lb9My4Z+6jzrzMOWtFFPA1VeHdFUudhbPm3e0U2h2Z5j4TsOaZNPtpDuY+39QfEkdLfCcBEtATKEexCO0rkSg6VhVVk4kEHASixaeKCtR0UHTTh+RT4luyiHnMfJ2RTZRv1Vq11DkZ40Fnj4PFMMzkPNMfDBCt+GBnxn6p5UsqlceWUmfBySK4e96c1U0elF2PNTkS4oyJBJpPgIJ78xmGRQv5G1/WTFjUZJIXTMFQD04mIoemyuKqPeXNx5bDPmonqvbi5RV2VT7SMfamHo5W6rxfP/EB53n+kjXY1TSlvrMuD0iABGwEysXZo9K0D5ZQPIMwllhIoB6BTuJfRgnvP4jvlYPiMLLhdEGcHmaIEYpLKC7FM3K+Rl7/LuYgxxuu3kpXa8T2/oiPfZlkzcCRSrHDB3MZi2w3fd9RRXuvqXPmOjGhn/jxcaSDUo/mMg4afPefAAV3/9mFUc0ifPiSY5MN8PD0VM/6A3Mipq9Md857/Yd7nccNHVjOnBA7Slfq5Fk5gZhBN9tt3VXZbHy413edvqt1HpEACSgC1agUof05DMUE0banEgoJeCWgNO9j8E9a9NwCcRTqLVWJr5RtTrtxR6mDoqd+TV45YnajjGfaPlXLhlnl7tGROjXg7rRG/k5caQdOuU68HFXJGpbDTEYVidNp1d2rVNcZx3HZDsxEAs0l4EWEam6zrB9KBCwFX2CdQyHeyMAjOjos02Ur6ZufomSWuHBspE7l+VNObT7qGcnoK7sWFVXu5ztE3B/VWOv6+jwmARJQBCpFs/e62CD/BP8odu23EQoJNEpAad4fFM35h/g38e9f5tGsKlL8v8+X11H5bG22a91jsRyZGAkVGwCeVT5ufe8W7fzfxJq8o0+l61a+LL2MlkfR8Q2I4hBvSfo0XNxeelhCtheJ0ezTXSsInk1q9O3VnWUsBooXGW8pQdsSu9vbZeaTgB8EKLj7AS3cqtQVrIGruriWDt3nWq0PmZ2Xi4Nl8zDKJcu7F7ed15HH83G2TL7gYzx89CL7iwtK0bXneG6GuSRAAo0TUEL7x2IeM0Ic0l0nDvCYSMBXAkrzfif+WdsTYRZx9Fp59POU9OYlauunSiYfxfAqMUc5IKK7/2mP+LEZL+Ky96RMxFxJr1F35TqOYut5m3Fc8fZeUqd1tbblPZl9pOK9hYau/IA8WePwzS6/oXaC9Vov+QYbBMfet2AdZeuPy4P01PqDYI9tSyCijmCdgSHx3rUT3a9WATtcknWdql6mERGtl+zz8f7XJzHhXofHGi+VmE0CJNBkAkpTuhX/JaYxYzxqTJvcICu0OwI2s5l52t4IkwjlKmhTYJN3/bRv/XTystHUVbuDfPqVbblrA6nrmvtRbZN9vURJkKUuYvRyUWuq1E2Md2+/Jc97imCrvAOFa4pqdD0/XGfe8LwouDfMp11cLS46q5un7AhVCgQvsnuvAYN1ZX07jExI0WzXs+3FV7ych6x7Z9Q3mrGcxBeuZwLfGm9iqSeeeAIdOtT/4cjKykJkpJdJN7EPFieBtiBwRbxKb5UIjf0kJia9x7TFHQifPpXZjLJ5Vys3RhHe+yIlYJOLxAwxt5kRsPY8N1Tgk9DuuW5juWYx87EJ7apkhD2IU2O1WuK6CqSmXkyNE1i/fj2+/vrregXPnDmDfv361csP5oy6pmDBPFKOrcUIRPUYKr5efEvVYv3Y5GQegrlOV49SOycTK3IL6zVzeOsH2K7P7eiLPl9fofHj6OhoeHo1XpMlSCB4CaiNqEpovxo3aJtRg3ekHFmoEOiMHiK8z8VuvIVC3S6lUBi/qY5ayLvpp5qL0c1C3ZuHGNe8zXX0Wk3xY692ATC1DQGlsPP02280hp4YTI1723yGgqvXiiM645eWGdqoeSsxc2GybH2ypSXj43HimXV4aGISUCT+CNa+gGXZNj/yKhCT2is78bb+tsIB/P/JJ5/U/ngD2CSbIoE2JaA2BX6GVaIVvYnBldr0ToRf57HyKJiK34onmf8W85SOEh30uhCZ5BXdOI9JzBGLWLJ7FndKxBeOK12Lrq4TL0cWbRuu62JDNu4/igtIV+ohKxlMbUNg0qRJUC/39NZbb7lnBf25509y0A+bAwwkAXN0F11zent0Xbb9MEK+vPWpoa8sfTlEJmF1cT6635+MZTb5HGsWTpOXo1SaFjlVCezqpYJA3Tyo4bFoxfgfCbRjAlbUyirVn9BJtKOMiNqOPwgtOHVlijFavMh8gRc1L0XdxBireemCBCI6ZLcsb+qqarU8QFwjQnjvBocQiSRES4kKrdRFcd94SY48i+SX64QSTPLBqrqrPM7Ey0rESa31UnwnpjMj62jhtQse/ouXv1MmEmguAQruzSUYDvWr9eYv+ThRbEGKJ68vMteTB3brZnw9eje8CqkrK4fdkvB0biV+ve0DfPDFfvmyi0Rkl1gMvn4Ebr+1P/J+n470FXapfsE0JNPkvC4/npGAG4GvxemjSiMx1e0KT0kgcASuEv8yIzFNVnZWY6wrDJ9fHShf8H8Vv+/+p8G4Fy814gtmqHgjgQjXjuRN1KkSryzHHIVkRSGp0Y2vqnCCOKSEjMGWTmqPBZ5+rmrkAeW8vRSEXD+fxHtnBR6QgEcC3j7NHgszMzwJxAy4SXO4ZBOZ83HsvGxQTejmcbIV53VutmamIL7Jn6BIDEm9V3vpO7Acft0ltMuFdXPHelnY1NfiMQm0XwJ7xJP2JZwVU4a5MLh5rm6/VDjzliKg9k8kicis9lIMdjMWaak+Pbd7RnzGN5a6yl6PsSK4f6wV/F5CS6WJsF3fR/sFEawdG03jxdhsQGMNa9cjJdZsvAjuNp37e+LXfqF4mqn/Y1iuizAbjZ/LgwETCTSfQP1PWvPbZAuhRqDbDXhAdqfm5TgG7u1jUYUDu2yGLKrkzLtu8vBV5WijKe9FeOGRaa4KMzfgvkRP+gtXER6RQHsmoPw3n8IeEU0elb/BDu0ZBefeigSUa8gq8deyR7zN+JsiRPifLJ9cf1ON+HHxxQFiL4lj0F0Ed5vGe4MI1xPq+X6vwZdOL+gRmOPRgr9GhO8v5CH5gojmg2Tk16GzDH0AbsFwWTmw6fS/xbfiy2mk25Qsom//2J7XRcjd7HadpyTgHwGjf9VYK7wISNCNjAXOKc1/Lc+LPqUYR7Y7BPc0ZIxPdNZpzsGeV57EfLuFDEQv8tFTk7mg2BygrBvWBH7E11CCu9o0KH4SwnqunFzwEVB7KXrodMelYvt+QH4xarAXm+RTma3TMnsavUns0+NFZ+/vq58Izb6pda4XUd3hL+2g/MVsdRuORcRuh7uEeNGhj3G7rk6rRLR/GDvFfcNh0bC/h2fEtMaW+omW3fELWIF/x/f2fMdbDd6VTb02bX40/kX2cHlTiDlq8J0EfCNAwd03TmFfKvGehzRf69pEV7yMnWIt454sBZ9joV1uT170JFK7uZcALCX78cqzS7H02dXYdthDI25VCnOfRXKm48sTWLX9TYzj/h03SjwlARuBsyIi5YueT/nYjvKy2Y6sSKClCdwqZh+utFsE2jQxoJklQYnGytFg16U2ProKv8M/yJhUqhDh+UVsFPOW0xIyaa9o0Wc5BevrZAVhmFbK/b8qNwfIP+hih/fFPWLzH69VOYkPtQ28B2Wr63HZfLsRr+KP9sami57+VveGeU4CfhMwWCX5XZsVw4pAwXtL0X/iEm1OaVkfIXfxON38LNj86AixQ1eSu2jFz+Z6ELCr8PqkKExzmtwswKHq5Uj0qGiQwNevLMLoTMeSazLW7vwYM1I8PA3oRuHvYUVFBTp16oTy8nK6g/QXIuu1KYEysWf/GMs1Dx896i36t+nQ2Hm7I1AlxiFzJLrqD86ZR4h2+x4RlJvrc8bZYAAPSmQT9yb8T72gTGrM4zHbbv7iqUOLPCpnyIOJzZodIpz/BjPEi5M+HRcL+j+IVv6gPlOOu4hG/l9wpwjtvq0QuFXnaasQSEpK0gIwvfPOO63SXyA68ShSBaJhthF6BBImLEb+umIkT1uBvCXjMa5yHV6QTaJRlefx2euLMU0T2oFnPsr2ILSr+VairFQ/7904Vwkk6r06WspweGcenl+UDocDGaRnYeeLi5DSgx9HPT0ek4CDwGWUi0eP/5Hl9klipjDQkc13EmgjApG4ES+Lr5kDyBUTkoG4W7au3tFGY2m8227idSkT94k2/JTmItIsZitR8pcU26hIbRahPlts5b8XTXuU2NYPdhPaVd99xU3mS2Lzflralx88SSoAVKzYxHfQzvgfCQSWACWlwPIM+daSpi7HycThmDM6EznLpmHoMteUkjOy8PxTC5CaoJfEXdchX1bXp6XJLle7wXr6AxhsL1q0azNWrX4ZS9Y41fFIn5mFhx76NX4+KoHWf3qMPCYBHYFasR9WPrSvkbDzanMgEwkEC4FYEWvH4zFZCVopVu/KS3kwP1RGio/2AT74aXenaxYRfLi8Gk4dxHafXmMaZsSrgSFAwT0wHMOqlT6jZmCT9UEUFpxEqcRojhCxOjauF3p0a2zBz4zUxR/g2KR8nK+OxoDkIc4vyeryUzgRPQJr1z2EoUnDMHhQIhptLqyocjIk4B+Bnfhf0QvGikbzF/41wFok0IIEYkRcHSXmIztEAz8W/0d8rjQm4rbgYNg0CbQDArRxbwc3mVOUjUm0cefHIAQJ7McHYl27WwSiBbL8HhGCM+CQ2wuBo7IudFC2aKaJBp7ejtrLXQ/9eYaijbsx9LFzBiRAAiQQfgQKxX/MUXyuhZmn0B5+9zfcZjRANmHGi+X7DqyFVf4xkQAJtAwBCu4tw5WtkgAJkIDfBMrEW7QykRmNh9BRC/jid1OsSAKtRmCY+JVR6TsJWMREAiTQMgQouLcMV7ZKAiRAAn4RsIjn6M9lM2qSuKrrFpTO9fyaFiu1AwIGGMTePRMnxFnkCXzTDmbMKZJA6xOg4N76zNkjCZAACXgl8KWEbukp3jr6i76diQRCjYCyb79VvJ1/g/XiN/1UqA2f4yWBoCdAwT3obxEHSAIk0F4I7MP7uIJL4nzuvvYyZc4zDAl0FWv34bhfWzmqtvs2D8Npckok0CYE6A6yTbCzUxIgARKoS+A09uGIxGAcj9/DKD5kmEgglAn0w0gJSPQjvsSfcbtEJw2mZCmx4t0ttRh+nwkJjXk59nHg+3fV4rv9Vly6IhUk8lJyihEpQww+1mYxEvCdADXuvrNiSRIgARJoEQLlOIev8Jq2GVX5bGcigXAgoCL9qj0be/FucEynzIqNz1oQEWdB+rRanK5u/rAKcmswzlCNoSNqMEXafPXVWmTK+4ihFhgmWbCrqPl9sAUS0BOg4K6nwWMSIAESaGUCNVpk1JcwTMLGd5fIjkwkEC4EDLJ2NFrs3Y+Jk8jTIr63WaqyYvNzIkjHWjBloctVZXMjIxS8Z0H/8bXQYoVnGHGsMgK5uRGoPGZChppsjhUjeorwXtZmM2fHYUiAgnsY3lROiQRIIHQIfIM3Rcd+Na4VgwImEgglAmWHa7Ftj0sQ9jT2jugkwnumtqJUjmJPRVo0r2p/DQxRomHPBRZo0nSAuisRzfpEx9wNOLTWZXYTmWDE2kMO8UqE9zk1oOweIO5sRh6HmUiABEiABNqEgAqwpOyAU/Bgm/TPTknAbwKixf7dwBrM3eIQXr23FCc+koZigsRW/RPUClNrJnO8EYdOmmHdZMbyF03iZDUw6b0/1tg07dJchgjtiW47Bs2JJqx1PChk12LtjsY5BWZkbCXcCVBwD/c7zPmRAAkEJYESHJdANW+LNvJhmNVuNiYSCCECrz9iwRoZ7wAfN3cOxB2IEUen32JDq87SHGNAYh/XJtGYQPReVotVy1wNTUlzte/KBdKmuPLnP1+LKv1FHpOAnwQouPsJjtVIgARIwF8CV1CB7XhJ07QrYYaJBEKJwLZnqzEt2z7iji7htLE5jMCvZBv2YRSIzXsop6Jva5HjmECaEWkJjpO67/HDDUh2ZInWfTftZRw0+N4MAhTcmwGPVUmABEjAHwIqyFI8btS8XftTn3VIoG0IyCbPJ6oxZqGr95zZFjz7XA2eXWrBK9saNgcxoyNuwyPIxyZcwElXIyF2tPMvdefpzfjH3EsnuMscd/xQt16ITZvDDRICFNyD5EZwGCRAAu2DwH78Xex8LyMJ97aPCXOWYUOgTHyVp+tMRBwTWzi/FguXWPHqF40LpjHoJStND4jO/WVUh6jxSMFRx8zlfRAQpTutcyjuJvVK9tyvGudTpz5PSMADAbftFB5KMIsESIAESCAgBM5JiKVD+Bh3YiGUqzwmEgglAjEpJlitJuxaXY0R9phK6StN2DTPCItSO/siUYg3lnVZN+BA3NX4i2zNvgY9fEdQCVT2NmKR9BcQW3Xfe65TsqPuLD3FAK9m/mJfP1F2w+Y47Gou6yrykAT8JODLn5mfTbMaCZAACZCAg4AK/a6iSI7AVPmhZ5AlBxe+hx6BCHnsBOpqj80+ShNlR61YuELVjbNPvG47jdOoQXqmEaPaTHK34uDRxkdpK2EQ46CWS19+WYsjR1ztDx1qwHCxqz92zIrt211cu3cH7rrLiIoKMXXa7MpXNX/5S1EhGA14++1alJe72rrjDgOuvtqAtuzDNRoe6Qn4+Kemr8Lj9kCgrHA/vvr6O/xYfEmbbly/ZIy8OQV9AvJlWYbDu77Cjq++wwnRQChtRexVgzF67O0YEpgO2sMt4hxDjMBO/C/6yFa1qyXUEhMJtFsCzY16JOAC0ESz8A8eLdXzbU3kfCrvs5rVnN+VKyqAixddgniV5rbGgCtX6uZHRto2ENfW1s1XHVuttmuX5Ke+tNTVlsViy2/LPvwGE+YVKbiH+Q1u8vSqCrB6USZmr8izVU1OQ3J+nuM7CovW7UTW1BSfVkQ99V2443XMGT3NviM/GekZA3A0O8fZfkZWDp5bfC+6earMPBIIUQJHxYP1JZzFzfh1iM6AwyaBwBCISRJzm2qT06zmCD4TA7JPMQ6PifFYaIgkpT+4WCQnuY5b+2jsWCPGjq3f6+DBBgweLIzdUufOBsyaVT9fFfvVrzyb7rVlH27D56mdgOc7RTztlEABlo7q7xTaV249BuvuXOy2VmLrSlskiWXTRiBz9S6/+BS89wTi7UL7zFVbUWrdjU2vbZL2S7F17QKtzewl6Yh7dHMrh+jwazqsRAI+ESjDGfHXvhmjJHqkKUQEE58mxkIk4C8BnXyuIgZHi9mMimkQGsmAWJ2lm69+7NXcSkNjghxlkBOg4B7kN6g1h7ft2UwssS//zdxwCPNSE+zdRyJ13lpsmJmsnWfPHoFX9uv3yvswypIdmD/R7o5g5gb896xU3eaiGKTOWI6PFtnax4p0ZDe1fR+GwCIk0NoEVJTIHViLG8SDjPKmwUQCJFCfwEhMwwl8g9PYV/9i0OVYcdlXCbyqFh85NqbKPEb3t5mfBN2UOKCQIqB77g2pcXOwASZgKdyMuQvt5jHIwNx7Et16MOOeuY8CazK1/Mw5a5GeO89nk5ayoztcASuG3eBR73jT5IeBZfO19ksrvHnGdRsWT0kgiAnskU99ZwmwNAC3BvEoOTQSaEUCFiv27LSiQhmqi7tEW4qU1ag5WIevxJwsQTZ0evXTgoguBqQMaUsB2IDrJ8io7T+XOZusKJsHnSLKMaf67ynD2nLc9cfDnNAkQME9NO9bwEedv/Flp5158oIpGOrhezNyaCqUQcsK1XvefGw5PBNTEz0U9DS6CNfe+rSqIikxpF6pqGjd+mO9q8wggdAicAYHcEoMAO7CP4fWwDlaEmhBAmX7apE8WnZJ1kvi+gRKIlapxvbm5f+dlRFI8fGnx0sTzcq+8U5lrGCfQ54VxaJnivEgTVlOWpHt7MmAmxyL2M48HpBA0wnQVKbpzMKwRhE+fMm1nvfw9FSPGnGYEzF9pTiltaf1H+51HDb+Xu1yYJu38P/ivcL6VfZ+8pEu08O3oO4qD0kgmAlcQQW+lp/skeL6UUWLZCIBErATcGrZ/SdSHYA2/O9dhPRko6bEsrVhxVcnPbdWUmB1Xkh7xohE/qw5efDAfwL8GPnPLmxqWgq+wDq7bXtjk4ro6PIHmfPmpyiZleKTuUxM3xuQJo3bVhfzMDF+FrYXr8You/sYS8F7+N1su24ibRWmp7j6aWxMvE4CwUbgG7wpgWVuktAyg4JtaBwPCQSAgEsgbWpjUYOM2JcvOkNlKuMhlUtQpi8luvAo/Ew2rXapV0IJ7f29hiqtV7zZGZYS0Zq/WIPj4rt+7P0mpCorUrMBD601YEWmjcMLObWYLEGh3NMXb7s4PZ5R/7p7eZ6TgC8EKLj7QinMy1SeP+U0k1FTvaqL92/Fan0A57xcHBTjPp8CYfQYh399Jg15Tjv6NRgddwY5+9YiLWIbpg9Mtwv1C7DzrVk+PQyE+W3h9EKUwI+ia7+IQtG2Tw/RGXDYJNAwgejuylbbJpTmzK/FNnEleKu5FkviRMBdZ8ZrU73bcpslmuiQBl0oxqGrRDv4ES/Lo+8CEZcDKPCKT4U6OiovDw/62a/PtCBTW5CW+S604lC1WdOcJ80wIWu5RXPokDe/BrmTjRjXx1XTUiCBojS7UiAty4QJumuuUjwigaYTCOBfRNM7Z43gIBBR58srA0PivRsPdr/6+jqDrlO1zpX6J6mPv4lVLksbKZCD9KFxiBWhXX0vZmRtwMnq5Uixa+Hrt8AcEghuApW4gN14C7dgBl0/Bvet4uiaQSDhJr1gbsWYntWIEKF9mYjZ/3Kf/pp/nSRijGZitl8074FIFrFBLym04vXlNXUE99V/rkVhCaCue06y8bSOBxkrzlU6Shqw+FOT02RmfHw1Xt9hRaGYx+zZVoPJ/e028GlGZC+mqOWgxvfmE6DGvfkMQ76F4qKzujmISkLZD3qR3XsNGKwr29TDHpi16Sw6znoAmWvy3CqnYebsyejTwp/IJ554Ah06dHDrG8jKykJkpJdJ1yvNDBLwTOArsWsfJKFkuiLecwHmkkAYEDAnmrAlqxYTl7gmk5xuQPZaM4YE6Gt0pHg3+xDPoDeGygpsP1dHTT0Sl4yTo2pcXs109dfMroF6QR44dpaaUd9CUzzIpMllx89VuhGD9VacMUYsrzZg+BLRyou342mj6z4BZK0TwX6q0SePM7ph8bAFCKxfvx5ff/11vZbPnDmDfv2a8fmq12LLZ7SwmNTyE2APzScQ1WMolCJcWw1spLlquDaZNlLUy+UeSH9ogriVdHwTOorlidZmuNjaf4ypSS2nco+OjvYouDtGwXcS8JfAD/hY/ExU4zrc6W8TrEcCIUNgwuIIlM624qxopKNiDejTI7BDjxL79hsxWezdX5W/qIWygtWU9V3dWCKN2GT1X+OdKvM8NqkW50VAH5BsqG/GKfbuM56OwIO/t+LkGelXhmkWyapXgsGb/ks3OB62FgGlsFO//+7JaPT/s+HeVmudU3BvLdLB3E/FEZ+E9kBMYc/GJ5A8RQViSsaiZyZj78Ilur7zMS05DlfyizGjhYT3J5980uMfbyDmxjbaLwEVHfUAPhBd++9Fd9d8U4H2S5IzDyUCMT0MiAmwwK6ff1+kSFCmvVpU1eG4T3+pVY8TkoziXb7hFNnNgMSW0zk13DmvNkpg0qRJUC/39NZbb7lnBf156D1qBD3S0BugOVq/c1+/Dlh/LhFuru2UVY2v6fDGR+1CO7AgZzOefnwxNpXmI0stRepSZvL9yC2qu+Sou8xDEggqAlbRsysTmetxt3jB4C93UN0cDibkCSiBXUVVPYfDIT8XToAEAkGAgnsgKIZ6Gzof62rP/QkVTcJLOnlgt+7K9ejt3QGNrpwclu3AY1PsW+wz1iLrXrv+IiYJi3OLsWGRXnrPw6PLt9atzzMSCFICB5GrbaS7FrcH6Qg5LBIIXQJi4CB69we1uAgWXAndiXDkJBAgAhTcAwQylJuJGXCT5mPdNod8HDsvG1S9pIrz51xXZqYg3kdjq8Pvv+E0icmYONpts043TH76A2zRCe/5yz7EYe/PD64x8IgE2pCAMpE5iI8wQgItMZEACbQMgasxDN1xrWYy0zI9sFUSCB0CFNxD51613Ei73YAH6rhp9CaNV+HALpcX3Jl33eQ5wqqHkZo7xzlzf5LkyeOGGRMWLdM2ydoK7tW53XJW5QEJBA0Bh4nMMNyDTnB9voNmgBwICYQRgeG4HyfxLU1mwuiecir+EaDg7h+3MKvVDXdmLHDOaf5refCs7C7Gke0OwT0NGeNVCDkfUwdX2PfL1Z5bR8z1mKR7gPDTh4CPA2IxEmgeAZrINI8fa5NAUwjQZKYptFg2nAlQcA/nu9uEuSXe85B4zbWnFS9jpwdrGUvB51hol9uTFz2JVA/78Cwl+/HKs0ux9NnV2HZY18iVC47W8dLGHc7jugdlOH7UnpM2DgMa3idbtyrPSKAVCdBEphVhsysSsBOgyQw/CiSAQMYSJs6QJhCZhKe2ZNmnkINFK3LdpmPBuyuW2vPSsPzRcW7X1WkV1mcORaa4eFyycDbGDFzitFNPuH2y88Egf9lEvL5HJ9TbWyrMfUkLH61OF8y5m/457Fz4FlwEaCITXPeDo2lfBGwmM8rLzJH2NXHOlgTsBLwZMxNQOySQMGEx8tcVI3naCuQtGY9xlevwwtyxiKo8j89eX4xpK2zq9mc+ysY4j757K93CQ+/W7NQTleY8JgXP7VyL7BGZGtlpyT/BiZy1yEwbJEEqqvDt28sxZpry7y4e3hdsQNbkJpjhaLX4Hwm0DgEVaClCPrX0ItM6vNkLCegJKJMZtRn8a3HB+lM8IdpH38SYmsL9KP18Oy4XlmrNGWL7oFPaeHRO8LB0rO/Qp+MyVOz6CpX7f0StcnzTIQ5RKSPReUgfn2qzEAk0hYDBKqkpFVg2/AkU7ngFc0ZnOr3AOGacnJGF559agNQEbzYsFmxb+lOMWZJnq5K+CsWbZtXRnFtK9uClrMWYvSLH0azrPTkdq575N8yaMMSVF6CjiooKdOrUCeXl5QzAFCCm7bGZSyiS6Of/qQVa4obU9vgJ4JyDhcCX+LM8PneRUH71g+rUGWPVYRQtegQXV9h/l+pcFLODRetwzdNT0cEt39fTqtzVKBw/W6I52JIxLRm1eXab0vQs9H5xETr38O3hwtc+WS5wBJKSktCvXz+88847gWu0hVui4N7CgEO3+SoUFpxEqewjjRCNRmxcL/ToFunDdCwo2JMv4aGjJTz0EHTz8n1lKSvBSYkPXSktVldXIzq2NxISevioO/FhGG5FKLi7AeGpXwQ+xgpcI16lB2KMX/VZiQRIIDAELqMcf8fTuA2PiE+n/p4brdqP41FDcdnzVVeuKJn6i5LJy8+Vq5zbUdV7S3Fi4hJbbsYqXPPiLETKz2RtQS6O9x8PW4DCDPQufQ2dvem73NrkaesSoODeurzZGwn4TICCu8+oWNALgcPYiuPYhTswHwb5x0QC7Z1AzeEdKK/oi9iktjEJURFV92IL7sTjHkxmLLjwxAicW6a032nonLMMXW+9FobS4yh7fTkuLMmuc/s65hxC33ubYKJZsg1H4sbYNe0LEF+9HFE6yd96eCMOD5xi6yNjHQa8NhWmOj3yJBgIhKLgTq8ywfDJ4RhIgASCmkA5ijUBQdnWUmgP6lvFwbUWAdFmnxw4GkVbjrdWj/X6uQY3oTN6YB/er3cNRVtxXgntyQtwdXEuet87CpE9eqBjYgquWvwa+m5dWafO5RUfoqZOTkMnFpT8ca7TPCZi7aw6QruqaUj8Gbo4XLVlT0PRjpKGGuQ1EvCZAAV3n1GxIAmQQHslsAv/i8Fi2R6Dnu0VAedNAjoCZTj3yFCofZimyLaNuJGCB8W/zGe4IOGZ9KnykzehNvB12/xHdPKw/7Rj6jxcpYvWjfNnvcQv0bdqPy7biYuaJl+dJyMmbaCHQjGImeKKj3Lp+Y+cgr6HwswiAZ8JUHD3GRULkgAJtEcCx7BdBJQKEdzHt8fpc84k4EbAgtJnp+OCw9KkY7Tb9dY9jZTH6WSJub0Tr4ug7tgiWoZLL6wBZuYgLkFnv+I2tNhfPeDKyT+I6vpeil3XdUdXvv3EJeSnzUEXL310HJ7mMqrLzka5j+3ruuIhCdQj4P0TXa8oM0iABEigfRGoQin2iH+lMfgn+QGmnqN93X3Otj6BEhQ/cT+Kl7k8tFhm/zNOXR4HXLwI89hfo0dqQv1qLZyTgFH4UUT3g/gI1+Eu6S0G3dYeQkxsgktw9jAGpZF3prSfIMqnDaQWlP9lnbOaOqjTju6KodcAbcOrbZNqDsp/KBHPyB7U/7o6PCSBxgjwl6gxQrxOAiTQbgl8gw3iQeYOcTrXNpvv2i14TjwoCdTseq2O0G4bpAik8+ejfMkSlH1xus3GPRLToGIslOGsNgZzQiIivbk18zTK+JgGhXxXlUpcOWp396gyB3X3/kgvHtP0Qn3VV0ddzfCIBPwkQI27n+BYjQRIILwJnMb3om8vxC34/8J7opwdCfhIwJQyDwOt83Bp9SScnm2LxWFeuR39542C1SK+g80+iBQlu3AqayNq46J8FJR1g6ushLX3GPSeN6Geh5Yoeby+TvzLfCsP26n4ra6S98PKz7c4L3Z+dKJ3AdxZynag13iaU67zXi9mAKLSgTIbKjTul9KtI56SgAcCPvyVeajFLBIgARIIYwI1YsH6DTaKx/YHRUDg12QY32pOzQ8CBjFFcSXb5lSDL0K7VKo5+inKV9iiZLvaaMrRdlRkTkCMfgj26mp1TO1JUW4ilceZBpNlP4rtDx9IW4WrfDZhKRaNu75lmyGMPsd1bPYu1LsK+X1kOX0atRcuwNSrF0zdbCY4NXJeI/nG2FiY+9hWCmurqmA5dgyGiAhEJLpcXl7Zv1/rO2LwYBiMtseR6oICWOUBydy3L4wStFAly5kzqC0pgemqq7SXyqstLYWlsBDGzp1hvuYalQWrrDBUHz6sPcB1GDhQy1P/XTl4UCrUIkLyHJ+T6uPHYZWAiKquakOlmqIi1Jw/D1P37jCJByAmzwT0D46eSzCXBEiABNoZgf3iXi4O/dBLdHhMJEACASQQ0bGZjcV61dSrfSjqYTsff5VH74bDLlWsX655xVE+3q/KfrgJj+fR6DA62TkHy6c20xxnRiseVHzwAS6sXInLO3c6e72Sn6/llb/7rjOv5uxZLa/0lVeceepA1VUvJag70qU33tDyqkXQd6TKjz/W8qp27HBk4crevVpe+ebNzjwldKv2Sl980ZmnDi6+8IKWr4R9RyrfuFHL04R6e2blZ+IdSOqrdybvBBg51TsbXgkjAgzAFEY3s4WncglFyMN/yqL7P0MtvzORAAnUJVC+ejpOzc7WMs0rd4qpTErdAo2diVVNEyTlxlqrd115mDEjEsNxX71rKsNasBlH+qdr9ucxO4vRy2dtu6pdgtPj4nApTx2Lv/ZntiPx8VG2k3r/l6FoUiwu2k1l/GJVr01mBJIAAzAFkibbIgESIIE2IPAN1mMIfkqhvQ3Ys8t2QqCFrc9uEPeQP+JrXJQ9KvWSBI46YRfaoyRaatOEdtWaGaZYV6tN8WPvcFbpqs0jEmg6AZrKNJ0Za5AACYQpAWUbq1xAKltZJhIggdAk0BGdcAN+gV14w20CJTgjgaOUEY3aVBt/r8ve261gA6cWse/WX27Axr3qGCocG1OlSsf+3fUVeUwCfhFo4edev8bESiRAAiTQ6gSUTayyjR2FTLGhpU6j1W8AO2wfBCwlKN95ELVqT2u1bWOr7xOvhqFLX3Qe0rh71gG4FcfwBY7KSx3LFktcWHo/ysTCx7BoC/qJJxz/UjdETUhDWZ7NVsay6VvUSFsmHxqLHNbLh1IsQgINE6Dg3jAfXiUBEmgnBL7HO7IZdQi6y888EwmQQMsQqNn3Gk6Nnt+MxtPRu3ITOkc23sRNeADb8N+IF2v36lcexbklImzPXIf+T09o1qN5pzsfkM5tgjvyClAtNvsmD9KU9eQBuPTxCxCd4MOgG58WS7RzAlQrtfMPAKdPAiQAMY45jeMSeTEJk4iDBEigJQm4JFk/ezkqbgd9q9pVRPZ+GIl9783Aqcw1QPoq9Fs91at2vHTpcBx5blejjZuS74TLN84ylJ9Uu23rp+qCfc5M4zP3IcqDcO8swAMS8JEAP0Y+gmIxEiCB8CXwDd7E9fg5OiA6fCfJmZFAwAiU+d2ScdBk9Mn/KdBUKxl7j1Yxr4mM8r37QTsKUThxgwjtf0DfTbPkb9xDslSh/N0/4uySfHTZN6hOAWvJfpx7cYNoznui8/1TEZsoDuTNiYhbmyEPA9la2Ys5O9G9numNBZfe3mhvKxndMpS5DhMJNJ8ABffmM2QLJEACIUxAadqrxb59AG4L4Vlw6CTQegSM3V3mZJb5y1H6q7WIMe9DYVwyLOv2IWHqEK+DMcT0QXRS4zbqXhtowoWaPa+jcPQ/2Wrk/AEnh/8Ftfl1GzCIS3ar+D7XUtoz6DJEH9mpCuczhzrdOVYs3I+I6uWa5rzTjKcQvTwbFVK1dv4iXJici666aVkLNqF4ha1dY9bz6NaH4lZd8jzzlwA/Sf6SC/N6ZYX78dXX3+HH4kvaTOP6JWPkzSnoo/9OayKDksIClPq4xKnUMb0S+ognXiYSaDkCakPqHuTYN6QaWq4jtkwCYUQg8qabdbPJxtme8tJyFqDPfd6Fdl2lFj+0iNBekDytTj+1DgFdl2vVCfId59zvppGvRE2prjB2w1Ip59rvYAL6fJqP47HJ8i2Sh3Pxk2DZ/m+I6R0Fy4+foWiMve+0lYhfnKpvhMck0CwCFNybhS8MK1cVYPWiTMxeYd94k5yG5Pw88bZhS4vW7UTW1JSmx84o24X740c4tvP4BG5VfilmJTXjScGnXlioPRPYh/dkAfw6bkhtzx8Czr3JBAyJ96F7VjrOL3H5OjSkZ6H32sWIDgptSxlKFk/TAiz5PrkMdPuZu3vIGESluTzIIP0BROl/kmKS0Lf6GIqWzMfFZTm4MFpezg6TEb3uefSamurVpt5ZlAck0AQCjJzaBFjhX7QAS4f3h5j5aWnl1mOYl5ogx1XY9twjGDM/W8vPWLUTr81KsRXy8f+CjY+i/5QVPpZWxTKws/Q1pOi/JJtQ270oI6e6E+F5Gc7gY6yQUEtPyEazAH3QiJUE2hGBmqICXCm1wBjbEx17BP/f0C7Zy2IUMfpGTG7CXbKgak8+LNXRiEweArMXdWdtSSEunxF1vNjuG8yx6JDQo1mea5owQBZtBoFQjJzq5SPYDAqsGrIEtj2b6RTaZ244ZBfa1XQikTpvLTZ8n48pa/KRPXsExt9Rihl1bAEbmnYR3lxqF9qTM5D18M3oKVvyL6soGM7UEbEddyFztuz8V2lmOpKD/3fANlb+H5IEvsUGDMUECu0hefc46GAgYOqRgKgewTAS38aggjK9j6e0/SxdoDNIb7C6GZFJjSuqjN36IKpbgw3xIgkEhAAF94BgDP1GLIWbMXeh3TxGtN1z73FfMjTjnrmPAmsytclmzlmL9Nx58OV7qmzPO1goWvy0rC14d/EE73brZTuwSQR3tfi66IHbmm6OE/q3gTNoJQIn8a2sI5UhEbQ9bSXk7IYE2pyA8ho1DHdLfOT1GIsFbT4eDoAE/CFAP+7+UAvDOvkbX3basScvmIKhHuwUI4emur7q8uZjy+Eqn0j8kLccSF6JtxoS2qWlw++/oQnt4rcL6Tf7qg3xaQgsRAJOAjUSQTEfm3ATfskIqU4qPCCB9kHgWtyOWvkO+BFft48Jc5ZhR4CCe9jdUn8mVIQPX1J6blt6eHqqWYGb6QAAQABJREFUZ223+K6dvjLdUQzrP9zrPG7oIGXODpTubEw7X4YPs+3mNBm/xHCayTSElNeaQeAAPkAc+uMq0bczkQAJtD8CysZdeZNSXqWYSCDUCFBwD7U71gLjtRR8gXX2DamNNR/R0SVR57z5KUoaq6CumyPFx28jBYu+wpv2Z4dF0273bk7TSDO8TAINEaiQT+whfIJkRkhtCBOvkUBYE1AP7sqb1H6xeGcigVAjQME91O5YC4y38vwpp5mMav6qLt7D0lWLXbAz5eXioO7Ume/HweFP3ra7ikzDxFHKkw0TCQSeQD7+ikFIQxS6Br5xtkgCJBAyBJJwL47gc5TjXMiMmQMlAUWAgjs/B4ioE3o6A0PiPRi42zl1v/r6OsTqVK1zpSknZdjmMJNJ/zVu9GXHa1OaZ1kSEAJFomsvRgEG407yIAESaOcEIhErOvfxElLpr+2cBKcfagQaM2AItflwvH4QKC6yxbyzVRUVuopu6kV27zVgsB89NFJFzGRetZvJLMhIbVGP2pmZmeKHt/7H/sUXX0R0dHQjA+XlUCVgle1oyv3jcPyDeHGuf/9DdV4cNwmQgP8E1OrbEfw/ifp6QDOd8b8l1gx2AqtXr8bWrVvrDfPkyZPo169fvfxgzuAvWAveHUtVGcokHkNMtxi7qFCF3Oey8PVVE/HIL1PRLUjoR/UYKn5cYPfo0jCQ6hbYzFOgM5P5xR0tu2EwNTUVHTuKE3m35EmYdyvC0xAmcFSWxDugE+Il9AoTCZBA+yNw5XAtLr5TiytHIY/xYm4QZ0CnSSYMT7pPHuo34i4sapaXqYpdtajcLyqCK9J4ByAqxYjOQwztD3SQznjIkCEwGusbmXzyySdBOmLvwwoS0dH7AEPxStGe97B88UIsy1E7PtOwvTQXo7Q9nWZ0ja3Ewmlj5JWOnH1rce+QILALqTjik9DeMveiDHlOM5kHcHMLB/N46KGHqFlvmRsZtK1eQQW+x7sYg7lBO0YOjARIoIUIVFlRtMiCi3anZa5erKhcUgvDgusRs/wTHManGCjfEk1NVbk1KBxfqz0MqLrGNHkwkJAoF1VOugG9XzSjcwv/rjV1zO2x/B133AH1ck/PPfece1bQn9d//Aj6IQf3AHe9Mgs9kyfahXY11lgVAdmezEiZsRzF+evEq0UO0ofG4blthY6LbfZuju6i69vlNUaX6TyMkDiT+qSsapqVSlxmMjN/eUeLmsk0a5ysHLIE9uIdXCNe232PlBiyU+XASYAE9AQsVpyMcgntETMN6JChLwBYV9Si57MZ2Ictsp5cXvdiI2dV71lwwiG0ZxhxTWUErs2V1zGT7Xc/x4rTPS24FCAnDo0Mh5fbCQEK7gG80WV7VmNE5pp6LboLt92SpuLDrSu1cvPHTMR7hZZ6dVo1o1rvyzYfJ4q9j+fkgd26oV2P3t4d0OjKeT8s2ObwJpOMfxg70HtBXiEBPwiU4jROSJzEG3CPH7VZhQRIoCECNWJ+UrrH2lCRNr1W/lINxFoVxkVG9BWhOmG1Gf1ei8CAkyZ0THYNzbqwE64tuxnqId/nVFKLwomOuRsQv9aESPveMGOCEf0OOcQrEd7n1KDG54ZZkAQaJuD4ZDVcild9IFCFt5+d7SqXnC5adVtyadxdl3ukZmKVMiwXR4wT//ihBIJouxQz4CYx6HGkfBw77109UHFe5zprZgrim2VsJWYyL9vXL9Mexqg+zWrMMQG+k4CTwG68haGYINqvZj5hOlvkAQmQgEZATFBODqxB0RaH8BpkXGR852dbYVhkwoCnRVDXOVww9RFB/sO629TjMVF7yC/FKZ8mUvLHGqd5TIQI7VFuP1+GRBO6OLT72bUo2hGknHyaLQsFEwEK7oG6G1U/4JNsW2ML1u1E5e5N2HlorWSUeukhBndMsv9Vr/gr9lV5KdYa2d1uwAPaQ4SjM7dvIEc2qnBglytS08y7bmqef46Sb53eZDJ+/VMEgbW/c6Y8CH0Cp8WyXQVcuhY/Cf3JcAYkEGQEzj1igdqHadIJxME0xJofZCOqbDftk2WU/z2kHkZ00v3uieiN60V4Vw/7jaYy2ei6zFUqJs1jD4iZ4sq/9LzLDt5Vk0ck0HQCFNybzsxzjepqnFFXZq7DsqkpmjfFygq9CUr9ascOOoTgM6hwt6epX7wFc7rhzowFzvbnv5bnZQWgGEe2O8achozxzfMAU7DtL/agS8mYkjbQ2T8PSKC5BJT7R+WfWbl/NDBcRXNxsj4J1CFQ+mw1LtgVVejoEk7rFGrjE1OSCYlWcz1NuH5YyruMLRkQIdu71EN+BS6Izv17xwWP71e+rXX9RqYZ0SXBYzF0HG5wPTSI1r3c+2K25waYSwIeCFBw9wDFryyJYqS2daanJHlzgV632ao9+OsyhxBc91JbnCXe8xAcq3pY8TJ2eviCsRR8joX2IScvehKpHlTklpL9eOXZpVj67GpsO+yhEefkxExmg91MJnkabk3wpuV3VuABCfhM4Ih4iIiWNZzeGOZzHRYkARJojIAVxU9U4+xCVznLbAtOPVeDU0stKNoWXOYgDT1S1O6vQVmObR6dt4t9uhyqh/zhuE8MWP8K9fDvLZX/pe486565ahl6GeqsSpf/4K2kqw6PSKAxAhTcGyPk6/XI/vhJmvhCfzNPFucbS1XYuCgDrm2svRDtyRC+sWYCeT0yCU9tybK3mINFK3LdWrfg3RVL7XlpWP7oOLfr6rQK6zOHInPhEixZOBtjBi7BYYuHYipLmcnYNTbpcyaC3rK8cGJ2kwlUy3a0vXhP+wFucmVWIAES8EqgRnyVF+tMRBwFy+eLNnmJFWVfhIZgai2sxYmhNsE8ZrsZvUe5RPzeYjATjTjNPaRjfu7vyhe8Mw1qIAS9rKTriVR9pT9ztsADEmgSAao5m4SrocJis/6bmcC0+chc2h9rF9+LmAi760SdUF5yeBv++NgYcRepayv9VvQPAjvBhAmLkb+uGMnTViBvyXiMq1yHF+aORVTleXz2+mJMW2FTtz/zUTbGeZS0K1FWqpuXGCucky39iR48TBZs22I3kwEy7pRvPiYSCBCBveLWLV7E9lhcHaAW2UyoE6ittaK8HLgiRtndu9uEtJISK2rE1YeKydK5s8TM6eAS3kJ9vi01flOKCQOtJlxaXY3Ts229mFea0H+eEValpPFFohBvLKeyxN47Tmm4m5jk98Ta24je0p+piVUdxUtft+DsNJcAbTksunUR3OVj4ExK6/4JVqIfRkospfoRtfVlzSl16zobUQcxBkSJHb1Ds98C8QvrdMeT9kHAlz+z9kEiALMcMvUprPzTGsxfko44ec3MsEmxX32ciyOnv8PfX30Ja/Jswq++uw3/8WDQ+C9PmrocJxOHY87oTOQsm4ahOu1KckYWnn9qAVITPEji2oRicH1aGpCXZ5te+gMY7LFoGd5b4Wg4C7clBsFTi/6G8DhkCVzCORTgS/wMT4bsHDhw3wlUVFgloJoBZ89akZsrXkTOqxckD/jd70xQwvm0aTW4LNuNOnWSaJbiXOjPf1Zu+wxYIsF3Tp8WryMiPV68CGTJJsZRo4x48cVa7NplRTcxBezeXULoiQ1zighnx4+LgCdK2muukQ2ZpiaLnL5PKgRK2iy3XcKvGrLBR2mi5qg8RK2oW7dpU65BRaYRMR5/W7y1ZEWJmPOcn1+/30r5fBxZb0W/TSYV8FRLsWJkp2I/7PO4cmfVoq9666lufgNCfd2CPCMBnwn4+Kfmc3vtvGAPzHv3EPDIQMzPzsGabBuO2RPtgqwHOiu3nsTkIBNc+4yagU3WB1FYcBKlokWJEDVKbFwv9OjWmIBtRuriD3BsUj7OV0djQPIQL55ionDf2kO40yLriFHx6OOBC7NIwB8Cyjb1OtwpYcJEhcoUNgSqq62IiDDgu++s2LKlFgUFkJcVd99twOzZJhQXAxcuWNGzpwHXX6+Ea5tg3bUr8NZb4i8kqr6g/V//5VlnO0U8gYwda8C5c1Z5uRAePGgVoV8J+8DVsphz551GTJ9uRGmpVRP8+/at34erNo+cBHQr0M68Jh40mbR4basR/X6XdQZY5DNUscxax4QFOeKTfbUB/We5dOnX4268j6VIRKp8m9RdYu4wGqi06+Asn8rgZzVxAgEqXvKfNehwnQHREw049fMaXP2uCRXinvPKAXnw/D8mnP1tDbrOlTmJpHfhPyTQ1CoTLsgDjLmfAZ0nGVE4wYKrN0sdeei9ki91HjehaH4NYn9jhFEedIufrkGvP5lx4b+lTm+pc7/U+YUFvd8woUrMoqq+tCLuCRPOPVaDGAlAZbxK6jwpdf5sxsXVNTB2NSDmASNOTbKg16tSRx6Iq7ZKnSVSZ2ENOk+WPQDx8rf2eA16Z5tR+rJEspWnJ9XWqckW9HzRBFO3Jt/tANEN3mYMVknBO7xQHZkFh3PX4w9PTUO2F5l95jPr8Pg/TvVoRhKqsw7mcVdUVIjGrZMsl5eLNq7+0mcwj51j841AEX7A11inaduNPq3Z+9YuS7U+AaXd3iYbHZWwfECEkAcfNCI93Ygvv6wV7TqQkGCQl8Sljm39H/WaGqto34FLl4AbbjDgxAkrFooQUiKbmwYONOCWWwzIEMFDmecYja0/vta4W+WrZUOq+EhXyWEq06R+RSHU1n+il8Rk5rTOZEYZ7lxdaUYnnX7qIHJlDe8QboOYwTqTBFQaJ9FQ7b/thmfEe83jLoHfWcx+UDSpGhftprF+sXJvUHdulciwysbHIJ8z62VZPRIPP1b53Kl9tQazHMsDr5OzMDfIw6+vdQyyFKXqa3XkM6/smrR+rkiemJV56icgdWR+BlnRstr70U23RQ6TkpLQr18/vPPOOy3Sfks0So17gKlaqqpgMUcicdxUvCavF4oKcOz4aUT0vhaxpcdxPqI3+if0QQzJB5g8m2vvBJT7x2SxTaXQHlqfBKU7OnAA+OYbK4YONeDGGw1ibScaQLFHv+MOAx55xIh40cqpdMst3gWk1pq1MpPp39/Vm9Lur1tnFqWAFT/8ABQWipAjSa0CPPaYRTOzuekmg/beuXN4CvIuGj4eBcHvX+epZlnttaDQKbzLZ07uWSfdEvAgjIXyUHVOtqpeJbp3WzLAFOuaZ1P82Nu2w7rqNvdICeeOpIR2lZRw7TDYV0K3M9lXOppSx1FfCdKOpIR2lbz1E+g6jn757iLQ9t+CrrGE+FEZNj8xDhFiRBkVMRwbD9siKsX0SEBSyigM6dMDfYakICmRQnuI32gOPwgJ/Ci6dhUHMd4ZrzgIB8khOQk4FnrffrsW991Xgz9KFMriYiv69rUV+fWvjfiNLNcr+3KH0O6sHKQHnTrZHjp+/nPbz+pVVyk7epOY1RjEvMeKhx6yBb2vkoieRUU24T5Ip9JuhhU91YToZNd0q2SlR5+Uhfow3CNuFv6iy5a9Drbta7o8L4dVtajQOaLo2N8lAHupwWwSaJRAEDz3NjrG0ChQthcvL8uzjzUf2e/sxeR5KaExdo6SBEKYgAqF8j3+hpsxPYRnEf5DV3bq27db8fHHVowZY9C06b17A3/6k8np6SXcKCQmGqBev/ylWC8oEwZJypPNI4+ITa/YDKsVhbvuMkAJ+e0miXlH+U4RfpUG2I/Ag4YuYms9JFC8xO59DlAx20a/g9wT99QXKTiIj3AC32gbVkXXjKgJ4inG/nNv2STeiebJhmX3ih7OI4fVb99DMWaRQIMEKLg3iKcJFyUAkz5N+ukg/WmDx2VFJYjq0c1pitZgYV4kARKoQ+AwtqGLLHq7lrLrXOZJEBD4+99r8dxztRgmgktqqgG33WYTYG6+uf0s+jrs3ZVm/i9/MSFfNjd++mkt/vAHK55/3qRtclVea7rKhr5wTjX7xB3k6OYZjfSujEBnnS16s3hpJia2h6qOcZ5bSsYk7MTr8i2TLDp4EzrJxmTNkFwVF7OuarEfN3mQpqwn5ZqzSdlEmuA84QEJ+E3Aw0fN77bad8XIQZgk/lpz1LJYRg5mDPHNV5Xl8OuIHXgCxdbHvXhgad9YOXsSaIiACra0Hx/gDixoqBivtTKBo0etstmrVttE+otfGNGjhwGvileJbvQQod0JJcTfeCPkZYLDbEi5rFTmNMrO/2c/s3m2CUu3ky5J1u9PpVW1ESDBvdIRNEo2FEd5+dnugUHiWaYnjuIzsXQfA1OyUTxX1drdsssKwkkZjgehvFo8HzmS8RlpnxKXAwffm0GAH6NmwKtbNQYzNh7C8Z8OxJL8d5Bb8FOMS2j8m2XftvVA8kRq2+vC5BkJ+ETgAP6uacFi0cun8izUsgSUi8Znn63VbLiVwD5unE17rDacMnkmoDxxqKQebpTrys8/t+L9963a++LFJlRWWj26s/TcWmvlugTSpvZoHGREn3zRWNddpPa5GSW0R4o/fl+SRfYSqJ0FHYWtp2QtqMGFNbYr3Z4S14MeClklFsC5F2skGNN0nLh/FRISR8Fs7oi4teKCMdPG4aK4k+wuQaHc06W3XZy6yYMBEwkEggDdQQaComrDUoDN2Z/hUukWCZ6arbU6M2slUnrao6e699OxI85+8SqWrMkD0lehdNOsoAnC5D7UcDinO8hwuIt151CJCyK2L8NdeAJRYizD1DYElOvGb7+1QgnqX3whfphFRholkSgdAmnbjCr0e1V+6ZXZzGef1WLDBivuvdemhXeY3LTlDCs3WnByikMoNaDnWbN4ShNf6HE1sIiHnYSpngXl1hxz7X4JrDTUbpKTZkCcRHiNS9KNq6gWx3tKcC4ZVMcNZvQVn+Ke0jlx53jBucG0FNXV2zHUfLcUtaJwuAUVYvKk0lUnI9BV55FGPRQc7m/r35hlwrWLKbjbSAXX/3QHGVz3o5VHU4l3MqfB/vCu9b1myXzfxlDqWzGWIgEScBHYi3dxLX5Cod2FpFWPVDCkN96oxfffWzF/vk0oufVWCieBugkOW/fbb1c+4WuxSTZBqqiu//qvJgwe7FnIDFTfjbUTKe4tleBqS1ac7VkNca8vyYA+97Xt2GxjktFVOI7kXezQi5MtuJBhQOwUIwynalFi90PfZasZPWTfheckGvs6v88xOFe5FVUxY8RSJwZ9PjXheKxN+D8XXw3LdnmAkQ3Xlh9l1WmM46FBPCNRaPeMl7l+EeC3rF/YPFQyD8GsVWLkzkQCJNDiBEpxCoX4TqKk3tXifbGD+gTOnLHi3/6tRtOsr19vkkij/CmpTylwOampRvzHf5hkI6tEtrS7kty6tVaLFhu4XnxvyZAonoCy6pY3pEsAo2Izohu3EK1bsYXOlB16F7etL7XZVlxIl2BZIrR3WmdCv+qIBoR2NTDxIJOmG2C6CV1jboVSGmgpxoi+1WZ0WWQ7vTDaguP9JTiVCO0qxlS09DEg1yT28EwkEDgCNJUJHEuJvLEZw+PTkS87zzMWTcP4G65BZwnfqwKJuKcOHTrgUuEuLJ+/DPlpYiqTS1MZd0aBPKepTCBptn1bn8vaVk8MwUDZKMbUOgSUycYbb1jxX/9ls7uOFAGN5jCtw95TL++/X4tVq2q1jaxTpxrbJoqsPERcEY20USLYduzhaZRtn2ctkzGW2cah7OPVWDt0a9q4qvaIIF5tQGSyRPQ0V+J9PIWxsiG+M1yTrhVb+MtnpF2x3TfI7sEOEt2Xj7NN49wWpWkq0xbUg6nPPql4WII5vDRtDV57fJQPI5uM1KuOY+Azl7Wncx8qsAgJtHsC58W3wwXxqjwaD7V7Fq0B4OBBK/7zP2vF/7gVs2bZRJGoKG+mBa0xIvahCPzsZ0aMHm3AK6/UYvr0GqiVj4726JmtRcgkmz6jXLJra3XbpH4MMfJQ4cVbjK8NRSbpRfAo8TGTJut9b9f5DjKKx6SoJj4Q+No/y5GAnoD+06jP57FfBLohfWkWxl3j40Y5SyFOmoYjfVwfsdNlIgES8IXAHmyWaIZ3izaLTrF84eVvmRLRIKr01lu1+NWvDGJfbcbIkfzJ8JdnS9TrIsGI5s83Yc0ak9jBSyChCivefLNWVnkd9uct0SvbHCgOaM/jCEpwnDBIoNUJ8Fs4wMgT7l2M5VOH+NRqwaaFuOPBWqxdPjlQLml96peFSCBUCZzGPvECUSau2W4J1SkE/biVl5jFi2vwzTc24W/RIpNE+ORPRTDfuF69RNsrqyBRogH64QcrMjJqxKWkfXNkMA88RMdmEnuYoZioad1DdAocdggToMoqYDevCjs2/hnfnu8oy5WNN3r57EG8sFC5jUzDN0WPY1yQLzc2PiOWIIGWJ6CWp2/AL2TLGE01Ak1bmcKo6KaffGKFsplOExd6TKFFQO05ePJJE/bts+J//kf5068VIZ4PXS1xF/uLocwBfIgiHBJL94Et0QXbJAGPBCi4e8TiT2Y1vn1hNmbnNbVuHt78+36M81FL39TWWZ4EwoXACXyjCezxGB4uUwqKeVRXWxERYRBhTwLbyIbT7GwTOnem0B4UN8fPQajoq889Z8Lhw7ZVk02bajF8uAEDBvC++om0XjWjhGtSJnvfieleGv5PvevMIIGWIsBH8QCS7RjrX2Nrpr0qru2YSIAEvBGwSnjx7/E3JOFeb0WY7weBXbusmDNHxZYErrsO+Md/pNDuB8agrZKYaBPUBw0y4NFHa8QLTQ3t3wN4t/phpDiWuCzOab8PYKtsigQaJkCNe8N8/LiajAXPPIwhsj/1sgrJVi8pU5qL2PLCQuTkAwvWfYTpSQmIq1eubTPKCvfjq6+/w4/Fl7SBxPVLxsibU9Cnmbvzvc2q6PAufPLhh/j7p+LoL9sWpm7tvlLMGNJCHXobCPODksAx7JAN3F3FBaRIl0zNJlBZaRW/4LbgSb//vS3Qu9K6M4UngWHDDPjzn0144YVaPPRQjayq8Kc/UHd6GO7RtO5Xi/6diQRagwD/egNIuVTkzUVbP8bTqY37hHp4QjIm95+IFX/6Dr/PHRc8m1OrCrB6USZmr7Db/CSnITk/T3zT29KidTuRNTUlYP48Cndtxh9/lw5Hd0jOwMp1OUgbNRL9Eyi0B/DjGbJNSRB12ZK6pY7rtZCdTJAMXLkQVBsaH3/ciA4dKLAHyW1p0WEoDzRqo/Hu3TbzmYICq5hEAd278/43B3wfWQc8gL+Lf5md6IsRzWmKdUnAJwI0lfEJky+FojA4axHuTPRN2DQnTMDSVRkSink+5qze5UsHrVCmAEtH9XcK7Su3HoN1dy52WyuxdaWMVdKyaSOQGYjxygPCK4+OQ/wIu9CePBNb8k9Kf69h3tR7kZTYBzF8rGyFex78XRzBp6Jr7yurUv2Df7BBPMKTJ62iabV5GnngASMeeYRCexDfrhYbmrJ1V0ntZ/jNb2rwt7/R+0xzYd8gJnzfiSmfMuljIoGWJkDBPWCEzZiw+GmM6+O7tDnojvFa7zmzN6IgYOPwv6Ftz2ZiiV21PnPDIcxLTbA3FonUeWuxYaZEl5KUPXsEXtlvD0VnL9GUt6qCXEyP6o9Mh5p95lqc3b0aE5L6NKUZlm0HBCy4goPiuUF5kmHyn8D69bX47W9roDYtqhQXZ3v3v0XWDHUCasVFRcF9910rHnusBmqTcrinczJBb6+/ybX3/ARg8ypzj0RUPS9qBmivo362xWok0BgB36XMxlri9SYT2P3BR/Y6e3Fa5OC2tAyxFG7G3IV59vFkYO49iW7zMeOeuY8CazK1/Mw5a5GeOw+NGwW5NVOUi5/3Hw9HT0hfhbOrZ+gCR7uV52m7JnAQH2l27bHo3a45NGfyS5fWoKQEsjHRhN69KbA3h2W41b3mGgOef96IDRusOHQIGDLECuVSMhyT2j76YSMTu7uR654uqweBv8qrwm4mo4IpVsprp7xUUtvpB2hH/I8EAkOAgntgOGqtFO3fhf1F5Y202AGoLsE3H67C/GViFK+lGAnn0LYpf+PLTjv25AVTMFSWUd1T5NBULJDMFeqCmPhsOTwTUxM9FHSv6DwvwrN36oR2pGP7a7MotDv58EBP4DLKxUPyJxiPx/XZPPaBgNVqE8SUN5Gf/MQgPtm5uOoDtnZZxGg04IEHDJrGXT42mvZ94UKjtgcinIB83shk1G/wwEbKuF9WQvs6XWYS1iIe14ig/v+zdz1wUVXZ/zsz/EdQUPzHqhhq6AYmrqttYaLV5taKv7KtVewn/QEqE61Ns9IKLdK2/LP9EVuzTXS3shJb03YVCis101+ipZmaVFD+AwUFFGbmd86becNjGIaZYf5zj5/ru+++e8+99/seb84799xzrsfbVH6G0kZKQnhXgCSy7UZACO7thlBmUIN/3j4cOfIuTrnYlmNmGpJsM423hZsDdU5h6yr5IwK4e2qK5c2nAfGYuoxs0nMMdd/e+g0J7sk293do3ROYo8BnbuEyjPTovG0euqjoAQQO0cIzu1sL9zqfSx4Aw44uT57UIy9Ph1tuUYEFdyG02wFeB64qexW6+moVsrK0ZFqlxvXXW//gqye8yih5u68nNluppcTCeTQlc2qkAoMhqPkV6+esaZfpDsqEk4eZYryIy3AN/kx+sF4yXtxIxyxK9qi5jE3FQSDQAgHrf5UtqosCawhEOrQeloZtCydaFpStdebEa41lO7BWIVBbYx0Y3CRpF771KWgF3jaq2YVHp6xsqpu6DHMn9Gs6FzmBgAKBWnqyyvAFhRX/vaJUZNtCoKhIh8xMLUaOVCElRbze28JLXG+JwK23qrFkiQb//KcO7OffGm2gi7LBp7V6nr72mXEAN9ORBWzzxK4X7BXc+SeTPwaYulLqQakTrR/3pgBx7GWGnawqfcx8SueCBALOQEBo3J2BohmPtMxM9A8LMytVntailtbYuo64HlkZkzxq286jqjvzs8lMhs+7dWYrPcvUAMWm1OIiHK6ZYZPW/OgHr6NJpw/SAnZD8RsL8Pqb61FYbPhqSEpNx933T0fGpJFo+jywPA5R6t8IfIMPEY8UBIsnwaYbrdXqodGosG6djvyzayAH3rGpsagkEDBDgCOs5udrJLt3vlRaqkdSUnPb9x1UfoJSJFfwYuIxnqHEv8h9nTjOPQpeQ5rlbySx/TkyuxmDBEJHrsc29qMpkbGsIIFAuxAQgnu74GvemP2455acxLyUmOYXvPwskNcPTZSOhNjWF/S69uJXVJMI3qypiYd5pgbb35a17azXKEXx/ClNG1SN1UuLC5DDKWkuSj99FolCejcHskOcV+MX+vc16drnd4j5tneSLFRdvKjHiBEqaQNqQEBzAau9/EX7jokAm84MHmyY+7JlWun5uuceNfj5+paKv/ARWPgDg4m1469QYt9ll1Fi9wvhlByhamrESSal4M6B4vrjKnxDsSeG4nbJPKfBWPEHOg6QG4mjQMBBBITg7iBwLZsFYtiK1YgZYavQXo+Kshr07mdr/ZY9Oquk8tRJBSvSqPNbphXZvUf/QYq6Nmbrv8MGk6xv0K6nLyrEizMmIIb6qa86ivdeehhT5hsrleYh6Zqe5CJyhtM3rmZkZNAPT8vH/rXXXkOY1VUSG+cqqrUbgQP4gGxmr6cfvFYewnb34B8MdDo9RcPUS364V63ihXlIQpV/zE7MwpsQYLeRvG/i/vt1yHhVgy8Mj5s0RBZgtxgH24mO1xjz3nDgsbENvkz808bnnIopsfB+AyV7teDHqY2StMoTyvP76yMswCD8gXTuEZLGn6scpyQEd0bC/ZSfn4+SkpIWHZeXl6NvX2euxbTowukFLSUYp3fRURiGoO+V0fjsP3sRNyG5TZGj8eh7iB0wBWmLtmH97LEetXEPjRlM/l2UevTW71kDLrZ+0coVpfI8NXcb1tCcZQqJisfkeesRXTcc4/MMgj1Kc7B6+58x28mrFykpZH4RHCx3bTpaEuZNF0XGbQhU0k/bWYpBOBIZbuvTVzuaMUNHH5vA3/+uQZcuKl+dhhi3DyAQFqbCggUabKDVHaXQLg+dNfBM9Dh6leBu/DWRxmbpv6NU+CqlOylFWarQSlmlWbn5ynMQITEQqbRueID0YFeZav9oyomMuxFISEiAWq1u0e0nn3zSoszbC4Tg7rQ7VINC8g6Tg2WotEFwD4ifjCOFBzAgbRweuewIlkzib38PUe0xhfGL68dw+8QRFjqhAFZzVyM9bzgKjFfXbt6Dh1JudOpHzV133SU06xbQ95ai/eQ8bQhpqTROveveMjvnjKOqSo9Q2oYyerQKf/pTyx8i5/QiuAgEWiIwkezcq6v1OBOpktwccg22cefPbHOtM19rjVhDX0/JEQGEPcDcSMmW9TgWmdk4k/2qs637N8YjHZrRm3R2HyVbNe/KcfP8LbVjG/ctyEcvEtxZ8y/Iswhce+214GROy5cvNy/y+nPl8+f1g/XuAQaiW38aYXUwOYGyjeKHjpJeKksXvIvHJs12ulmIbaOgl2dYZ0VVpW5cUWzMBtJ2QSXJtnvKsrbyFxv41WuBIpJwG0VnLVhp0JOU7jxMW2FvtEsTYoGrKPIRBE6Q5exFnEc/0rcLaokAm8bk5+tIYFdjCBnVCqG9JUaixPUIRJLQflbRTWMdeZ4JVUleVBTFrWZZYJc19K1WauPCT3R9QBt1+DJb9LBgzYm9vrAQz/1/SulrSkoqohP+ILCF2H97WxRA4vwQjMKutiq24/p31JY/SJQk2/DzGNkIll4V9FYFvqJkTrJZ0xd0YSgl/nXfR0nhgoLODCZFvej4AyUdpThKzPswJSWF0UkyJZYLvqQkrzXsoLz5h10ilbHkwc8Cr3Z0p3ScEt9bmfieDZRPxNGEQIApJzJ2I3BoexGO0xPKX9uBgZV4m020kw7h4127EH6Jyi18hgfyTtCGBpw98RVWz8s2eHMp/RzH6C8lxrrMbPf4bG7QcFFRtRQ/VTYiOcLyo1H+Lf9ZyzQEPW35SiGMzF8EMofmxwD0T+ZXq0Fw59eI5VE0byXO/AOBb7CJ3D/eCBX9E9QcgZoaPZ56Skc27OQPOgt+G92y+azFmS8gcK5Mh4pINXr3dt/fLQvkjhJr6q+jxGvcGxVMWIAcQ8kWTX43qldGianacLD4fxyJsSUWrzinkIVdc7GBhWcm3m8g48QC+QAubIXiqFz+rf0V5VnwVhJ/+DBFU5IdhHK/5jxlHtzvZZRk4rzcTi6TRQcWznl8TF0pKfGX60gXxX8mBGScTQUiYzsCFTsWYvyc4uYNSpdi/CgptmjzcqtnPdDZ3EjOan3nXozoP4ys8QybdVhoPn6GxOx+/A3ckmrPKHQNmcmIteUJCg2TtB0tuVkokf+CjZda0c1baCiKfBmBX3CQfizqKebgMF+ehsvGft99WlrmVeOee+izRuU+AcllExKM/QaByF+p8VWJ3mbBnQWzHC+YfX8aw02UNinG8jPlubwtYq29TNZ+utUkOrMwek6u7OQja6w5WSLGWRaCeYw9LVUylvEHgEw83taIPwZkYqG6NcFaTddYIJdJmZfL5GMXOUNH/hgw/xBRXBZZIwKMryAHERg7mzTuJSscbN3ULDX3dgyQ/8Kait2Xi7oCt6cpu2tNGq/Ht3tlbTiQef0w01e6snWLfEAcrlLwL/r0+xZV5IJmL8HYiFZfDHJ9cfQPBA6S6zShbW95Lw8fNuipsrLUuPdetRDaW0IkSjyMQGAnFa67zvAx+eyzWtSx6YyP0AAap1KoNDfnaG0ayp/r1oRXua1SMBWKKBkVcWwPAq1JaO3h2aHa9kvJQkP5EDwQOxorpZknIT1zlLS7vi0gwrrG4+rrJmDi2ATbBOC2GDp8PQrXpc8ktzKGlYKcNcW4P3mChTFV4thOWXBPRfo4Xmy0hUJw08OLiP8cqXLhqq04NSPZok1/bTVp+42UPr5t7zxyXXH0XQSEtt3yvXvtNR15QAIGDRJRUC0jJEq9BYGgIIPg3q2bCtnZWnIdqbFZA+/pOSTSAE4YByGblrQ1JnsE8DIFM887f1YMRmR9FgEhuDvh1gX0TkF+5U7URo9CQdL9eC0/y7RE5QT2bmERf/NdSMdSg0eXpa9jT+6EFhFRG8s+xxyj3J409wmkWLCmaaw6hILX3iGHft0x5tbJSIk3LHzFpKRjUdIcQ/vSOXhv/33IahFh6RS2rio0zjcN0/+Y4Ja5i048i4DQtjfHv6FBj9xcHWroG/b558WiaHN0xJk3I5CZqUZsLPDgg1qKMaBBJ9LGW6IfqJC2gTlELFz3d6il5UZKjbitGvdexGqfkV01Hdl0RqmFN15qcYiStnf6ls/wFpMQBR5HQAjuzroFUSPxypGdyDjdzYKm2nInNWX78V3jr5Acb0ECttzEdaUhiVi4ORcF4+dTH4WYu7QIRfPGKvprxIdLFxjPU7FklvKaXK0eb2cMRoYse885hCMNSxAvPWW9MeO9dzBnwG1S5ez0V/HHfbOlKHZy64otK0wfBulrn2vx4SDXE0f/QUBo21vey8WLdYik3WBPPUUWshrLgk/LVqJEIOAdCNx0kxq9eqlw5AiQkKBHSEjzZ5iF3PfbOdQJ1N5ZwvtZxVis2XcrqpHnq+bEXlssCe78IXDGVLWW3FKyRf19phKREQg4goBQ5ziCWittIuJHYuzIeJsF99356Rg+IBrrDjWZh7TC2i3F/W6ch9K1ZDJDVDx/HMY+tg6HKipQdnQ/1i2YhLSlBnX7om0FGGtxza8ONax+MNE+nK4znSAkfhIqS9dKLrlAWvfYsY9hy/6jqKA+9m9cjFjpowFIzd2M1yYLbXsTcv6bE9r2pnv7yy8G2+CRI1V45BGNENqboBE5H0MgOVmFwYOB2lpg5Up2IOhcslUzbkuvB42V2BuLrSo0FtJpYcFE35tyzTMXFKehJNrr8DM4yJwggUB7EBAa9/agZ61tYyPqKbVG7NYtJpm11qWY8ui7uGXDNItf7K21d1V54uQlKI8fivtHZaAwbwoG5zX1lJSei5cWzkRKv9b2fUdgSGoqSf3FhkZpt2OQWdWoxMnYczIBLz7xF8xZmYfxSYoOyLfNssJXMGOCENqbUPffnNC2N93bkhIdvvpKjxkzNLTRT+hTmpAROV9FIDhYRS6R9Th4UE9mMzrccYeK9myowA4IJrVjUiy0K72gWGP1g/Eie1Sx4J1Zsm0vN9b5fSuMuL8dlFgzP5DS5ZSYfktJXjn4ivIjuNCMaNHBRKOgJheNv6cgUJspuqzQupuAERm7EVDpiexuJRq0ikDZrvXIf+kV5BUYhddWayoupK5AZVGWzV/7ipYuzNajoqwc1fTtEUhrCJHRPRATZWkx0HwIjSjbX4ozDWHon5SAKCufhvVVFTj+k2EhsSEwEnED+qEV9/Hmndh9Xkuqn/DwcFy4cEFETrUbPdc0KMaL5Ad4DPpIITtc04cvcH33XR3eekuHV18l13Fdm5sV+ML4xRg7HgK8mfNfimnfSPkBlD6gxGYj6ZRk0mr1ePFFHb4ntfQrr9i6/VNu7fhxLzXdrmieQvlkxXkV5d80nv+ajtcprimzLLR/oSi4g/KyJ5p/U/6o8Rq3Zz4yscD/kvGEtfn3UtJRGKIteJrCMt1FPtHjjFfFwZMIJCYmom/fvti0ic2YfIOsiFW+MQFvGuWp7YsRN9rgOcWucZ25aLN5jV1821U5BL37xTezQbeNXQD6JSa3sAG01DYkqjcSKAnqeAgIbbvhnu/cqcMHH+jw8stCaO94fwW+O+NuZkPfojifpMhzlvdpsOnX6tU6NDbqcYl2pYaFuf4DVRlWkMfBQjxvKB1OqdKYpwPMBXouU5I5HzZslQX3mym/nhJr7bdSYktRXi/mOtsoySRjwn7dE4TWXYZFHB1EQKzJOghci2aNR/GsI0J70kxsfmuqCDrQAlBR4M8IHMJHpJ36Q4eNksoCDNNpimfGQntMjOsFGX9+nsTc3IsA681TzboMpPP/oaS0/VZWychQQ00Sx2efGcxnlNdckR9GTGmPdzNiwZrXwlmAj6eUQUmphafTFsQeZJRkfs5COX8MMLFmnrX4bELDfXEfWZSiKMnUH1eRYH8CVZKHGblUHAUCtiMgNO62Y2W9ZuM50EogrREuw8FFUxHXPQIhATV4Y2I0Mnq8g7r8SQiQbd7JwP3krnzEjspG+pws3Jig/LO23o24KhDwdQRO4FtyBXeBVnOG+vpUHBr/+fN6LFqkw4IFGvzhDyoSZoTQ7hCQopFHEUii3gdROkeJ7cdt+RXjZ/3KK8ls5F4tZs9W43e/c53ukA07WTDnDaJsn87E5ivBlHjFgD8+bCG2ae9KibXobFsfTsmcrqECtnln8xsm5s0fDZbs6ukvnuzkrydb9w9xNbK5uiCBgF0IuO6vxq5h+H7l+uOHyIliEkqWz0BC7ygS2vmbKAo3zcilbfWvYDf9RQdQmZToSu+RWdi5LA0FUwbjDS/xKuP7d0HMwBcQ6MieZE6f1iMnR4vLLzcI60Jo94UnVoyxNQRYOGazEVuEdpkHry4tXqzBsmU67NljWHmSr7niyII2rwJwYg/qPF5bhXaqKhEL+v0pWRLaDTUMQjrz5sT1LQntct04jKQPngqhdZcBEUe7EBCCu11wtV45pCvvW++KILM1jJjRtyGTFudGP78FtM+zGXWuL5TOl+R/1uJas4riRCDgJwicxGFcpO1rFL3AT2Zk+zQ4sNL06Vqwn+v0dPHqtR05UdPfEOBowH/7m4YckDnfVaQvYKWmXW2X03bYg7RVVZBAwF4ExK+HvYi1Vj+iC9JIQH9p3V6pRmN9vaFmQAKmr6A99nnj8cj6Q4rWjTh+NlU6L9132LTEpqggsgIBv0Ogo2rba2v1+Pln4K671LjlFvHa9bsHW0zIbgS6d1fhvvsMfwvvvNPxBPg4/I5+938kM56f7MZONOjYCIhfEGfd/5A++B3J4QXZw6FSka/a0FCoJi6mxTAgcfJ0EuqBpbcNxsTH8lG0vQjLs4ZjfB5vkyEqLsKPbEAnSCDgxwicwhEKDV7d4dw/sn/2b7+luA0xwA03iFeuHz/iYmp2IhAebjAZKy/nfR9a6HSuN52xc4guq66RtO5s677ZZX0Ixv6JgPgVcdp9jUHG04uacyvcYhDII0ZiwWrSuhMV5mVj3OhxyFlZ2lQ3dTwGmgUqaroocgIB/0CAte0JuIE8yXSc18727To89ZQWAylyS2ioQUjxj7spZiEQcB4C06erUUX7wJYs0aEjhZbpL2ndy0jrzg4lBQkEbEOg4/yC2oZHu2rFpMzGwXdyFTyGoluo4TRx2isonMv78FvSoqdvEe4gW8IiSvwIgdM4Rt4dKmlzmKX4gn40UcVU9u7Vkx2vDi+8oEGnTkJoV0AjsgKBZggEBKjw7LNqycf74cPoMMI7a90HCVv3Zs+COGkbAbOtlG03EDWsIzDg5kdQU5WNE2dqER3bTxE5NAITnt2D0lGrsPj1zdL3dWTEENw1exYmJNIauiCBgB8jcJBcnw2mwCMdSdv+73/rSIOoQWysENr9+NEWU3MSAuxhae5cDUVY1VOgJnLdSBFXQ0L8/2/nMnIK+S3+K3mZ6exAyEMnwS/Y+BACQuPutJtVg42PjZVs2yOirsP/kVOoKPaV1YwCkDghC2s2bEARpQ1rnhVCezN8xIk/InCGIhycx2mKpsuejv2fOBoq0/33q4XQ7v+3W8zQyQj076+SApPNnq1DXZ3/27xrECg8zDj5GfJ3dkJwd9YdrvkGr8ubTVGKgk3fOIuz4CMQ8GkE2OXZYNzYIbTtH3ygw+bNBmGjWzf/1xb69IMpBu+1CPTqpcJllwF/+YsO9fWWhPfvaez2ulIkGxxspLTOmPbR0Vl0nhiVUJJ589h+sZn5ZbiGVBtHaev+CZvbiIodFwFhKuOsex/IAZ+baOINtBvNRqo5VYXQmCiydhMkEPAvBDisdzV+Jtv2TP+amIXZvP++Dm+/rcMrr9gb3sUCM1EkEOjgCMycqcFLL2nx6qs6zJol/039SKgsp7STEodUupFSW8RtHqEkbwDldnKe275EaShnHKQ3qN0qRdvOlD9nPGd/cjMpWf91Z637QIzBIfoY+S3+19hWHAQClhEQGnfLuNhfGjIQE/lvlCm9ENMSbHMT03h0HSK7vyaFUzY0Fv8LBPwHgYP4SNp8pbY7VqFvYbBjh07aiPriixpERQlNu2/dPTFab0Vg+nQN4uP574m11yx8T6bEQjuTtTimhhogP+mGNrKgzhrxf1H6LyVZWJ9OeUe173+ltrLQfjflt1P6N6VnKDFxkEUW3NumeIwmffshyayw7dqiRkdGQAjuTrv7EZi2/ghyU4lh6SYUlRkDMLXB/+D2t4Gkzm18j7fBRFwWCHghAqxpryT7dnZ55u80cKCKtO0a8BK/IIGA7yDAJh47vHq4EyawoH0bcCkEeknLbs9wWdiX6U3K9DGehNBxKSXWjjOx8M5Y2EOMGwvmTGMoTaMk02jKyH3zR8F6+UKrxwAEIx4p0kbVViuJCwIBQsD6+o2AyHYEGsuwsWAX4ieSv/aclRgXtxKZucuQ3D3YMo/gYJzc8SbmrywG0sZbriNKBQI+jMAh/IeWf8eSrt1/XzOHD+vx5Zd63HyzCpGRQmj34ce1gw79aZr3QUqsJfZWGksD+wOWr4jA4ROl+NszM2i/jC3Eduaypp216/3NGvF7iTX4rxrLWRtvq0kfub0xadW5+VT+z4x43M8by5bR8TpKXYznlg8D6ANgC57GEIxHaBt1LXMQpR0BAf/9RXX73avDpowpWKnod+X8HMWZlWy1lWvikkDABxFgLzK/kECQjDt8cPS2Dfmjj3RYtUqHpUs1Qmi3DTJRy6sQYEGVzU4GedWoWg6mp1Q0Ywbw4gpIZqWRLStZKHlHUXazIq/MXkUnsuC+hvJ3UmJtfFv0FVU4Z6zEWvvLLDToRGVjKH1MiamE0gQp19p/QQhDHK4irfs2XIlbW6smyjs4AkJwd9YDEJCArBVpWJktL505i7Fn+NRUHMLuLw/gh0rD8mF03yT8ZkQyettmut/moKsqylDdYKEabfI98+UqDJ/XGZX7ZiDKQhVR5P0IsF/iAbiWdO2trDh5/xSsjnDrVh1ee02HZcs06N3bNv2fVYbiokDArQiwECkLrMYogW7t37HOHspW46KpqSVvM/LF05Q5LJ/QcZQir8yyFp4/XOS631KetfNtkdK8aBJVbk2UupqufWxkxrKBdcGdKw7COFqrXCjFvQgGC/+CBALNEWjtaWteS5zZhEDyH+9CEgnupUhC+twpGHfFr9ApiEzzLrVsHhQUhPMVe7EkJ4/qexHVlyF/bgayl5IJD1NSKpJKi01jnLt2D3InJ7f6mjI0auP/U1soOJV186DUZTuF0N4GjN56uU4K4P0V+Xt40luH2K5x/fSTHhdJenjjDRERtV1AisYeQoBdIsomHDyEfZT+xhmiXpRYEPVealIFWPtg/tKOCSg/XHZRu7YEdzaT+chG/n0V9fjj4Cwl6+YyIRRHvQ9+g+9QhCtsEPQVHYhsB0FACO7OvNG9U3B3Eu0xn7ISa2aPtIHzJKR0+xEDFl0Evwo8T2VYMDIO841fEstKjmNGSj8aVj22L78Xo3MKkDdlOH6s2YM1WckOD3f76sVttE3C7Em24NcGG3HZIwh8i63ShlRe9vU30un06NqVLG7/oIJKZU1w8LeZi/n4DwK7LUyFnCRIxK4SvVtwNw6UDnpsWabFDQ+qwVFXm9MvzU+tmr/UKeqy4J6pOLeUrafCc4oL0Yq8edZ8WbmMKlgX3JnD5WQPvxXP0fF6chSp/LAw5y/OOyICQnB36l2PQtqCXHx/nm3ebKPY5HFIG9vJK/40ty/OMAntme8cMQrtPI8QpMxYjXe+LsVtKym4VPZwjLu22maXl82QqNmFF+awNp9WJTJHWRDtahH26wyM6d2slTjxEQQukgXqD9iNG/CEj4zY9mF++aUOCxfq8PzzGrAXGUECAd9EYAENmzXSs4zDZ1ORfGPe1gNr6KspNem/bW0Jydglh6q33wxET0GKc3N1mD/fkvAuj4g16Nbs1tk+XTaVkdvYcxxgpTIrvuynMFpv7k2/kUfwiRS8zn4OooU/IyAEdyff3X4T5mGJkWdjfQ1q6GM+IirCaFpSj6Llufiy23jc+6cURBH6IQnTsEFu4OSx2MOusWIjpksCNbdKx/Sb482aB+Dm6fSiX5khlWfcvxppRfbboO9/9yXJgVb66gKsmZZo1oc49XUEvkMxBVv6Df1MOmkzhJcAsm+fXhLa8/KE0O4lt0QMo10IBJq1tkcU4H1PsobejI3NpzdTTRao20MqSdv+8eM6PPecDnPnqhWrYKcVjJUadUWxKdvflLMtU2VWzVyrrrxsD67Kdqx1v56s45eQZ65UK3uFOEJ7haJhHOUHGM9P0PFnSlcazy/QUWmbz8XXGa/x4TNKXDecT4i+oqTEkT/wZNOfcsrzqsMQSkyMyR4pZ/gviA6jFecfU57t/eXnjld9lKsWv6ZzNtNiOkaJvshM8+AyQUoE1MoTkXcOAqf2b8FjE4ciMDQS0dFp2FMj8w1Al8g6zJkyGtGBE7HxkPkLQK7n/mPp+tdNduxJM2/DYAsKipDBKU2hJIpzsPkoLxnaQY2H8FJGATVIxfRbhdBuB3I+UbWBTKq+Jy8V/IPjT/Ttt3rSsmtJcNdg8GChafeneyvm4tsIaAJUWLRIg0ceUQrtPCcWMm0lC5vQrDZl05XOihpK4VZR3M5sBLqjBxLonfq5FU4X6RoL5HLic5m0lFH+RrMwLNeTj3JdPtZS4joycVu5Hh+VOHHevC9lXealJL6m5M0fU8r6yo8fzit5K/mIPCPg+OegwM8iAnvfyMLwjJWKa5Gmb0yGO3naElQOH4ExSVOQNjgay0rKySSlt6K+J7KnsHVVoanju6emWH4wAuIxdVkaluYY6r699RtMjrfd1r3swzeN7jKLMSpyKNIyb8L4a0fjd1ePRGK/KFP/IuObCLC2vTcS/c7/8OWXq1BQIF6VvvlUilE7H4FOxHJ7O9jyji7n/j2pSQW5bZuOFGUqDBvGH9dl7RhfW0157EptsVKIb6utfdcTyOiwBC+Rs8mUVuJhDCOGnCwRyxVK2YJXQdMsVTSWmStcRlmpa75K0a0N3jeZ8Rptdq48vVx5IvIWEBAadwugOFpUsz/fTGg3cFJ+S3JJVOJkbC1ZJl3MGT0eWyo8uzW1sWwH1pYaxtrW/4HBTSYQhW99Ki2QtdXGcL0Cb87LU1QtReHKPGRPGY+kuGioJi7ArgqldkBRVWS9HoFG0pAcpZ8Yf9K2nz2rxz/+ocMPP+i9Hn8xQIGA7yDgXKGd563RqPC736kkF63vv8+a3abfKbS5g4zNOuwh8/HL5h/28LCtbiSZj0Qjrg2tu228RC3/QUAI7k67l/X4YHF2E7ekNNpaYiBLf9YxKRkgt+9EpRj//FaPepWpO/OzyUyGR9Stc+u72Buk8Bdci6i4CIdNZkCGotb+r9//gWnjq8U6hfMxKjYUy7dXWLwsCr0bARbae9A2qk5gzYvv06lTemRlaclHO1l19mUNniCBgEDAmxEIDVWRrbsaGzbosHmv0tTiOA3bmnLsoGJalynyrWXNeZmr5pTtflCeUN6aBxqzqsbTwfg9bZ3dSoYm5v1ari9K/R8BIbg76x7Xf4dPCgzMZpKv87p9G7DnyGoq4J33ligC105MN1xY+j4OelDZTDGPFJSOhFgLBu7GGl17yZtRDAXNmiq4mGdDEu9GZeVJlJcfwZ6SzViRm2n6sFHWzRkdi3WHPAiGcjAibxMCjWT7yGYyCfQD4w907pweDz+sxe23q3H99eIV6Q/3VMzB2QjwpsgvKe2zM8ltnD0eA7/ISBVeebRaz9cAAEAASURBVEWDn48nKiyqz9FF3lDbGlUpLtiy94rdOcYq2hxQ5NvKxrRVocX1KNoQypr3MnzR4poo6JgImK/5dEwUnDHrhgbwHm5krkUeBShi0bemVvnV37KT44dl+5QTqOWP9tbl5ZaNnVhSeeqkghup0K2MpUd/ezb9KNiSTWNUVIyUeveOR3LKjcia+xz2frgGGWk5zTT+U+5fievJY439rzhlf5bzGRkZCAho+di/9tprCAsLs9xIlFpF4HvyRtCNPABEks7d16mxUY+SEhbcNRg6VGjaff1+ivHbgkDrK6yWW7MQnGX5ks2l+VSzuRLI5qZtVAwPV+GuW8x5t3znG9iwkui4gqMtgjtXv5HSKmO7cuPR0uGIonAM5R37kR9M/X2Bf5DRzCioIJQJClBtzubn59O7vaRF/fLyclpV7dui3JsLWnuavXnM3jk2UluzVV1acqJtf5r1+/F+niy4e3ZKoTGDpS0rhTYMo8GZu70DopA8YQb2VV6Dx8YMhwkO8ljzz70ZmJGstFO0YXA2VElJSUFwcHCLmpaE+RaVREELBLS0fHsY28jR130trvliQQB5qfjjH4XA7ov3TozZUQRYa+5uMvc64uz+u+BE9Rj0iPzYyPhTOrKwbU5nqYA18kysRe8v5dr+71qqIgvuWyg/h5IlceqwgtUfFHn7sl1pXOHoSjEyvkQ//Na+xqK2hEBCQgIF6mr50fPJJ5/4HEKWnjSfm4RXDDgkDtekAtlvFaMqK5HCJ1ijeqyfm270sML1eiDMVpsTa2wdvVZ7TPKt7mjzdreLSsazn+7Bj5HDUWBkVrT7OxLck9vN2pzBXXfdJTTr5qC04/w4+QXmpdwuzZaO28HQg01zc7XklQKYPl3jwVGIrgUC7kbA3lVU1hrLQqsjY2VbbUc1nLb/UPaI/DMtHn9s9Or2NvVpSXD/QjGB+xV5ZZaF742UeP/OJErsVYcF/KGU5I8e9nn+G0pK4nl+bCzoTMcRxrxjBzZF/D/yn9+X+FDcZseYdOBW1157LTiZ0/Lly82LvP685eeH1w/ZWwdINuv3ZNKGzRxkLNgoeVsJDTRqdhXvmqqj28nHeyhuW1raNJG0qxDH70IPUUAYv1Rksq7lDjSLlMdWNU6hiGQ8vtpo888MrVsZOaVLwaR9COigxbe0acofbNuXLNHiPFkA3H+/eCW276kQrX0DAaV5DAumOyixoPkMpUcoWSPW97Gw72gaQm1Z+HWETtvRaAgJ7WnG+t9Bf8lcs8rzXWm8ztp2Sy4K2ZTmbkqFlPhjZRElmVjLLtNf5Yzi+CHlZW3+45Rvn560O+EdRLHGy6XASIpuRLbDISB+pZx4yxMmL8Qy0roXzk9DtGoiHnjmTYn77o+LsP6N5cgaOxTRA0Yjj98BCnrnhTuaOa9SXHJPtkEpJZfip0p+oVmm8m9lDQNfH4Keyve/5SY2lybcMMXihlWbGYiKbkXgB+ym57Y7+Uno59Z+nd3Zv/6lw9df6/H009bCpju7V8FPIOBJBMw13rNpMPTjBTb7uNeTA2ulbxag+QPjH4rrfF5Cib64W6W/0JUx0lVV0BN0XE/pF0rfUMqiJAvWSylvibhfJX2nOOlDebbVZyqnxAI+j+lHStzP85SYplK6Ssq19z+2dT8o3aP2chLtfRmB9n0C+vLMXTL2GMz48Ai99wYgp6AQK412H9nji1vtjQMwTYr3oLqdRhbRf5j0yjaMshTHz9AG1VYCItWeUWg8MpMR68wnKDpWEtx5LaK6VcTEBW9AQE8+Gw7hI1oc5h8l36X6ej1SU1X40580ZP+o8t2JiJELBOxCgH9znjImuSGvvC6mxJp0byJWFk1vZUCsyWYaSuklKdfyvwVUtI7eWK/Sts5llOckE2vksyl1kgvMjlzO2ngWzJluNBxM//PqwTpKT1FioZ2Fd5kYTx6fc4R25tqTlGUH8G9UYL8U7I7LBHU8BJwpdnU89CzNOCQeM9Y04KaMt/HUwikoaEVmz1y0FrPvm4x465YplnpwflnUFbid3l/FhTLr1h6Leny7t8nEJ/P6Ye1c/JP7Mx4ry03eZUZd0dPsojj1JgR+ouXaMNK1d6OYfr5K58/rcZh+a4fQb68Q2n31LopxO47AOGo6ktIpSrx06q3vXBbKt1NqD00mof0W/GPdT+hCFqxpt7IZK/sta0tpxr+FBZS+psQYWfqoYc37Kkq/UKqjxMQ/7N2knLP/G4LxZKL4XyG4OxtYH+Kn9qGx+tBQAxA/djLWFOlRffI4SvfsxMFy8mF+cA9Kj5SjukGP/NleIrRLqEbhuvSZJnxz1hS3EuqhEsd2yoJ7KtLHxZvaOCNT9vlHRsE9FdcldncGS8HDRQh8i//QTxj/8PsmcTTUqVO1JLDTT3eI0LT75l0Uo24/AqxR7k/JW4X29s+wiUMIJt8Wj22f9KcIq6xFb0tol1uy8M4fD5aEdrkOHxlDxpKTa4R2YiwJ7JdQS59b3/GpoA6IgBDcXXjTG2uqyJc7ENm1J0IbahHYYyAGx/dGRGsKbReOpS3W8TffhXS50tLXscdCRNTGss8xxyi3J819AilRcoOmY2PVIbyxeAEWLM7H9qNNTKqO7seuvftRdqq+qbIy13gUS28z2Bmmr16GsTFeCJJyvB04/4tkH2pYtvVFGDjA0ty5Wjz4oBpXXimEdl+8h2LMAgFHEAgMVOHZZ9XYuVOHTZt0jrDwijaX4zoyVfyvV4xFDML9CAjB3QWYVx0qwoKssQiMjEZsXBzijKl7dCQCVWPxWP5GlDXJtC4YgQMsQxKxcHOusWEh5i4tMmPSiA+XLjCWpWLJrLFm1/m0Hm9nDEbGnPmYPycbowfMx1Ha59pYtpE25SZh1PAkxHUPxdTFG6XFWRODxgrkZwyAJLanrcCL0xJNl0TG+xBgTzKD6IfDF6mBVruWLNFJUVHHjhWvP1+8h2LMAoH2INCpkwqrVgXgppt89++fXUJW42ecNdnetwcR0dbXEPDdJ9crkW7E9uVTET14HOavbMW4nULD52WnIY5CMy9Yv78VkxTPTK7fjfNQutZgMlM8fxzGPrYOhyoqUEba8nULJiHN6MJy0bYC0ohbGmMdaprtKt2H02Ty11hX2axywZw0dCevO8vXb0HR+nxMDIxFdgHZHeYWonJDlksipjYbgDhxGIFKHKdF2kr0QbLDPDzZkDVuTz2lwYQJ4tXnyfsg+hYIeBqB06f1WLdOh6oqvaeHYnf/amhIeTJWsnW3u7Fo4PMIiF8vJ97Cso3zMTqHJFALlJSU1KJ0/m1JmLS4vZtuWrBtV0Hi5CUo37la8n5bnDcFg2NjEUfa8inzC5GUnouS49WYPbZ3K31EYEhqatO1tNsxiPbohCTcisJc2v3ajAqRc9t4jLstG9XEd9vBk9gwb0IbgauaMRAnHkCAl2f5B8MXw25/9pkOGzbooNf73g+1B2616FIg4NcIdOumwq9+RU4hs7Q4c8b33gn98TucJNH9PE779X0Sk2uJgIp+xHzviW05D8+XkI32rECjuYdxNOm5qzHrzpuQFBuDAMlkuxE1pyh8wo4teCEt2xStdFHJScxOsajC9uC86lFRRhtpydQlkHzHREb3QEyULZt5GlG2vxRnGsLQPykBUdK8DdNorK9CefkJVJPdPyimHQLD0DO2H2LcYPRfW1uL8PBwXLhwQUROdfCpqsEJfEKu1MbjadL3BDrIxTPNCgt1eO89HV55RUPPgbBr98xdEL0KBLwPAY7jsG2bDn/7m8bnNqp/jU0Uq/A8rX/e7n3A+siIEhMT0bdvX9rzsMlHRgwIwd1Zt6pmLyZGDjcJ4yv2nERWsjVhvAYbH0tDWl4xxb1YgeqiLM8GYXIWDl7KRwju7b8xX2ItwslbwmAKve1LxBvRnn/eILT36CGEdl+6d2KsAgF3ILB5sw6xsSokJfnW++EiLlA0jVzcgCfIRw67oBRkLwK+KLgLUxl777IN9dNXl7YhtDOTCEx49i0p0iqK9+J4K85WbOhOVBEIuByBOtoGVUHOOgdYDAvu8u4d7oDtWEvJExJr2oXQ7jCMoqFAwK8RGD9e7XNCO9+QYFKl9KUweEdo75ygjoOAENydda/J7KOHkdc1w+Ns5BqDG+5k2+8wi4YH9afKyH2it7mfsXFqoppfIXAYRYijCICBUhAS35ka27FmZqqF0O47t0yMVCDgEQQuXtRjwQItPv3Ut9xEDqR4GsfwORmfCu2fRx4cD3QqBHdngR4Sh2uNjtBPnrX9D+jUSXbD8j1qyeTbnL5ZTa4kV3xjXizOBQJuRYCDfZRhFwYi1a39tqezxkY9+WvW+rSv5vbMX7QVCAgE7EMgOFiFe+9VS+5i9+71na1/4RTBuieGkPD+qX0TFrV9FgEhuDvt1lFUthdLpCBG81/4J5kVtE31R9fjyTnFSM2dgeQW5mn1OLQfSOrsW5sA2561qOFrCBylcOOxGEa69s4+M/S8PPYeA5/21ewzYIuBCgT8BIGePVV4+mkNcnO1+Okn3xHeE8jK/ShKoIPWT+6EmIY1BBQ+P6xVE9faRICCCBXtqMIg9vpYmIPYid9jxZ9GIPjSJQtNg4DqA1iSk0dWw0Q/HcD6dT/gvKLqj/s2YH4B+TYfYaG5KBIIuAkBLUUaOEq+ZK5Fjpt6bH83BQU6/PwzsGyZ0Eu0H03f5aCtqoK+oQGabt2gUhuehUaKS6EjD1MBvXpBTV6mmLSVldDV1EATFQV1ZKRUxu2g0ZjaSYXivw6BwBVXqCQPM4cO6cnEjpyfUewHb6dI0rlHojetjH6B/mTSKMi/ERCCu9Pu7xmsTksDydoGKlyK7EL5pI3jyhzctrKNOuKyQMADCLCJTDT9FESYdnB4YBB2dHnihB59+hiEdl/4wbVjaqIqIaCrr0fDoUPQ63QISU6WMGEBveqZZyQhPWbZMhNOpx58kLzONiDm5Zcl4Z0v1PzrX2g4eBCR2dkIGT5cqltXXIwLH3yAsN//HhF//rNUdnHPHpx5gjx1jBqFrgsXSmXcT/Xq1ZLQL9fjC7rqapPAL1UU//k8An36qOg94v0CuxLoy8nWfS/eEoK7EhQ/zQvB3Vk3NiARmbmpKJgvdnc7C1LBx7MI6KHHYWwjnwXGzRueHY5NvZNyFddeKzTtNoHl5ZUufv01ajdvRmB8PDr9z/9Io7104ABq1q6VhG5ZcFeFhqLT5MnQREc3m1HPApMaxVQe9dBDpryc6XTrreCkJBbYY7duha6OQj8bSR0WhqCBA6E7f14uko4nMzMl4b3HP/8JTWeDOVntf/+LAIruE5iQAJXKtwTAZpPr4Cfz5mnB75ScHI3XIxFDu5ACyM/MzziAXrjC68crBug4AkJwdxy7Fi2vnEhBECTBPQkzc6egfzAc2ucdQnGOvi9ai6WFkiFNi35EgUDAHQhUYB/9DHQiz+2XuaO7dvVRXa0n7zFa+oFV46qrhKDULjDd1Jhj/8lCLQu6FwoLEXrDDeg0YYJhBGRmGESCb/CVV5pGFPKb34CTktT0wpSFeGW5M/Jq+iiQSRVMzvf++Ef51HTsSVp8HQV2U/GL20iXaFXg/Pr16PzAAwg2Rs2+8O9/S5r/YNL0qwLF3iUZK28+zpunxn33abFxow4TJni/QuByXEexVLcKwd2bHyonjE0I7k4AUWYRkXgdMumk67ateHasteBLcgsrxxkPITUrEPNsd1BjhZm4JBCwHwF2ATmIfgi8nbRaPZ54Qgf2xXzVVd7/4+rteLp6fOfffRe1H32EiIwMhF5lsMdlO/RI0lwHDRli6j542DBw8gWS7eXlsXZhMx0zYrt5njvb2IeNHStdrfvkE8nMJmjoUGFPb4aXN5wGBamwcKEGDzygRf/+KiQmerdSIBZDsR8bUYnjZOIY5w0QijG4AAHxK+dUUOORtToXyb2bNC9tsW+sKEJW1jq09NYegEHXZgqvMm0BKK67BIFTFNKD3UD2RqJL+DuT6fLlOrCFwv/+r3idORNXZ/Cq37kTlc8+C9ZAyxQQG4sus2ZJ9uNymSSkk2ZaFeC/uiQ29+n2/PMmoZ3nrtdqUb1qFS68/74MBRpPnpRs+E0FIuNRBHr1UmHNGg340Wxo8G5PMyqoSdmSKmndPQqa6NylCKhoudK7n0SXTt/zzCu2zELs+P6o1s8QAYtdeDtqScsVTl4kLtCSdhjZqgqyjsBnyJeWWy/D1dYrevjquXN6kFMQxMXBZHbh4SF12O7ZM0v97t0IuuIKBHTvLuFQ/cYb0MTEIIxMYIR5SOuPBgvwKvJiw8QbZc/l56PLzJkIu877V7xan5V/XblwQQ/e8sBB3byZtBSK6UPMJ/H9ITJ0bOfKvzdP1EljS0xMRN++fSnmxyYncXQ9G/9Vb7geu1Z6aETF0YM49PW3+OHnM7jYSi0uvnjuEFbNWUo+H1dYqSUuCQTci0A1TqCKHIuNwt3u7djO3i5d0oP3CdI7VwjtdmLnrOr6ixfBtt9MZx5/HGpa+mAbbpkip02Ts+JoBQFZaOcqbEcfOm4ctGfOmFqwic3F/fsROXWqtFnXdEFk3IZAeLgKS5fSBxbJ7Y895r2bVTUU3zoeoyXHAsm4w234iI7ch4AQ3J2Jdc1+PHZNEvLs3VNa7cxBCF4CgfYhcJg2N8WT53ZaHG4fIxe2PnNGTyZmWsyZo0ZsrDCRcSHUFlnXvP02LtDmy64vvIBA9r9JFLN8ucW6otB+BNiDDSeZwm++WbKFbzh2zCS4X/ruOwSQo3HZ97xcVxxdh8Ajj6jx4IM6vPOODrfd5r3vHRbcP0Iufo2byMFAhOsAEZw9goD3PnkegaM9ndZj3f0OCO3cpSHmR3s6F20FAk5BoB7VFPW3lAT3FKfwcwUT3ow6b54Of/qTGiNGiFeYKzA253lx3z5w8CKZWLOuFNrlcnF0DQK8qhF2/fVSknvQ/vILTpAGvnbbNrlIHF2MAG9WffZZtSS4/9//ea+VMfk/Qh8Mp51KJS5GRLD3BALeq1LzBBrt6bOxHAcKmhikZubizuuHomcnipJqkYJwqfJLLJ0yB8VC424RIVHofgSOUJTUODKSCUKTts/9o7De45IlOimiIQvuglyPQGVuLhp//BFd8/JMnYVTsCJBnkUgNCUFIeSVp5HDBBuJXU6qgoIkUxul+Y18XRzbj0DXriqsW6cBxd2CTqeHWu2dNu+DMBbFeBEJuIFWT4X70fbfee/hIAR3Z92LutP4xsgrfcUerMlKtoHzWKT0OYvo0ecosLwggYBnEWikHRnH8BnF35vt2YFY6Z29OmRlqRER4Z0/llaG7hOXeIMp+1MPHDzYFFm08/33myKP+sQkOtAg2QuPbKrE0w6i+1a9Zo3klSb8xhs7EBLunWpAgEoS2slaCYMGNcUjcO8orPcWThE4umEAvscO+n+09criqk8hIAR3Z92u0G7oL/FKReafbBHaDR1HJKRhxepLaArz4awBtY9PTcUh7P7yAH6oNEQJjO6bhN+MSEZvF5nLNZ7aj7c37QGik3DLhGTY7lCzffMUrZsQ4Bd8D9LPhJMHYG8k9upw5AhAsokgJyKg1+lMPsSrX3+dfBTqEX755aYe2Me6IN9AgKPMdn3qKbDPeJnOLlkibRqOSE+XtPFyuTi2DwH2LpOfrwU7A3r0Ue/crMpa9114QzJ9VEEoO9p3x72ntVhrdta9CIjH7+cmEbdifPN9S6/srXUTEDMIIwbHeM82wPoy5M8ai8jYwRiXdhsylryJJRQoJW3ccMRGqvDYur0uWB04hVduT8IU6mfKvE/RFGS8NdREubMR0ENH9pAfkw/gsc5m7RR+VVV6ZGRoyR2bHmxnKqj9CHAgoHOvvYYLGzeamHWmwEHshlDdqZOpTGR8DwGl680IsoPXNzbi0sGDvjcRLx8xb1Y9ckSPDRt0XjlSDsIUis60b2mfV45PDMoxBITg7hhuFltdl7VAKs9e8i6507ON6ve/huGjNloIwGRbe+fWKsOCkXHIXlossV1Wchz6fUXYp69DybJ0qSxvynBk5O91ard7l9+LHEOXFHY22Hs+Ypw6S+9mVk4v9lBE0T/yrehlxHakTz6pw803qzFqlHhlOev2cPRSkEDHmx5lUqkFvjIW/nLkFZPOFJU2mKKzynR69mywZyBB7UOAlQjPPKPBm2/qsH+/d25WHUjGjxwFW5D/ICDe0k68lwH9JuD4tkVAQQZufWwjKqqqcOrUqVbT0b1bMDdnDpDa2SuE1e2LMzC/1ABI5jtHMCOlnxGdEKTMWI13MnlFgaaXPRxvHLJ9VcHIxOKhZv8bGJ5TaPGaKHQfAoexzWu17a++qkOXLsCdd4rXlaNPBMfZ442L51591cQiPC0Nne+7D2oKTCaoYyHA+xYaybWkjndYEok4jI7f/x49VHjvvQAkJnrnSiBHv76I8zhD1u6C/AMB8Uvo5PsYGG6wzi7OS0NsdDS6UwTB1tKA4eMhKbe9wB1kY8VGTJ8jq73TMf3meDNkAnDz9Fmmsoz7V9u8qmBqZJ6pP4S/JGWYSg2fBaZTkXETAqdxlGLt1YFf8N5IDzygQW6ud9qQeiNelsbUQGYS9Tt3IuwPfzBdFtp1ExQdLhMYF4eoRx81+YDnQFqn6fzigQMdDgtnTbisTI8vv/Q+kxm2bR+IMULr7qwb7QV8hODuxJtwdP0sxI7KsZ+jQelhfzsntihd/zp57zZQ0szbMNjC7tCQwSmYKfdZnIPNR+vlMweOjdg493aspJa5a9eClfly/w4wE03agQAvow70Qtt23oz68cc68FGQfQg0/vQTzr78sqlR4MCB6LpwIQL7yatopksiIxCAOiQEoWPG4Py//iXQcBCBfv1UZOuux0svaR3k4Lpm/cjF72naxXSe/hfk+wgIwd1p97AC6xYsNeOWhNTUNKTRknTLlNpU1+Ma91PYuqrJXOXuqSmWTXdoA+7UZWmmcb+9VXaAaSqyOVOxJQ9pS0lUn7kZc8kLT62Q2m3GzpkVz+OUtITaD791Jtt28+JNqNnZWjbBBocaF2QfAqdog2lA796mRsrNiqZCkREIKBBg95H8cSdT/e7dknkVex0SZBsCc+eqsWOHHsXF3oVZAEXmuAzXkOgur6rbNh9RyzsREO4gnXVfan7EHln4TMvFnldmIol8J1oHuAZFi9MwbouzBuEYn8ayHVgrj70NFoHBTf4gC9/6FFXkrz6qjTYtLp8qQvr4+VScidK8GxHQuNdLNue2GKnfF7C2PZ5e6N4WoOO553QYPlyF664TugVbHkL2GMLRTGVhvee6dcL1ny3AiTqtIhCUkIDKd9+FtrISkXfe2Wo9caEJAVYy8GbVxx/Xkn93FWJjvUfpEE++3P+DhRiCm7w6wF4TmiLXGgLiV7E1ZOwtN/lxT8I7y+YiuU2hnTuIwOgJt5MHSc8GYKo783MzM5VunVv3Kt+gFLGLi3DY7j2qp7D89nHSd/+KPX9FotEkp+lzwF7gRX1HEbiIC/gJe0lwH+0oC5e027iRzWOABx8UrydbAK5+801UkqZU6cKRo2cKEgi0BwF1RAS6Pfccwm+6ycSmftcu6OrbYyJpYuW3mbg4FdauDfAqoZ3BDiF5ozeSKMjep36LfUeZmPhldNadDuiOoU1WJDZzDUi4m0Inz7Bfa21zD21XDGwWDTkdCbEWDNyNbLr2GtKMYbOmza5YPtmf/5Dk+jFt2U5kJQtx3TJK7ik9hu2IxTAEw7t8dk+YoMZf/6qhwCbeo61yzx2xvRdlmHt289eDomWqIz1uc2f7BERNn0FA07WraayNJ07gxJ//DO1pYSttAqWVzL59euzZ4137czhOxxF8QlE7RKz2Vm6bTxRbt+TwiSl4yyAjkDZ3GVCYg8ItpZhEJiQ2UVUJ0sYcwLv7PCe8V546qRgqqdA56F4rsnuP/oMUde3L1h9ah6TsAiBpEV6ZMdK+xk6qnUFBngIoTLg5vUaBaMLCwsyL/facX9yseRmNGV4zx0uX2DZUj+RkFWJihNBu6caw+74zjz8ubSTsdOutUhWlf25LbUSZQMBZCHSaMAHBw4aBvdDIpL90SZhlyWAojkNIx/XAA1rceKMat9ziHTrSSPQiJWEf/Egrrd62r0kBnUuy+fn5KCkpacG7vLwcffv2bVHuzQUtJRhvHq2Xjy1q5AyU5BZhNPk5v2ZEJWmU27b+PrTtLTIb+XUbtvCunXhozGDwYkHT9tTW+2sgj7AOUeNRzB08hZomYfPmh2jJzjOUkpKC4ODgFp1bEuZbVPKjgjLsRhd6gUegu9fM6rHHdBg6VAjt1m4I27J3mjQJoddea62auCYQcBkCgX36NON9giKzRmZnIyw1tVl5Rz8JDFRh4UKNtMmefbwPHOgdyoiBSMVXeLfDCe4JtGdDbSHA3CeffOJzj6oQ3J11y8gn+eK5+ThbaxB/s4ePwVtp/WF18bq6EIW8yTtthbNG4Rif2mM2Ce2OMedWjdgy/xawz52Z77yHG3ubPXas4VeQKxfx7rrrrg6lWVfA2izLAZeScUezMk+ecORBLXlRS0/3jh83T2Kh7Ft75gxqyF1qlxmGlZGQkZ5ZqVKOSeQFAkoEop95BhdoE6sQ3JWoGPLdu6vw6KNqvPiijpIaoaGef791x+VQkzuCX3AQPTG45aD9tORaUnZwMqfly5ebF3n9uZkE5fXj9d4BhnRFyL6lyCNBPCmJfJKXlqK40EZXLdWenVZAWGfFAKzbnQeSRbSSzGRu5SVTvqIoD+PzSpE0sxDPTzIP7ETVQhWW8pHBaH1rrImlyLQDgZ/xNa3wBCMGA9rBxXlNv/lGj08+4R82DVQqz/+wOW9m7ed0MitL0rC3n5PgIBBwDQJBAwYgaM4cE/O6zz6DhoIPBg3uOEKhafIWMr/9rRq/9S5vuxQlexy+I+VNRxLcLdwany0SgrvTbl0M0sh3ck7xUhLa7WRqVS1vJy9HqjcozV9K8VNlI5IjLD8a5d/uU/QwBD3blLJr8MFCdv1IHzNLX8cDte+gtlbBAmRXXrMTBXJR4RLcO3WbdFZT0wcL/vWsyfOMXEUc24cAa9t5k5K30JAhKqxaZfl585Yxumsc7DNb+/PPCIiNlbrsvmoVNOTmUZBAwFcQ4Kisp2fNQhcS5kOGD/eVYbt0nHo9Kyf04CBN/ft7XjnxK3JKcAAbcRblZDJpeNe4FADB3KkIiF9LJ8LZL/UOshVfikLy475twW3oF6bQJLfoJwAN5w4iP2M8lnpY4x7RfxhZvZFXSmmMpTh+hjao9otqMWIuqD2j8CaQmYxYW54g04dJIVZyqFSrVIqCAvnLJw1zWaXfykZZq2zERYsIVNG2pAsUPY9f3N5An3+uQ3S0CgkJnv8x8zQe7CnmDIWd75yTYxLchdDu6bsi+rcXAf7o7FFQgIbjx01NdXV1UIe2qeUx1fe3DK8kXn45cN99Wjz/vMbj9u5sKjMA14KVOL+F8NHva8+bLWKXr83Jc+ONGI502uVZ+LubMDYxwYZx9ENewSIsTfKsH3dEXYHbadzFhfKQW3ss6vHtXlmopvBJ1w+zaVNtryHpSI8II9tymb/ZsfYEVhbInSchPXMU6eFrcaJ2EKx++5ixEadtI/AdBVzizUkqsnL0NK1dq8MXX+ixZIkQ2vleXPzqK3S+/36EJCd7+taI/gUC7UKA4wgEDWryQHbynnsQOW0awq6/vl18fblxr14qPPSQGk89pcVrr2no99Cz773++B024ynUkd49lPTugnwHARUt4eh9Z7jeP9Kao7vwVcNlSEmIsW2w9WXYvrsRKSkWbL9t4+CUWkfXz8KA23j7KBHZojcsmWBBKK/A4qGxmCPJ7qkoqSxCimXFvIGPrf837sfUwCSDuUzaatRtmOZ0JXst2eeEh4dTYJ8LHXZzai2qsBXP4Q/IlWzcbb09rqh34IAe8+cbfsC6dvXsD5gr5mcLT9ZCXigsRMQd3rNJ2JZxizoCAXsRaCgrw7lXXkG3RYvsbep39Veu1KGmRo+HH9Z4fG778J60UTVR8ivn8eF4ZACJiYmSO8hNmzZ5pH9HOvW82s2RUXtxm4j4kSahvbG+BlVVNYpQB/UoWv4YFq/bjirZdUpIP48L7Qxn/M13IV3GlWzR95C1jDk1ln1uFNppA+7cJywK7Y1Vh/DG4gVYsDgf249aYGLOlM/rFFtcqy+SBkCQKxA4go8Rh6s8LrRfuKDH0qVaPPmkBh1VaOf7e/Lee6FvvuHDFbdd8BQIeByBwH79mgntF7/+GtqzZz0+Lk8MIDNT7RVCO8+dV1+/xw6SUZT73DyBiujTHgSE4G4PWjbWPbV/Cx6bOBSBoZFkv5umEIID0CWyDnOmjEZ04ERsPFRlI0c3VAtJxMLNucaOCjF3aZFZp434cOkCY1kqlswaa3adT+vxdsZgZMyZj/lzsjF6wHwclT9QLNQ2FZltBWjNUMdUX2TsRqCB7s1x7KQX9Ri72zq7QXi4Cn//e4Dks93ZvL2dn45WfGSKfuopRJJ7UkECgY6GgIpiaZwk0xmlHXxHwoCVF//5jw7nz3vW4CGMwjH1QAIJ7593JPh9fq5qn5+Bl01g7xtZ6J40HnkmV5CRaJJLA5A8bQkqS9dSGKJCpA2OxvLtFV4zg343zkPp2pnSeIrnj8PYx9bhUEUFyo7ux7oFk5C21GDfvmhbAcZatASqQ021cjr7cFqoz5WAeCzPL+aeFOjL07aMx4/r8dlnOo/h4KmO2SKx+h//QP2OHaYhsBs9QQKBjogAP/sxZDrTSFErOyKx8oJp+nQtOGK0J4k9jH1Hrin06HjvZU/i3p6+heDeHvTM2tbsz8fwjJZuUxSGIFKLqMTJ2FqyTMrnjB6PLRW2qKXNOnPRaeLkJSjfuVqyeCvOm4LB5CEgbkASpswvRFJ6LkqOV2P22NbinkZgiDJ6XtrtGGTdLXzLWZg80LS8JEocQ4BfyGwmw757PUlHjugxc6YW8fEdz6adBfaGI0cQSpF7BQkEBAJAQO/eCL36ahMUHGiM3aF2FLrhBjV5mlFh+XLPzjkKfRGObviJ4qkK8g0EhODutPtUjw8WZzdxS0ojrbqBmjTuTZdjUjKwgjy5kHdzjH9+q8IOvqmOp3K9R07DBn0dyo8fwUESNo4cOY6TlXXYt2YeUvpZk8QDkDLvPzheugd79hxE5fosWoizgUKSsYY0kqyV1G/IgrUebOAmqpgh8BP+jzDt4VF/vfX1esmbwsyZavTs2TEEd958KlMgaRi7LlgANhEQJBAQCLREoOHYMVTm5ra84Mcls2apcfiwHtu3e1Z4v5yUOqzcEeQbCAjB3Vn3qf47fFJgYDZz7R7U7duAPUdWU0Ez2xFFbxG4dqJxO+jS93GwXnHJK7Ih6N0vHgnx8aQh7YeYKFudqQegX2IykpMTECWM1b3iTh4mF5ADMMajY3npJR1FD1RhzJiO8crhzXcn//d/TZgHdO9uyouMQEAg0BKB6Hnz0ClN0mZJF/UN5mvVLdv4eklIiIpim5DCK8Wz70U2o7yI8xTh45ivQ9ohxi9EK2fdZnrJnGBemWuRNzlZcmdYU2t9p/bxwwabcVDLWn5H2SobO2vMgo/fI3AaR2k1px696MXsSfrLXzzv+syd87+wYQOiHn/cnV2KvgQCPo9A8LBhpjmw6UwgRS0KveoqU5m/Zn78UY+KCj1GjvScAM8eZjjORzdc5q8w+828PPeU+A2ExokEBkomHmnJibbJ3/X78X6eLLj7GxhiPt6CAGvb+YXsKWITmZISHfnP9+wGLHfMv373blM3URTuPXjoUNO5yAgEBAL2IRB2ww049/LLaDwhqcTsa+xjtfv0UeHf/9aTty3Pmcz0w0icIoOZCzjjY+h1vOEKwd1Z9zwkDteQfFT4VjGFuWmL6rF+bjqatrH2EBFC24JMXLcbgQu08HmGlj77UlBrT5BOx5tRdRTLABT8yn/t2nlvxmkS1Os//dQEsypALGaawBAZgYADCPDm1R6rV4OjsDLpamyMC+JAX97Q5JFH1PjoIx2++sozSo4ABJGu/Xekdf/YG+AQY7CCgBDcrYBj3yWyWb8nEyjOQcaCjZLwHhpo3Iim2J1adXQ7+XgPxW1G14pSH2lXIU6YydgHt6jdJgK06wL9pYBLhh++Nhs4ucLrr+spjgGQlubfrxldZSWCrrgCXWbNcjKCgp1AoGMjoKKVbE2UwcWB9tQpVNIGb/2lS34JSmSkCo8+qsGzz2o95t89HtfiB3wBjvshyHsR8O9fVDfjnjB5IZax1n1+GqJVE/HAM29KI9j9cRHWv7EcWWOHInrAaPLx3nxg77xwh/Ck0hwScdZOBBoo/iy/gPlF7Anat0+PLVt0mDPHP18xuupqXDp8WIJW3aULIqdO9QTMok+BQIdBIPCyy6Dp1g3naf+Iv9Lw4Sq8/XYArVB6Zoah6EzxPoaIgEyegd/mXlW0zOuZdRmbh+hjFeuPYvm9A5BTYNu4l5WUY0ZKa37RbeMharWNQC2Flg+nt+EFilwZFhbWdgMfr8G27WfJM+9vcadHZtLQoAdbi6hU/mciwza3p6ZPR7cXX0Rgnz4ewVd0KhDoqAg0njwJ2UuTrr4e6hD/W64+cEBPbnOBbt3c//6sIpXPDvwd4/EUVPBPxYvybycxMRF9+/bFpk2blMVenff/u+Ju+EPiMWNNA45sW4t00r63RpmL1uJItV4I7a0BJModRkAOuOSpTanHjunxyy/+KbTzTbm0fz+6kr9pIbQ7/IiKhgIBhxGQhXZmcHrmTDSUlTnMy1sbdu4M3HOPFj/95H69KgdkCkM0yrHPW+Hp8OMSgrtLHoEAxI+djDVFFOb85HGU7tmJg+UnUX5wD0qPlKOatJH5sycjXkQacgn6HZ0pv3DD0JWCX7lfG7x5s06y0WRtkT/RpW+/hb7REOE4dOxYBA0e7E/TE3MRCPgkApF3341zr77qk2O3Nmj2MnPXXWosXKiDVut+4d3gGrLY2hDFNQ8iIAR3O8GvP7QOY8nN21j68R5Kx6FkCsDmAIt3WfYlExHTD4nJI5HQOwa9E5KRGN8bEcLhhJ2oi+r2IPAdijHIAy4gf/5ZT8FEdJg/X4PAQPcv8dqDkT1167Zvx5lHHwU0Bl/0KrV4bdqDn6grEHAVAiEjRiBaES9Be8Z/XBlOmKBGTAzAm/zdTb0p7ns9BY+sxHF3dy36swEBIULaAJKySkNDDYpLFf7XUzOxemY6UocI9bkSJ5H3DAJnaFvRRdRQwKVEtw6AtUJPP63DtGlqshf0H6GdQWz4/nt0//vf/dJe360PiehMIOACBNQRTb+9Vc89h7Df/x5h113ngp7cz3LBAg3OntWjsZH3DLnvvUrqSCnaNiuBRiLD/RMXPVpFQKiOrMJj/eKiwlI0FOVj2oQU9BNqdOtgiatuQeAIuYBkTzL84nUn0R4xLF6s9hvXjxfJjl2myDvvhKZrV/lUHAUCAgEvRaDLww+jZs0a+JPPjWDyKs1m/BwXw53EroRP4BD5Jzvrzm5FXzYgIAR3G0CyWGXmZsyekAixZGERHVHoAQT4BXsCByXf7e7snqOjkotldOrkzl5d1xeHWq9Zt851HQjOAgGBgEsQCKDNNd1XNoU2ZLetvk6hoSps3comiO6NqhqAYHA01aMo8XUI/W78QnB38JZmjohzsGXzZo0V27E8f7sId9AcFnHmAAL8guUXLb9w3UXV5Blp6lQtKAYR1Gr3avldNUctuZuLnj/fVewFX4GAQMCFCKhIRS27oa3duhUXPvzQhb25h/U996hx8qQeH3zgXuF9AK3eHsPn0FJIJkHeg4AQ3B28F8mJsQ62bN6s/MsC5GTvoOUoQQIBxxHgF+v35H13AEY7zsSBlosX63DddSokJ/u20C4HU2IIOAKqOjTUATREE4GAQMCbEAi74QZcoIBNHHvBl0mjUeHJJzX4+991+OEH95nMhJN3sm5kfFlGwfwEeQ8CQnB3+F4EOtxS2fDoTlrWS+0sTG6UoIi83Qj8gN30iu2PcHrNuotY+8NaINYG+TKdffll1G3b5stTEGMXCAgELCCgJvu9GHYXSZ7fmHR1vqsii41VYd06jRTYzsJUXVY0EGNwBB+7jL9gbD8CwkTbfsykFp9u+Aci9gfj0iVHGAShU9Al7N28BHkF1D7NER6ijUCgCQHe/T8Mf2oqcHGOI6MmJqowfryGvCT6rrZdryM/yRUVwjTGxc+LYC8Q8BQCKnLjKgdt4uBpurNnwZp4X6TwcJXkYaamRo+ICPe8d2MwUIqgegLfogcu90XY/G7MQnB38JYWzM8Gy9xOIS/cP1NTcQi7vzyAHyrPS1OM7puE34xIRu8mz1uOT73+FHb9ZxP+s/MwKiUNSCj6j7gOk24Zi97+F73acZxsbHmSXqgcmppfsO6i2lqgVy+41UWZM+d26bvvEDSQ8CJNXNdnnnEma8FLICAQ8FIEgii8/ansbAT064egy31TCA0gqS0jQ4tHH9W4zUSRAzIdIeWQENy948EWgrt33AfvGUV9GfLnZiB7qTFqWlIqkkqLIXuun7t2D3InJzts2lO2PR8Zo7PpFWBOecihoA+r92zFtGSKOiHIZgS+o2XMAbSc6S56/XUdjhzRU4RUQ0Aid/XrrH6q33gD2l9+QRAFVZI3sTmLt+AjEBAIeC8CvHclJj8fjRSbgYmjIatYEvYhYq07C+3PPafF6tUa8LmrqQ9+g/0oxHmcAhkfubo7wb8NBHzbOLWNyfnM5UhvGWkZFoyMMwnty0qOQ7+vCPv0dShZli4NMm/KcGTk73VowGUbH0OcLLSnpmPmzEyz+J6lyBh+O7ZbDkLrUJ/+3ug8TkvR7fpihFumevCgHv/+tw6zZ/vmq0N7+jQu7tuHzjk5bsFLdCIQEAh4FwLqkBAEDR4sDaqxvBz1u3Z51wBtGA07Axg9WoUlS9zjZYaMjXAZrhG27jbcG3dU8c1fX3cg00Yfi0rK0UBmHtXkJ9b+VIe66koc2fkOJHHYS0xlti/OwHyjaj3znSOYkdLPiEIIUmasxjuZSdJ5QfZwvHGopg2EzC7X78UTaXlUmIq1e8qhL1pDL518FOmrsXP1TEXlYrywxrEPAwWTDpPlTUP9cTX4xepqYn/tCxdq8fDDanTp4notjzPno6sxPq+Bgej2wgvCa4wzwRW8BAI+igD7fT9L74OLBw743AweeECNCRPU5IpX75axxyMFP+BL8l/muxt83QKUGzoRgruDIIeERyCAvtwjKNyy/SkEIRFRiB85CbNXpAJnHByEE5s1VmzE9DmyAUs6pt8cb8Y9ADdPn2Uqy7h/NexRjB96L5/2BCRh8/H/YHJybxMfIAIjpy1BySKxQ1cBik3ZBvL+z95k+IXqDiLlFJ5+WoOrr/at18aFzZtRv3u3BJGmc2eo1L41fnfcW9GHQKAjIsA+32MoYJOWI8j5GLGZX1KSCtHR7lGihCASPTEEx7HTx5Dyv+GKXzAH72l9A8V4dwL96koS3EvPodEJvNrDonT96yY79qSZt2GwhU2iIYNTYNKNF+dg81FbMajBJ4tWIvOd93BjP8ua4RETJpqG7yULEKbxeGuGX6D8Ig1FZ7cMMT5ehQED3PMj4awJNf70E86vX4+QUaOcxVLwEQgIBPwIAU2XLghLpd9hIo602nD0qE/NrqCATRe1bhkzb1IVkVTdArXVToTgbhWe1i9u2fVj6xftuBI1ci7q6h5ClB1tnF/1FLauKjSxvXtqimXDi4B4TF3WpBl/e+s3pjbWMxHI2tOA/EnmWvymVg21F00nqcP6mPIiYxkBPfSSvaE7NqVydNQ//7kRX3/tniVZyzO2r1TfYIj0x5vPupMfZ3VYmH0MRG2BgECgwyGgos2rpx9+GA3HjvnM3CdPVuHCBWDDBtfbu0ehL1jzXo59PoOPPw5UCO4O3tXiVespmpgzKAAhIZa10M7gbguPxrIdWCu7jWmjQWBwkz/Iwrc+td1cxurO/Xp8kP+KoefUZchOEbvW27gN+Jn2+PMLNBryPoS2Wjh+/YUXdBg3To1f/9o3tO2XDh3CxVLDAx0YFwdVUJDjkxct/QoBvdbw8anX06evzpg3Hv1qomIyDiGg4j0wL77oUxtW1WoVnnhCjTff1KGiwvXKFVYWiYBMDj1eTmskBHdHoSzNQ9zYx1B0qMLjZi6OTkFuV3fmZ5OZDJd169x6uPcGKDalFhfhsOJU5mffsRG78nMwZSUJWmkrcLJohnA2ZQOA7nIB+d//6vDjj3pMm+YbQnvjyZM4Q24eAy+7zAYURRVfQUB7ziCQXCzVo4GeRxa6z600aBjPv6vD+XcM+TPztGg4rkfdDh1OzTKYD1T9VYtLh6lNox4V47Vgof3CB3qcNXrk+OVPdJ28JV36Vo+T9xvanHlMiwsfGXiezKI21PbCFupno6HswiYK3FWlh44C4TBvJj0FJRPk+wjwu6PTrbdKE+EAbTpWZ3s59eqlwosvanDY+Cy6crixGIoLtDHvLOndBXkGASG424t7Q5NJB4rzMG5wLAJpk8gb+9stwdo7EqfVJyWDgtKREGvBwN1Yo2uvIYq6QLOmza60fVJTth0LJgZiVPZKQ+XqMhwrs9Vuvm3+/lqDX5gXyA3kr3ClS6fIXmT4N2vJEg6z7SOCO9m0d/vb36CJ8qzxmUtvjB8yZ8GZhfGGY3rU0sciU+UCg8DN16oWGsrqikmQMm7mVxsX/4KHqRA8yvB8ds5WIyAWCBnBgbUMP29dZtGRZGoVPcOx/wmQfPd3Im8cUQ8b4hD0Wh9A7gFVFJBHhZilhjZR89QIvdbAswt5UeK2wbQRMGigoUxP8r2eXlU6eu1feN8wtnMv6XDhQ50k5J96yPABcOkbPS4aTcwafxGCva88uspVupNZWfSRZo8rBs/MMi5OhTFjXC/ScbA/doggtO6euc/cq2dtNDw3b4d7Du2fhpJtV5BLJODS+fM4f+kSpU64YWCTCYnDzD3UsPLUSUXP9EvEk2tFdu/Rf5CirmPZqv1bkDtvPJY2mdUbGNGH0Ki4PKzYeRJZI11jLpORkUFCaMvH/rXXXkOYj9hB8wuTX5z8AnUlhYSoMHGi9wvsOgrjyptQgwYNQvCVVwqvMa58KBzkraOPQOm9QrLyhUIK1/5nNWre0kFF550mqXHuFR2ZKKihJ72IuqvhmYuYRkI4OaBSaVTo9rxByO6SYzjyMCL+bKgXeFnTMxoQ25RXGf/MuX2QjUEyVUGG9urQJj5Bgwz5gN50NDrEYsFfpqg5xrHN0oBNcbi/SBq7RNREy+YLZGZWuUCHKIp/oDsH1H+mQ+f7NKgt0tEzS3/JXag21RUBwWRUvePIHqgi77pL2uDe+d57vWNQVkZx9qwejz+uowBNavTpY3hurVR3+BK7IN6Cp3ERExBMnuF8gfIp8FZJSUmLoZaTu7S+ffu2KPfmgpYSjDeP1gvGFhDVDylj+3nBSJw3hNCYweAtp+ZytKUeGuhPtb1UfaoS/cevxurxJ7Fj81qsLGxuYJ896iGMqF6DZBe8D1JSUhBMLsDMyZIwb17HG84vUuy6CjJsuhFPunQ4xaTZ3LFDj7lzSdtIK0reSvqLF3HqvvsQvXChNETh6tHzd+rSIb0kcGsrSUgnk5IuD2hQ9ZwOnW4hQZx+H1VGS7ywcUaBlYYc8zeD8BtkiIsjTSLQhYKHq1BioZ2JtfNMkiaftPlM3V82zFF/iYT7EINgz0J8YwVp0Ehpf+pBLXr+M0Ay0QnoSRr+oSr6ICUsf+W9f3/SxPz8v7CxY9E4xLDSzGZW3vw+5Pga//M/Kjz5pBb5+RoEBrrm2QlCGK34JpOHmU/Jr9l4n3gCEhISoLbgCviTTz7xifErB6miB5HUAYI6MgJVuxYjetQcIwRp2FO9oVWhuWZ/PiKTsm2qayum9RV7kZs+HHnFTS3SVpRiQ1ZiU0E7c7WklQ0PDyfTjws+o1m3NOWDpOeoI+vCZNxh6bJTysrL9XjgAS1eJkEjVqHBdApzJzOp/+ILaE+cQPgf/+hkzoKdLQjU7zZojC/uIZOQfXp0ztKgkoJ0db6ftOfk41Z/nszpFBpxW3h21DpsI68iQavhKNnO15Lwn6jCL1Mb0eN1Deo/10N7llYn0tQk6POHkWsEso6Kva3z1mu1OPfyy+gyY4atTTxS76mntOjVC8iiv0dXUTVOoATL8QfSvNMnuau6cTnfxMRESeO+adMml/flrA6a1vucxVHw8TkEAsKUfsCtq7kDaWFMSQane8oS+/MhvZPx7IcHm3zEE4vvy/6fvS8BjKq6+j8z2RMSSFgFhUBQASEoi1gEJKBW0YptXVqI1dgWrbWC+ycqbcGKWqtgqxVbhSra/6e2n1hc2rKouKAsCriALCYge0gggSwkM/P//d6bl0ySmTAzmUlmJufAydz33n333ft779173rnnnnMw6hf9Bo5E82c4gch2WSXhdAHphJ3xgw86sRjVHtFCu6O42AAr4fTTVWhv/rEJ2VHan5Mq38cizX+adt3H/s/cF9/XZpi/8HjWfXESh6Aw8d1sKrQTED+JQjspIQfadgjtpB4vwCYf+xOhwY+HIEYq/T16gv34UNrkqlss66xU/ZuJTnj/2uLipBamFUdffz28F2ph6TSVicPsz9694XsuMqQ7Ioj0kl2ikc5beLsCPl0F94Ahi8ETPBfcwgzj2xLf4aB2b9ngAcAg6eHbAY1HPj+SyQPkzuWz6zJuXP25p/+auv3tObFLPkVH2dOIXxcuHNasccl5WJR3+eWR2zWUPfecMXgSA0ZCVQo9AoZNOoqthC02mdulD5kLLuO62yRlgilYdn4wzhAs47HPnqFa4NDfCbPEuEybJJ9tvpNdsVg8rhvMa7AIl4tuSYdmOg1NPT3uWIt7zSP6N9QIdJ47Fx+mWaEuNqTlcX3Sz35mh9Y9vO/kqTJe6OFMqXURiNzRuXVxaNdXS+97luTVIbBRCg/59pBTccjUdBrZpw2TXiGcIes58hLD1p5l5w7NjpIlL3XAhT3BRansKMNJo0bZ5aqrIrdbcFZWSvX69ZI4eHA4YWiXZVOjfnwbTDLg5vAgXCCSuMCTizPtEAS6PWO+7PSsEgdbWqW2Q4B21pzVoOkMicJ8/MlY2JsGpwlul4Alv4NrTJrdIICaozh8mte2Q6Ftrsx1NCljxhgX58L441u2tE1F/Ljq/8Hj0dKl5uyYH9kDzsLI3Q6seyuWHQGfqycEj0DkjtDBt0nPDBSBzMFyNVen1pEvabxKtqyvX0g67YKzQmvZBr+UlqFO574nh7bsurZFZ4IdY61USQ85I2wNePZZp3z2WWQO8IyASnLs2SNdHn8cnjvCZ7sZNoAjrGDnMdMPeclcU0inHbUNI4K9AxZSwq6alIwPubiuKqRH2K3zWh1bkinMczEwiesM7JiQclbCvOZht2kThDhHCVxv6tI2rxgGutOWnCyH7r5banbuDPTUVsl/4YU2IzDTBqw/CRfRdHOrrAxX8VquFwRUcPcCSvvblSnn58+oa/b0F1b6sC8vkR2rLcE9T/In5tSdE4pEVeEmWewu6Cd5p4aiyJgpg9r2/nJe2Nrz4otO2YIANGfCNV2kEW1Kq9euNaqVkJMD04yWRA+ItNa1Xn0orHExKan0D/CRDh/j9Eeedqk5DKTn2w2bdNpUW95RWq92eqVQI0DzmrgusI2HGZPlTtPe2fRiU/sthXnzg0218cEjT+1750cfxeLhD4MvJIxnpqXZ5HbEIXgY95pxOcJBfeRsOShfS4X/cdTDUY12VaYK7u3qdvtubM6l10u+dXjec7LOi7VMbdGHcrdbbs+95z4Zm2ldZyBFAABAAElEQVSdUP9bW7pZFj0yR+Y8skBWbfcopKpU9hTtkVKf8ZVq5T8LHjYLmrFE8odYuvf6sttrqlKOyAF0jNnynbBAUFTkklcQefLOOyOvO+BU9EF4cIjPzg5L29tDoVWfOA2PLxTWqFUnZcD+NXkktOkwebEWQrYHLNp7G1O+Y5ekwVg0DFebqZeY73s5Ptr5jFATz2BXSoEhkNi/v6RNNqes+XHMaKuRRDR/vAT3+l+IFhwOiofDCvp1p+MEpdZBIPJG6tZpt16lMQLJQ+SBt2a79y6Re+ataJSjVt6cN8e9L08ev3VCo+PcrJKXCwZKwd2zZNbdN8q4/rNku2HhUC6LfpQlvbJ7SRYCm9zwxNty0LR8cJdRK+sX3SmT5/GrYIZ8NfcyNZNxI8Of7fKuUKsBr7wee0OT5ECzeLFT7rjDLl0j0CSiFlPQWfffL/E9eoSmwe2gFOdR0wTm0Ey3RvUgFjKeDG8lENasAEZxHSNvZqUd3JqIaiIFeBKfiUSkuZ7h6Gum0Hn0VTWpCeRm2VNMLw2u8nI5dM89mMky371Ayghn3qlT7XLlleET9/rJGCmUjzBTfzyczdCy3QiE704qxFGHQJ+L7peNL5omMytnTZQJM1+SzbApLtq+SV6ac4VbsBZ5ePlimeA1sGmllJd5NnuDFMO+klTtsf+Z6RdLt4QJMvOJl+Ttt1+SmZcnyPCCeZI3Y6EUVj4uA3xEbTVLal9/HegKv0GH2F/GhaXhXOR2771xMmZMZHUFx7dtM9qb0K+fEQ01LI2PoUIZ9Ih05GksFaM9K/5Tq05Kg7Ytzh2N1NihfxSBRgjYU02vQFn3mPbxdO/p2I9gt9vxTC0whVDL01CjU3XTAwF7RoahZKhYtsxjb2Qk98D/PxerOhDdN9SUJlnSWfrJTlkT6qK1PC8IRNZo7aWCuqt1ERgy5XHZvXqh4d1l5dypMrBXL8nunytTZy2R3PzZ8l5hmdw1wR33u0nV0mVQXl793slXy2mGxUu6/GDuQg/PNcyyUuZOnyoXXzxVVnd/WJZ/dUBWPH6d9FGhvR4/pHbJWnSJ2ZImXRrsD8VGGbxNLFkCd38R5gO69OGHxbFvn9FEW2JiKJoak2XU7oMv7y9MLzCHHzc1pR2ugMeLc7EoEa4ZNfBRTN72VmlU8nD4jkfE14R+CAQ1zNTMl/4OLifheYheh1SI930bOt16qyRkZxsZXDWhiHTi+1qBHOmJoF1fw+PQk0+afUUg5/qTl8ql7QjJpBR+BDRyavgxjtIrVMEmfbeUwaQlAYYrGVndpWumP1J1rRRt2iiHalKlb+4AycT0az3VSunBA1LJvgwdWk1CqmRldZV0f4qtLySoVLRGTl0mD8sQfEZ1lwFBtdvXSTSR+cUvnHLZZTaZNClyvt9rIbAf+dOfJGv2bHg4iZx6+cKxtffzvpU94zQilJa/hKilIyBc9YfbRrspXLV2ffR67QcBRnZ1HoOXGkRwLYMHqs5zENEVtvFJI2Fmg5k7paYI1OzaJY69e+GD/+ymB9tgT0WFC8H1HHIfgqTlIqhXqOk/8js5S66WrpgjjhaKxsipDcSqaAFa69kaCCRLzz45CPcTKMVLnyHDYJPtjeIls2tP8bKm1Vvmdr+vGPoLeGIOudBOYF96ySXpmA2JFKHdWVUFX+HJQg171pw5Kgg0evoZJbPmG5ekXVwf6Ch9in7YNIJJN8OIAL0NxXVC0DNw1izz2ate7zI817iq4UoUQbV1lqfhDYjv3l2KoYHvOn8+AmYxYlbbUipMou66yy6PPuqQv/wlTpLgQjSURNeQ9IAWTYJ7KNvfWmVpz99aSOt1FIEAEdiGRanhsG0vLDS9yNx9d2S8/tRKVbz5poEOIxKq9g4m6tBukg7e5jDSLrhySzkXmk0IT+k/joz7ZlRQ/7RLBPgckjreiMBP2fD9D3/xlavMZ5Y28S5n6O2ojQtG2R8qIrr+8Y9S416zEwnVHzHCDt/u8AUTYqGdbestI+Eacqu6hgzzjdYRIMwAa/GKQDAIVMphuIDcgpmLUcGc3uw52dk2ee21eOkCH89tTXSdVjx9Ouxoh7V1VSLi+tRcVn/ukiMwhyGl/8gU1g3XjbrANCLukVaiIQI004qH/XTGtaY4YUOUXRdMaiqWOdW9JKCKP+kkSR492gDNeexYRAS/cuLDaj1mS7jOKZQUL4nGmLVDXUOGEtYmZang3gQS3aEItD0C2+V9aC/OxuoCzD+HkPbvd8kOLDCLFHJVV0sm3KdZi7kipV6tWQ+GpCcdutcBX9rQXmbAI8xPza45+WztolvzXui1Wo4ABXh7Oha3DrFJLfobat9LH4os94gtb2VgJVhB4+jetuS3vw3s5DDktuNjC8tl5Oc/d4TcOQFniekJjR7RlMKDgI4K4cFVS1UEgkbAdAH5YcjNZCiw33CDQzpiWrutqXrTJqMKtqQkBAIa2dbVafXrc5EpvXPU7IRQ83tTu55xox3aOSw27Q07dmgtlRSBaEaAEVtTx9uNhdOJ7oWQZc+ZnmnaqylN4sCBhilgzXb42WxjGg7PQWefbZOnngqtlxl6QKMnNHUNGb4brIJ7+LDVkhWBoBD4VtZhAW9v6YAlPqEi+u598EGH3HQTQnS3scnF0ddek6qPPjKa1t48x1BYJx2Z55Ta3aZtcNavzW6YAZKUFIFYRCDN7bkq9VJoeqvFePZLHmifWvisX/9abFbApuNtG7CI48Enn7hk3brQzsL2l/PUNWQYX2QV3MMIrhatCASDwFZjUep5wZzq85wXXnBJt242ufDCtn/lK999V9KnTvVZ11g84DgEkwEsOC2eYQor6TAnYORKRjC1xavAHov3XNvUFIF49EGGf3h8pCaPMZ/7EigUnOWmSU3TM2JzT3xP019bxYoVMCdCpKs2ohREMn/++TiBGX5Ibe/pvpge0egZTSn0CLT9KB76NmmJikDUIlCCwNEOhI3uIQND1objx11y3nk2eeCBtnvdaRpiUecHHhB7Wpq1GbO/bDMXm1a+55SK5Wg/4O+6wIxMGZelwnrM3nhtmF8I0IyG1OFKuzgr4JVmpcvwC+/XyTGSKfG00+TgzTdjHUBozVUCgYfeZWg+WYF7EEo6FSEXNSBTKBGtL6vtRvL6OmhKEVAE3AhshQ/cfjImpHg4oOTt3RtyYxsF6eGgVPbMM3VtinWh3YUPJdKhe5ziPArf1v3hwvEq2PrGqe163UOgCUXAjUDiqfBKA3v45NEwo6kyd5Y+1j7MaBL69ZOOv/wlZhzK2/R5iIM+4ac/dYTUZKa3jJD9slnoIU0ptAio4B5aPLU0RSBoBKqkHB3dV5It5wRdRuMTn3/eKXPmOCUOQmNbUfWnn8L/eEJbXb7Vrssw8I5il5T8xtSedcRi0zisJ6CrPCVFQBFoHgE7zDZSxpkiSQJc1pLK/+4UmpnFMqWOH183A1lTWNgmTU3GYvi77oqTRx5xSBX6sVAQPaLRr/sO+SAUxWkZHgio4O4BhiYVgbZEYAdcQJ4iwyVBkkNSDQZa+uc/nXLbbW37mjP4SMb114ekTZFayLG3nFK1GgMe5I3M/zHxtoSPSK2z1ksRiFQEOvzAfIeShsGl5E6R41ti24zGFm8GsT/2xhtS9fHHbXJbhgHrkSNt8vTToTPbyYFrSAruWIrfJm2K1Yuab0estk7bpQhECQLQK6GDe19ysBo/FMQAGw895JRp0+xtEmjJUVpa14z0q6+uS8da4tBMc0qfWvWUcVhsCg27PUM17LF2n7U9bYNA4uk2SToLs1aniNR8bdbh6P+FTrBsm1b5vir7yrK//tV3hjAfufVWu1CAL3V7v2rp5dKlm3SSk2WXfNrSovR8DwRUcPcAQ5OKQFshsFs+kww5Cdw9JFXYsUPk2mttMsnthi0khfpZiPPoUSMaqp/Zoy4bzWEO/8kU2FMvMoX0pKHwDtNGawiiDkCtsCIQIAL2VKwTyTfFFUexiPMYNPAfYw1JiMw6AqxO2LLHdYEP9Dlzwlb+iQqmSeU4mCtlZoZO+WC6hnz3RJfW4wEgoIJ7AGBpVkUgXAhw9T2nFUNF/bEg8jvfaZvX+9jrr0uHGNSyV61xSvVG2LEfELH8Uls2uaG6b1qOIqAINI9Ax58jMmsaBEssqKxcZgYyY4TWWKH4Hj3qmnJ0yZK6dGsmnnzSIX/7W2hmNnrIIKmWo1KKkExKoUGgbUb20NRdS1EEYgKBw/KtVKBb6ymDQ9KeBxDYZMWK0HS6gVTI5Q4mkjxqlKRdckkgp0Z03qOvmljWFtJDjEjiIEQ37Rc6jVREN14rpwhEKALJI+zCGS8bzMMPP26+ozWIDh1LVL1+vRx7661Wb9JPfmKXf/3LKV980XI8cYcMpRQ9pimFBgEV3EODo5aiCASNwDYEXMqRsejeWv46/h/sP0tKRCZMaHlZgTSoetMmqd2zxzglIScnkFMjMi+DJVV+5IR/ZZfU7jUHL/qb5pS9kiKgCEQGAgxeZk+3SWd3jIrDiEhMLzSOgy0XOCOhhZn/8z9Su2tXq1clHZjSqQG9zDDqdkuJntL2yReG5r2lZen5RkgQhUERUATaCoFqOSZ7ZKNky+gWV2E/posXLXLKHXe0rtDOhagl998vcR5TvC1uTBsV4CyDoA4cK9/HYFUDJzGwW+/0K8zJKykCikDEImBFH+76RJzYUkWq1rnk2Nv48MYHeDSTPSVFMgoK6prgYlCOVqLRo+1yxRV2WU1vWS2kREmVXnKWuoZsIY7W6aYPImtLfxUBNwLlezbLmrWfy84SRJABZfXOlREjh0nPdHeGlvzUlsvmjz6Q1V9+LWXVLChJeg4eKRPHDZPMdvZEFsqHMJHJBQItjyS6YoVL7r7bLj1b2W94zZYt0nnuXLEnh8aNZUserWDPpZaOHmE45Z7xC7ukIBy7LUG168HiqecpAm2FAP3Bp8GEpmany4jISs9P3Z6M3o9vKwYGA9kduvde6fzgg1AotI5y5nvfC911+mMN1/vyZxkgF4Rkdrmtnq9IuG47E5MiAfIIr0NVkSy4p0BunLfSrGhunuRuXAmdsEn3vLhOZk8ZJsE+OEWrFknBuAJxl94IjMny4rq/yJRhXRvtj81NDCsICb0KuvZpIWngj38cuk7Wnwod//prYcjuxNxcmJBAzRWF5Kx0iS1RpPguh3R/Nl464cPHjmAkSoqAIhDdCCT0Nt/jjOvNfrEUZh+dpiOCcVJ0vt8U1u0ZGViQu0xSL7yw1W7Ohg0uWb/eJQUFLRtfOkJFlSZdjBnmXnJmq9U/Fi/UsjsRi4i06zYVyZxR2XVC+/z3CsW1YYVscFXKe/PzDWTmTh0uBQvWB4XS9ldvlWyfQjuLXCJTh3eTJz6u9wEe1IWi5KS9sPlLlSzDz21LqsxIdwsWOOTAgZZPafpbj6P//KdUr11rZI9God0Fu00uZCtfDMwwjnedZ2rkVGj39wnQfIpAdCCQPNwU1FMvtIvjsEjFctjBw6VrNFLWzJliz8w0qk4NfGvQULi63QhvWv/4R8uvd6qMN5RVrVHvWL6GCu6xfHcDbNuqRwpkllu1Pu2VbXLL2D7uEpJl7C0L5ZVpucb24huHy6LN5YGVvudt+cGV84xz8qbNl9VfFULQ3C0bl78o5idBfXHTz/m9bG8Hgda2Y1FqPxlT3/AgU489BltOjEPdurWOJslZVSUU3NMuvzzIGrftaZUfOOX4FyIuPGPpU0z/61zgpqQIKAKxi0DSmQjk1B0eoXJs8AFvLmC1Fp5HU6uTR440qsuI1I7D+BJpBbrzTrs8/7xTuI6qJdRThki5HJAy2duSYtr9uSq4t/tHwASgds/rcvPdK91o5MvNl+Y0QiZeLr351rp9BTcthAND/2nFs3cb5jYzXtwoKxbcIqMG9JGuXfEaT5giL9TslvmTPcuaK29sDPDDwPP0KEgflYNyGJOGJ7dwynANfIt//nnLpzEDgcwFwb3rE09EnXlMxTJTY+Q4CJeOA8CnwSMF/UErKQKKQLtBICHbJqmT8MGeInLkz+4+IQo18PaOHY1Ad67a8Gu5uG7q5/CfT+cHLSF6TusL41CaiCoFj4AK7sFjF1Nnbnz1uTo79twZV8pAL+sMkweOlRlWq1dOl7e2V1lbzf/Wbpf/pSp/2hL5/ZQhTfPG95RbnnoLSzTr6cjh2Bbc2XGxA7MHvVpApLraJX/5i1PuuSdOklrBbrNixQrjBnHAiMvKqr9ZEZ6qxocNyfAUg98Ol8PONVEFdgMU/aMItEMEbDaIkB1sknWfKQIduseBGTiXuNCnRgvFd+8uqYiXUbN1a6tU+dJL7XB+0PJFvpxl3iXrpBbOIZWCQ0AF9+Bwi7GzDsqyZ+sjtP30mrHexcn4HLnGQzX+8rIv/cKh6qtl8gxyvjJzkvdyWUrPc+VWD637uq37/Co7GjPVynEpko9hJnNui6pPYf2ZZ+JlyJDwC6GH//SnOn/CHPSigRylph17BdzCkTr/puWDTjS0W+uoCCgC/iFgfcB3+YPZN5T9DX1GEQR4xG+IBkq/6iqJ69at1apajJkJat2pNAqWkiVdusnpxhgYbBnt/TwV3Nv7E4D21xZ9JLBg8YsSkur9QS753/f9MpdJPvUq2fbVbrm8j/++aCaMPNWv+kRjpl2yFmvr+2NhqrnIKJg2lJe74F8Xi6xCEBzDn+s74as9fcoUf7K2eR4Ousfegh37Jrh47CKSeYcK7G1+U7QCikAEI2DPgOkMgjml/8gmrgpB32H6go/gKtdVLa5zZ8Se2C+VH3wgzsrKuv3hSHTpYhMGyH7kkZaZzOTANaSaywR/h1RwDx67mDmz8tDeOjMZNqpLRxj/+aAaLC2po5Ur5GuPzbr9jRPJmZIzoKdvbbs7v+fEWUZ0ehds3HKv29vlPYjt47we82dnDYKK3HyzQ2oQICgurnW034zgZ/kT9qeObZXnyFOY8j4mQjvWlHF0n9Y6+LRVe/W6ioAiEDoE2F8kDsQC1tMRf227qVWuWNEyITV0tfNdEs1mXBDa9+fnS02YI60WFNjk669d8gEW+QdLXTEC0p3XQdkWbBHt+jwV3Nv17Tcbn5DgCUK+DOjlxcDdnaXzSYM8M0uDUxscCXCjfKu8ZVnr5D0tkwfUa/YDLCmisxcjdpwD1n2cKgyWFi1ySb9+Nhk7Nryv7/HNm6V6wwZMGzsjWmh3waVO+cvmIBIPgZ0eYjj4KikCioAiEAwCdAubfpXZv1a8bQrwNd8Ebx4STB0CPSf1/POl+4svCqOthtNVZAIC09HWfd48pxw7FjwmOTIWWvf3Am2m5gcC/tsuKFwxi0DJwQMebYMKHZpc8SG7d+97mkfe0CW3/2sBvLibNH/uVS0wImm+ThcicEV8fNPHfunSpdKhQ4fmTw7B0R1YlNoSF5DbtrnkzTedsnBheM0/Sh9+WGr37ZMuDz3UalH6AoWXAjvdOmJtM3w7mmenTQrvx0ygddT8ioAiEN0IdHnE7GuP/tMp6QhyZ+8oEeuNyohe7Y5gTfMZauLDQYMH22Dr3rIxqI+cjUgmS6VSjkiKANQw00MYy95+++0mVyksLJTevXs32R/JO5pKMJFcW61bWBBI6TpQuC7UEpybu0hNOFaCV22SR6Zy+apI3uzlcsuo4G2/m6s7j912222S7O7YPPN62+d5PBTpapgZ7ZMv5Sy5Kuji0jER8dJLcZKCsN7hIseRI9LprrskkhehOo5AaP8Mi8hgb5k4CNqxq1VgD9fzoOUqAoqASKdb7eI8Au9U72LtTDeXJCGwUyT3kYd//3vJvPdeiXMHbAr1PUyDK919+1xQhAGLILyaxUuS9JYR8o18IINkUqir16S8SZMmSS6ifDemm266qfGuiN9WwT3ib1ErVLBih19Ce3hqUitvz55ueJ2R/IXyj/snhOcy7lIvuugiSU1NDes1fBW+Qz6UXhDbE6BfCIYYIZVVD6fQXrt7t8T36hVM9VrtnPLFTkkaCXOYXBsGpfB9wLRag/RCioAiEPEI2Ozsb0RSL4Ar3g0I4LQHk9OFTkk5NzKVBomDB8vuiROl1/LlYRPe9wCDGTMchvY9GeZFgVI/mMu8J3+UgXIRLN7DiyOFdm+Cezq1YVFG4UUqysBor9WNT/Wcpmr+IU7AV7In0aqmJbT91Tvl4rkrUcQ9sm3hdWEzkWlJHUNxrkuchmaBdn3BUGGhS378YwfccAVztn/nlEJD4wrnBfyrhs9cR+CznpSIadrE01Vo9wmUHlAEFIGwIWCDjXfyCLvEwQrluDtGhBUrImwXDaLgjOuukx6weQ+Xxp1VGjbMJsMx8/DMM8EtVM2QHnAO2V12y4YgWth+T1HBvf3e+/qW13hKgxvl2xLfkdh2b/F8wQZJj+CUx8a1yzctkv5XzkM6X1aXPCg5MTz/s1c+N9w/doLOPRj6/e+dMm2aXeiOKxxEgb32228lvm/fcBTfojKP/dscFGyJZjEMXa6kCCgCikBbIkD3kR1vMO286yKwwoQvkihx4MCwV+fmm+3wMOMyIngHczFzkeqqYE5tt+eo4N5ub319w9P7niV5dZsbpfCQbx+PFYeK63LKtGHSK1hhe88KmZxbgLLyZEnhXySMZu319W3DFH3W5sh5QdXgn1gURc8/F18cvte1du9e6fLIIxFls1kL+8naA7Bl/9QcDDOuDV/7g7oxepIioAgoAkCg6xNm31SGWcHa/ZEXwKkC5jL7rr7aUM6E+obRdPOpp+IMDzN0GBAo9ZKhckyKpUz2Bnpqu82vI2G7vfUeDc8cLFdzdWod+ZLGq2TL+vpITdMuOCs4t0Tlm+SGXhNlJa63cOM/5LI+PlzY1NUnuhNlsh/r5vdA1z404IbQrp0meA8+GN5XNb5PH7ElNTSDCriyITrBBT/1VevB0OLYMxBA6X9a5r0gRNXSYhQBRUAR8IqAzR1Po+ONdmPBfOUyRGDdGbgQ67XwEOxMha17Z3gKq/r4Y3GWlYWgxIZFdO5sk1Gj7EEpfmjb3hdRxLfKuw0L1S2fCIRXGvB5WT0QWQhkyvn5M+qqNP2FlfA07o1KZMdqS3DPk/yJOd4yNb+vtkjmjMk1FqPOX31ArhuC1T7eqHSFDLVNkPW+lf/ezorIfdvRIdEFJKwiA64fF/xccIEdi1JDbx5S+thjcnj+fHEhklOkeEeoRFCP45sRWArLLtK+jy49iAVPAYOsJygCioAiEAIE7B0QvOkUm7F4nvbv1L7X7o0MAT4hO1s6/PCHUIZAGxIGKi11yfXX18qePYG3t5+Mhp37p/BEHd7Ir2FodpsUqYJ7m8AeeRfNufR6WJq7ad5zss6LwFxb9KHc7Zbbc++5T8Z6kblrSzfLokfmyJxHFsiq7Y0L2SNPXJEts1DGw8t3w+1jV+uKDX6rDm6SOT+cKBvzfyaDml8r2+C8SNyokSrZJesguJ8bcPXWrnXKzJkOcToD7whPdDGGx+5w5ZXS8Ve/iojgStV07Yh2Og5i8ekARD7Ngas1eHFQUgQUAUUg2hCgtyvGlLCniRxGoCKSE7OnkUCO4mKpWrcO9akKaXUy0ebJk+3y0EOBL1RNwhLVHnIGHDh8FNI6xWphKrjH6p0NtF3JQ+SBt2a7z1oi98xb0aiEWnlz3hz3vjx5/NYJjY5zs0peLhgoBXfPkll33yjj+s+S7XWq+1JZdE0vmb7EPO3uB/KhUYdwNnQotL0mD0Wa+1K65cqslRDup13gKw6Ul2tH5q5CWY018wPRjsC0HIxIN3euU/Lz0fmHQYBNOfdcaIZOafPgSo5D5mBGF48U1DtcjulWeG1QUgQUAUUg2hGgBj7rN6aYVTw9cIE2HO2P69JFnKWlsn/qVKnZtSukl6Dg7nCILF0aeFtPlfFGJFWocEJap1gszHyiYrFl2qaAEehz0f2y8UXTZGblrIkyYeZLshmOWou2b5KX5lwhk+eZ6vaHly+WCV6V5ZVSXuZ52Q1SbMx8lcpLN4yXgsUex1auFKO0jfxr8kakjX1Gthnyw+94vYhHIZGfZEjn/kEsSqV7rTFjbDIIwYVCSTU7dsjxr76SYBYRhbIe1K47K11Sio8TUudHtCsKJb5aliKgCEQGAnZ3sLzMu80+jm5tuY6nLSn1/POl+/PPG1Vw1dZp10JSpdmz7fLNNy6pqAisjZkIx0TN+z7EU1VqHgEdLZvHp90dHTLlcdm9eqERSXXl3KkyEMF4svvnytRZSyQ3f7a8V1gmd01gjHlvlC6D8vLqD0y+Wk6DqUvVpiUy9Zl6kbw+g+9U/tPXRL17SEZJZbClzlh6Ewjt2gWTEWgtfvnL0L6epVicdPiPf5SEfv3a1KbdcdglR19Cp442Zt5ntlHNYgJ5QjSvIqAIRBsCCf1MJUzSmSK1uxHECd6yqMBoK7KnpZmzrvHxMFGEjWKIiAtVf/WruKDWZeXIONkGZZdS8wjYoHlruyen+brp0TZFoEr2FO2WMnyMJ8B3TEZWd+ma6Y/3l1op2rRRDtWkSt/cAZLpy0FNK7etoqJC0tBRHTt2rNUip74vT8spiJTaR0a1cmubXo52jXaEvrbFBb5Atmlpwe2hjWftDth6wgworoe5iCu4kvQsRUARUASiFwEK7NWfYNbxqEjy2ViEnxHamdVAkHGWl8uBn/1Muv3tb3AG4M8Yf+LSuS7ruedcMmGCTfq5P1hOfBbGBrjFeENmyXiZAd17N39OaXGeIUOGSO/eveWNN95ocVmtVUBoVXqtVWu9TisgkCw9++TIgJwcycnp46fQzmrFS58hwxBRLXKE9lYAq8kljsIvbakUyckyvMmx5nasW+eSt94K3D6wuTJ5jHaNbSq0Y9r06MsusSFgV9IIFdpPdL/0uCKgCMQuApxhTD7HLkln2eBbXeToa6Hv8/1Fzw5/w8lY83SgoABxMw74e1qz+bgu62x8kNC5QnW1/7phO+QHOnKgJzYl3wio4O4bGz2iCASNAG3b+8p34ADS/ykHutGaM8chIyDYhooq33tPyl9+2XD5GKoyAy2n9GGHuODAIG0yBPa+WJCMBchKioAioAi0dwTiYFaSiHVMcd1NrzMVy9pGgO90yy3SbeFCie8WOi13bq5NzsKHyXPPBdYmuk7eKWuhe/eM6N7en5SG7VfBvSEeuqUItBgBdjhF8jE0B2MDKuuxx0wvMl27hkawLV+8WBzQoKR973tt4vLx6Ctmh51yHgamLHDH0LQrIFA1syKgCCgCEY5AynfgPQwxK6oReI5Uu9t/LXWomhYqMxnP+nCd1icwCSos9L89KdIRRjKnG2OoZ1markdABfd6LDSlCIQEgZ2yRrrKaZIqXhzd+7jCihVOqYQHnh/+MHTCbXp+vnS44gqxp8A+pRWpBh4FSNbgwylhJUVAEVAEFIHmEci8y1yDVPIAPM9g+WFbLF49tnSpHLztNqHte0upA9xhLlwYL9nZgY1r9MSmi1R9o68jqm9s9IgiEBQC7HDokzYQmjDBLk8+GRfVZiR0ceYsc0n5C6amvdOMtlsIGwj2mlcRUAQUgUhCoMvDpmjG4E2tHbgp7dJLjQirR//xD3FVh8Zc5XNEkd0bQATZLpIDI9MkOSBfR9JtiZi6qOAeMbdCKxILCByEnoDEjsdfovvH3SGaGq1YvlwOIhqq48gRfy8fknyOYgjs/8/UtFv+ikNSsBaiCCgCikA7Q4BeZrgWKO0SBDSC68iqNa3r+50B+jKuu05sSUkhQb5jR5Ff/MIhxRgn/CXaum/TRape4VLB3SssulMRCA4BLkrNCcC2fdMml9x+u0OysoK7nudZ1Rs2yHEEscp64AHYk6OnbAWia8dqtIHmManfNd2a2ZICmxZthWrqJRQBRUARiDoEEk+3SXw/VDvOJhUrEN+j1H/BNxSNpbmMA1FWW0qnnGKT73/fLn/8o/8LVU+BR7ZiiO4V8M+m1BABFdwb4qFbikDQCFRJGab2tsBv+9l+lVFb65I//MEht9xilxR3dD2/TvSRKWnoUOl0662tIrTT/pJC+9FXXWLvBF/EI+HIq5sK7D5uje5WBBQBRSAoBKh5Tx5G95E2OBsQeAkz7d+DKizAk+gqsuwvf5HiO+5osWeyKVNsRkTVjz7yT3iPl0QjBsoOeT/AWsd+dhXcY/8eawtbCYEd8gECLo0wbPP8ueTL8Gvep49Nxoxp2WvIkNXUjLic/nWI/tTtRHmOPIHB47hIhx+oT/YTYaXHFQFFQBFoKQL0ykUNfEJfERccGVQsb53+PvOuuyT92muhqDnWoiYkJNhkwYI46QYFj79xPzl7/Y18ZARmatHFY+zklkkMMQaGNkcRCBYB6J+FmgF/zWSOH3fJGWfY5L77WvYKVq1ZI/vgOaZ2/36x2VtWlj9ttwKFJI+Ge8dMmMakq5bdH9w0jyKgCCgCoUCAs5sMZFf9qdt7177wm88kIbpoXCdMrbaQOLOck+N/LI8O8M/WSXrJt/JZC68cW6eHf6SPLby0NYqAVwR2ywaEaO4uGdLD6/HGOxMTbTJ0KLQn0EIES47iYnEcPGgEzkjs3z/YYvw6rxbBoUg1W81fDh5KioAioAgoAq2PAM1nMu9wu478Teto3tnKqvXrpfrzz1vU4CNHXHL55bV++3anMoxrx5TqEdDRtx4LTSkCQSOwXVb5rW1//32n/PKXDnE6W6YpievSRdImTYLm239/8YE2kH6EXQhZfXi+OThk3qkuHgPFUPOHDwE+lQ4wndbVuC/DtOWBGtZccrARF7vz8YfHrLewxL1t5ee2VWYt0q0nHuFiSoqAnwh0fsAU4w7NQoRqrJsKJ1HzXr5okRx5+umgL9MRJj8/+5kd67v8e6NOkiFSKYfxD+51lAwE/I/HroApAoqAVwTKZK8cxbLUXjLU63HPnRUVLpkPIfi3v40Tuz04bTttDY9v2iQJAwaEZPrSs36eaWclFp/CxWOHq22Sdb9+43tio+nAEaBIQUGazCe/gztNQbkXmMIxdXkUlsncJp8LplO6VeDBYH6mfgTmMM6nkszPydPBp4EpmJeBB4Jplfsl2JMSsNHFvWMzfkeDef42MEyHDWL9eO1BYM6hMR/rcCp4K3gjmNdlPp7LQPGjwLzeJvA5YIolnODn9ciJYA64Pd2/zJsM5vlKikCwCMR1MceRlDxz8apjv0uSzjL3BVumr/NsCQnS5dFHDU8zXFMVrHnmpZfa5a23HPLmm06ZNKn5sQWGNYhCPsbQug+XH/uqWrvar4J7u7rd2thwILAdtu19IV7A4vuExT/7rFPOgXeAQYOC61hrvvlGim+/XTrdeWfYhHYuHDr+hdkU2rLbU4Or6wnB0AxRjQAF8So3U8tN7gymQF4EpoBOQXc7mI8TBWEKvxx0KAzzM5d5GHGgF5jEcy1Bl78UainwkuiryUpTMPb1VLIsqzwK+eeBfdFYjwPN+YLiB4NFbFN/MAVzYkCNP39JFMT5AUFi/WgVXONmYsX2dgUTg6/A2WB+RKwFw2GI0T5iRD4ZTCGfswcsgx5jrWvpwA0wlBogkJpnNyKtVn9mPo0J+Iq1p/l6SxqcGvBGKGZ5H8BMwRtvwJ0wZnSTTuBCuC8+r/8tcyRXLkf/0LqRwAMGpxVO0Pe/FUDWS8QuArUQV3Zh2L1Q7j1hIw8cMDuoadOC60zpPUbi46X74sUQplNPeL1gMtDFY9VHcPGYDuFhBHQd8B+s1P4QoBBeAaYGmsJmNpj0EXgkmAPHf8AUximsciilUG0ZbaUh3RFMOsXNltBt7HT/oaBOrTaJZfY3Ut7/UJi1qK2fSl7f0pR7DqLcZ2HAPP2sCnv5HeGxbxjSlmBP7Im5hReF9kNgCu6HwavAJGJOJoY8n7QLTLxJFN/aGiejIvqn1RCwYRY3bZINzgrQj69xwYwS/TjWUoWDGFW1/O9/l4RTTxUGbAqUMuHcID/fv7ol4SnvgZ6iUD4OOCp5oPWKhvyefU401FfrqAhEFAJF6Ei6QceWjGWpJyK6wQpWaGfZNgjtCadYw/KJrhb48coPnIaXmER4u4k/yb8ONfCr6BltjQAFOgrl1Bjj+8wwK/kWvxSgKRiuBHNg4KchhXIKhhb1RcISWL9r7fTya5mi8JAlgHrJprvcCHCujniTGxMFdjKJMxqXgynMU9C3hH0kDdqDv73ALO8tMO+1VS6F/P7u7WP45faJ5wiRSSnqEIjvTq9f+PD+AMHxiqh5x3vrNqkJVWMYVbXDD38oJb/5jThLSiTte98LuOiaGtN09Mor7YZr5OYKyJFxUJEtVsEdILF/VlIEFIEgEeCi1LPk6hOevQYhq7kYv6Ag8KHSWVYmh598UlLPPx+BjqjvDC3RYwzdizkhtSWfgw8E1bKHFuA2Ko3COYmC27fgHeCjYGp0KZDngCm4kyztOLc5/PoaGHows1KbI2CZE1n3z6rQKCuB30lgzpjwOaCAz3tPUxsSn4VOYKoBtoK5EJezJPxIY5lUQ/AaStGLgA2ey1Jh9+4sc8mRvzqlEwL98aubHmlCRQzQ1OUPfwi6OHpVGw1zzN/8xiHPPtv8uq/OMEiNgxpgP4Icdq8zSAv60lF9oq/+OaobpZVvOQLlezbLmrWfy84SdvfQ+PTOlREjh0nPxiNFiy9VK9tXvSZfJI6Wy0bRojN6qBjWu7Rr79rsBD8WyxW75He/cyLcs6Wr9L+NFNqLYc+eCu8x4RDaWZMjTzsl6167pF0S+EeF/y3RnOFAgG/nETB/aQvN3zPAtKPeBqagTcHdsr2mYEYBzZMopFnzRYE/oZ4laTrSEKBWndyYhnjsoIaezwefnWJwIZiafebZB+bzdTrYEv75rOgsCkCIErJn2KTjz9G3Y4rtMDy5ZN4dWW/56NFcqOqSF15wybXXNv9R0R8rVnZAWdbeBXcdqaPk5Wu1alYVyYJbJ0hGr4EycfKVUvD48/J4QYFMnjhceqEDmPnSesOuNRT1Kfr4VblhQoL0H3elzHt3VyiKbNUy6Fu2n+HzovnLPvaYU664wi6nnNJ8p+StFHtGhnRbsEA6TJ7s7XCL9hXfZerfMu9AQI8TLA5q0YX05BYhQDvyUo8SViNNUwnSejBmwo1tClsU2i2zilyku4FJXcDdwY2Fdh5Tat8I8MOOmveB4BHg8WBLsOczxWeHxGduE/gt8L/A77q38WOY5FgzPNxWiiwEGCiPGvikUeYYVLGMhnKhJQYBPPirX0nVunUBF3z77XZZt84le/fSuMs3nYzVHAcxR1TRoEf0nT9Wj6jgHqt3Nqh2FcmcUdly4zxauYrMf69QXBtWyAbEV35vfr6xb+7U4VKwgOJC8LRn/etyAxbMZJ9zpTxjXkoykqNrYrYK+s39cBLXx3AC5xuL1audchwrzaZMCVxo911qy45YnXbqd806USOj1PYIWEOWJSC9jyq9CV4K/syjer2RtqZKxyE9GjwY3BdMTXtk6dNQIaWoRYC9MoV3Ujo4D0wVwgXgQWBq30kUA981UuYfjhBbwQfANM1SigwEUsebIl/Vh2Zv40AwpFBRfPfuknnffVK5cqXU7NgRULGdOtnkiSfi5KQTrK2Kx1xPb/iX+kY+DKj8WMusgnus3dEWtGfVIwUya6NZwLRXtsktY/u4S0uWsbcslFemUYcnsvjG4bJoc7n7WCA/VfLSNTbpNXyypF4ywxgEAjk7kvJ+Ix/AXdswCFBJzVbrnHPs8uijzdvuNS7A5XDI4SeekPKXXmp8qEXbtHV0YTFQNTQbpNSJ+vq3CNAWnEztJM0QvnWXgeUF8o47zXkQCkw54PHgy8EUmCyiQZnN2tBfRaANEKBpDT8SrRGCH4sXe9SDsz7HwF+C3wbzA5TPPInPPWeRlNoOgaxZ5uf94d87xXU8xML7HXdIQr9+QTWOwQmLipqvTw58ulNwd9at2AjqUlF9ko7cUX37Qlf52j2vy813r3QXmC83X0qxwZPi5dKbb63bUXDTwiAmq+Jl/G+2SQmEx8cffFwenR9684+6CoYx4UKXwY6DoZibo6++csnXXzffCTU+nz7Uy194QRIRXCl9ypTGh4PedpZjgdIz0Iuhv440G8egGxUlJ2LCxaAS/F0FppnBCjA1ktSuk2h7fp6RMu2NByB9EphmDEqKQLQhkI0KnwkeD2Yvzw9Pyy7+ENKW2udTpNeCt4P5flBzr9R6CHT8pV2cWMF89HUI8I7AxqrmasngTM6KCviVD+yO9u5tk+nTHXLokO+6pMPoLwO9427Z0FwVYvqYCu4xfXv9b9zGV58zogHyjNwZV8pAqlQaUfLAsTLD2rdyury1ncuVAqF46ZmTI5nuef6EJE6+Rh/tRXzHVHhr7miER/Fe/w0bXPLrXztg1+79uK+9XPGfcd11knrhhb6yBLSfGnaaxjig0s24FrbsdtXVBgRggJmpZaQWnSYCpDVgCiUkdrangnlnLwXzs68vmMRXQjtjAwr9E4MIcIGsu9s31mFkutvI94HaeXRPQiH+dfBuMKkYHOgIY5yof/xGgG5/4zqariOrPnEJPYyFghhR9fjGjbLv6quldrd1R09cMgX373/fLvPmNS/wU+tOj27tlXSsaK93vkG7D8qyZ5fU7fnpNWPrOtm6nUzE58g1Hlryl5dxIrT9ETuMfs1o2+mb9ve/d8htt9klJaXtBOVaBHxiZ2zPssH/Ozrnrm1Xl1h8Sqzpfg5LHEIodLwL3gm2OtazkOaiP1IncA9w88ZVzKmkCLQPBDjT1A88HDwRfBnYWgxLoX0/mLQD7KmZdxh79U+oEEgZa5ekwTZh1FWyy9lyAT75nHOky6OPSvX69eKs8v8TbOpUm+zc6ZJVq3wL7z0RQ/Uo1CNlhuFVqFCInnKs8SV6aqw1DTkCtUUfyYsb/SvWU0u+5H/fD8Jcxr/rRGquo1jTfhg6oZONiWDvtXz+eZeceqpNaN/uL9Ge/cCNNxrTi/6e4ysfpzwr0enVbEOkViwCTh6mArsvrPzdzwV2tM096j6BmvSD7jTvMjWH3wVPAnOxqCV8WFpG7FJSBBSBEyDAd8n6sD0Z6T7u/FzX0Vgz/5n7GGe56K9eqWUI0PNM6kUYKxKwoBjg1uxqufCe0KePEZjJnuxlCt9HdePjbfLcc3EyGB8SvohumPu1Y627jiu+nox2tL/y0N46Mxk2u0tHTmx6p5o660QcX7lCvi6/RUZFp8WL9waeYC+17X3lHHQb3l8datsvvtgmPXr47nQaX+L4V18xKoZ0mTdPAungGpfD7ZodsMA/guJS4fprWGiDbXi7Xizv+xaN2wumTS4FdwoO1KCTzgRjfDOItuhKioAiED4EKPb18yieulhrsSt1uXxXh4JpJ78H3BnM99X6CEBSyQ8EaEqZdAbWGsCRwdHXMFv7PcweYny3QZhuCdFVpLO83Fi0SjOaE1EcggDGxbmkDPXI8OH1rC9UJP+VB+G69DKMxu3rTp8YwRMhrMejHoEESwIxWpIvA3r5/jrufNKgBu1tcGqDI7G34cBSwiL5BIL7GJ+Ng0MY6dYNnV0AtuSJAwdK+o9/3CKhnVp2Z4VLjr3llIRTscBxOPz24mNA6cQIcPGoNfX+CdLWwjn+4lYaGnQusKNNOqf2Se3puTdbrH8VgchBgIKL9S5SSKfQTkoD89g28Ntutgw6rXccu5VOgABdBKf/GOMHlO5HnsLCVThNaAnRVWTF0qVSfPvt8GxmLclvvkTK9wUFDtm61fu1U7DKrBtCg+00VhI1X1asHfWuNoy1Vmp7mkWg5KC1lI7ZIK7wvfIhu3fve1qzZUX6wQux6DM+vuljvxSdSocO1lDgvRW7ZB00OX0xOFCX05SWYRHoK6+45Omn/fsept2fs6RE4iDp27zUqekVfO85/LhTOv7CLh1/psGUfKNkHqGGrhhMUxf+cqr9YnAcOAdsTSBZtunYpaQIKAJRgAD1rp6qpTJs8/0mUUO/DjwezCGOZm9cd6LqDYDghWwJ0HpjqEuZgPEM2o2KD5ySynSQ1GnGDMO/O90d2xpqC72W2KGDTW64wS5/QLTXP/8Z45oXRRQDIG6QfxpmM14L8dj50EMPydtv83OuIRUWFkrv3r0b7ozwraYSTIRXWKsXegRSug40XHbVL0/1fY2aKA+ncdttt0myF3s7b/sao0AzmTPkksa7je1jx1zoXJzy4INxXjuYxidVf/GFlNx7r3SeO1fie9KCMziqeAed6Xgsgh0Hq780HYJ8oViEA+yaidAKcCaYdujZYM/Bm9o7JUVAEYgNBDLQDDKJH+TfMVKm28m1SFOo5zvPvoCza/r+A4RGxEWrpOo1FNyB3VGY0ECoDoYC9e9+4YV2WbrUAXbJ977X9JrUuDsRFaAYy5e7NDCmalq7SZMmSW5ubpMDN910U5N9kb5DBfdIv0OtUb+KHeKP0N4aVQn3NS666CJJTU0N+DKlmJA7Dp1Njwb6nPpinn3WKWPG2OT005t2LvW5zJTz2DFxFhdLt+eeg0bDu/a+8TmNt+mXnYuJKle4ILhjguTs4DUhjcuO9m0OxtSmk0e6G0PvFJZOZZJ7n/4oAopA+0LAsoTm7wVgmskdAnPmDSuNDCNIeovaDj4drFSPQKe7zDHm4C0O6f5c8KIjfbtXvf8+vJ1lwZPN4PoL+Ej97nd2eJhxIQK5SxITm46vOTIOYvv7JxTcKbR7E9zT0605Vh8ViMDdOtpH4E1p7SrFp3b0uGTzD3FCo0Ug/lmreRQfpUnTBeS5XmtfUuIyQjXffLN/r5M9LU1SzjsvaKGdlTg002nUJes3/l3Ta8VjaCfRWAd+C7wSfABseXZBEkGydUqcOCgpAopAPQKJSHJx+RCwtXKJJnOWPTx/3wdTqKciwNqPZLsjy1TFCuBXvtgcgwIFgotTk4YPl8OPPy7lL754wtPToaCaNMnuVWjnyX3Qu++TL2ALQOOn9kE66reP+9x8K2voM8OijfJtCXUO3mn3lg0eBwZJD98OaDzyRXeyBs7G9sDvTnbdRGvD9mTBT/qVV9olATaBzREX5VR9/LHU7tvXXDafx7hA6OirZmfZaYb56rbHgEpW98yPxv+60eLyJZq/cPC9FExBvS9YSRFQBBSBQBBgLz7IfQKF+P5gjoifg18HvwO2lku2R0E+0ZpVBjh0iFADn+uBEpVX3f76V0mF+Yqr2lP+8F4SvbXNnOmQ7dubXitBUqQXlicXykfeT47BvSq4x+BNDbRJ6X3PMkJSm+dtlMJDWKDqgyoOcVLRTdOGSa/gZ8ysUiL+t1A+honMGZhrSGtS19WrnViMeuLu23kU4SJuuMFYnBPfo0eTck60o3a3Sxy096CKCJSQ0/xHgpkrNv5yUVkh+BPwG+C1YBI7L2sOhANsP3Dz80XIoKQIKAKKQAAIsLemRj4PfBnYEuqRNGb4rN6/BNvB6aBZUvRR+o+xYBROLI69BitzBPsLNGgTNfhxmZliS0o6YeOpFKOb5QcecIjTS3Ao+nTfIR/gg6qpYH/CwqMwgwruUXjTQl7lzMFyNf3d1ZEvabxKtqzfWJdr2gVn+fBmXpclJhK0n2PH0JiOHGGEVKcxjdf4WONt5+HD0m3BAsPtY+NjzW1Ty85AGBXLXOjk4ALtsvbxynJamkR79RVgfrN0BY93M34MLzCpTCgpAoqAItAKCFBBwEWsltrkYqStHvkLpP8F/hC8HWzNDCIZs8QZ347w/MIpiWOvmy6JA22s49AhOfL001JTVNTsqWMR3bVnT5v84x9NhfNMrGBKhGJtv2HU1GwxMXHQeuZiojHaiGARyJTz82fUnTz9hZXG1GDdjrpEiexYbQnueZI/MafuSKwmDsjX6JjjvC58efJJp3z3u3a4krK6cd8oxJ98sl8usDxL4DRk5XLoEDCTmP4j+GVPOvF1PM+PpvRhVLbQXeEy/O50p+mVlKYvo8B9wU3nPLBTSRFQBBSBNkCAgrzVK49F+iLwKWD2Z++BLSOQ4IwjUUAUEMeleAjUSUNsUv0pFE1FTQXr5poR17kzXE5OkJL775fjW7Y0l1Vuv90un33mksOHm14jB5E2qGRrD6SCe3u4y360MefS6yXfyjfvOVnnxVqmtuhDudstt+fec5+MpVFxI6ot3SyLHpkjcx5ZIKu2eymkUf5I32RHwA6hMW3Z4pIjRxggwuq2G+cwtytWrhRyoFS73yVVH7gQac4mif1jT2hnt0vhfA14KfhjMD08kOi+bbiRMrXq7qT+KAKKgCIQ0QjQ6IOCO/uvSWC3ZaPR1zF+BGk7mIJ9rBHNN5MQ+K/2Wyic4POdQQH9pcTTTpPuzz8viaef3uwpXE/2u9/FSadOTcfdU4B6MdCtkNJmy4iFgyq4x8JdDEUbkofIA2/Ndpe0RO6ZRwMFT6qVN+fNce/Ik8dvneB50J2ukpcLBkrB3bNk1t03yrj+s2Q7V/X4oJpqD8E+KfJiUVYhGNUB2YJJuJFNWkC3jw8/HNfsgtTSRx+VijfekJSxTQX/JgW6d9BOkL7Za7+Fi8fRNkNw95U32vbzUdjhrjS16mii4Tc5D7/fBZ8GVlIEFAFFIFYQsMRLLpbn7CGJWniu16HCgooLKjD8F3GROYLJnmyTlHPtwsirx7Gal2uzQk00H33jDafsblQ2RmN4mBkl3xjGSqG+amSVp4J7ZN2PNq1Nn4vul40vmiYzK2dNlAkzX5LNe/ZI0fZN8tKcK2TyPFPd/vDyxTKBBsdNqFLKKZHV0QYprqzbcCdqpaq8VDavWiR3TF9Sd3DJU3+SFZv3SFVVM5J+Xe7WSXyDxS4nyzDY8VOPUk8Mwbx27YmXIWXecYd0gfDub1RUdnI1kGztMNxOGobfKA+oxFv/DdhaTMpFplY3Tgeko8H9wGr+AhCUFAFFoF0gMAitvBBMhUVn8G6wNUxuRdoBjnai2UwCOveKt+FUoTSwhauVH34oh2bNEmdZA2GiDhIuaj3lFJvceqsD8oI1opiHGUmVgrszJlCsa3KThAruTSBp3zuGTHlcdq9eaERSXTl3qgzs1Uuy++fK1FlLJDd/trxXWCZ3TfAV6TNdBuWxO3LT5KvltEZuPjYtKJCUjCwZOK7A8LdtZZWNz8jEgb0kJSVBLl+wvm53WyW4Op0dQGMzmT17XHLnnQ7p08fSpbS8htQgOCvh6hGr8+NPMoMpWT5zW15665ZAF438vPsPeBn4INjyoUMTmNhfFYFGKikCioAicAIEqLCg4uI7YOhqDKIYapkMfoZ0IdgS6pGMKmKAwPRrME5CF1f2F5jOYJzzh1JGj5aU8eONBavOKsvAqOGZubk2GTbMJosWNVSgpUt3eBbrbrhvbnhGbG3ZAKZ/aMZWu7U1J0SgSvYU7ZYyvHQJ0DlnZHWXrpnWZF9zJ9dK0aaNcqgmVfrmDpBMXw5qmisiDMcqKiokDb5jjyFqqT+RU/fIJhjJ/Bdakdsa1OauuxwyYoRNrrrK+zdv1fr1iGa6Aivtb0Bk00ZfLQ1Kqt84/CeHZPwE5QEre2roPgjqrxDeFKd+qSkaDKaOhBokCutelkBgr5IioAgoAorAiRDYgwzsS7mwNQXMPnUgmAtio42qMEOdOBjmM1hYmnyO97Ez0DbRq9t11znkscfipG/f+nHzW/nUWKQ6Tn7lV5FDhgyBg4neML95w6/8kZApQsSqSIBC69AQgWTp2SdHfOnWG+b13IqXPkOGwdYsusl0AdnQNn3lSqcwSuoVV3jveCi0l7/wgmTNnOmX0F61xinJIxFFDtoD2gRGC3Hpz14wVyiMAlPLbllOUatOVlIEFAFFQBEIHgGOvWRqVkvA7HOpJKF2fh14KDhaBLjkEXZD4063xsnnwN89TFxoD98S6tjRJi+/HCeIa9iAekqufCavYnza2xYswQAAPDVJREFUb2jfGxyMkQ3vEkiMNE6boQgEg8AxOYR16Tth335Wg9MHDbLJn/8cJ3b4rvVGycOGSVeEcY7raomx3nKhI641J7mOuv3RpoyL/NeQfSMHC2tBFe0wT3c3rwN+u7vT+qMIKAKKgCIQOgQ42tAWnjOalkkNt63VYFzgyhnPY+BIJpp/Zt5jjnUlsxqauPiqNw1CSubMkZK5c71mYWAmTKJLBVwnW0T3zX2xgooBmWKVIl9iiFXktV0RiwAXpWbD8jDOQ5/BRTAdsaKSHUVLqeS3ZqfVeXZkv37U7mxwN5aWhtSk54G5sGoIuBNYSRFQBBQBRaB1EcjG5SzDVc5u00TxHfB/wJvAkbrA1RZnjp8dfmSOfRX/bV6AN4T9e++VxIEDpfpzuKnxQhTcr7nGIWVl9cI7F6nuhFsER93njZcTo3hXZEsOUQysVj06EeCL/o18hEVD59Y1YNs2l0yd6mgyJccMtfC6c+DGG6X6My4lap4qPzI7qdQLzM7Lltjyj4DmrxjYUZrAfAn+xH0aNTonudPp+D0VrB5g3IDojyKgCCgCEYAAI7kOB18CHgmmUGdZj3BUsjTzSEYMJWNhKalqtSls0zmDL7LZ7dLh8sslaTDnHJpSdrZNzj/fJk8/Xf8RkAK1UheM4kVGhJCm50T7HhXco/0Oav1DisAufKVnSTYEVE5GmvTYY075+c/tko5V8p5Ed1VHX31VOt58sySdeabnoQZpV7XpDqvi32bnFEmmMY1NYNj1neauPYV0DgpKioAioAgoApGPAB0CnAG2tPHctrTvVMhEmklN5r2mCHrorhMHbKLZjOPgQXFSxd6ICgrscNHsks8/r/8AyJFxCMf0XqOcsbGpgnts3EdtRYgQ2IYXnS+8RUuXwkUjVgBddFHTV8WekSGdbrnFpyaAZbiOIzzzH01NQJa7k7LKbqvf47iwZQJDcxhPExjqNNQEpq3ujF5XEVAEFIHQIdAHRSW5i8vGr2VS81+kvwDXi7nYaAOyudeLZUzD4lUE+qiAAwhfZLhIhp38gYICqVi2rEG2ZCx0nT8/Tg4dqm9RN6ig6M/9oGxrkDcWNppKI7HQKm2DIhAEAodgJIPwUHC7Radb8KcLofs4pNw5c5q+Ji4sZXc5fXcyPL9qNbqNYpiXTLYLOyhbCOzjWW6ghP7Q0LSsdZ/IqVNrMWkHpNUExg2M/igCioAiEKMIeJrU0LSGIi6VOCRajzc/mhnZwvaHAZvo990J9zk1hYhr4mGv7nnRuC5dpNvChagsx1YMrh500kk2Oe+8hmN1/xjVujdspQcImlQE2hsCnFbz1LYnwgb9Bz+wY1FqvYmMy+GQ4rvuksPz50MY9/76OMsh8H+Jab1D8LkL57uJp9af31qYshPeDF7uZmpa+oBJ9EyAaikpAoqAIqAItEMEstDmwWBLG0/TGsukhnbxez22kWw16vBDu9hh33PsDRfWj9Vrzz0rYEc8ltQLLxQK8Y2puNhlRFSlj3dSHzgsPoCILJVypHHWqN72LnlEdZO08opA4AhUwevrPizNzDY8kyNiHb76Z8/mgtSGnUfVBx8YNu2Zd9zh9SK1u11S+Y5L4qDeSLvE1LR7zRiGnRTWv3aXSy8w5FzwpWBqWLqClRQBRUARUAQUAU8E+mMjwb2DppMcR5aCaRe/C9yaFAdFWdr3bFKLyFOMdeJqNAZbdeEaMzqF8Iyu2qWLTc480yaPP27OH8Tj06S3jDACMlnnxcKvCu6xcBe1DS1GgC4gT5Zh6LxSMAtnCu3jx9uauH9MGTdOEhBlrTG5HNCyf+WSmu0uhGu2QRvQOlp2ThZ+6a4MF5panxnUqnO5LIX11qkJLqSkCCgCioAiENUI9EPtzwNfBKZ5zU6wNa4UId0aZO9gE3qeoflMxX9hOoNZ7MbENWY0lznwk580MJuZMsUm9AS3BkI/ibPo38iHhr174zKidVsF92i9c1rvkCGAbsEI1kB7ONI/EBipa1ebjPMIjOQ4ckRqd+82or81vjCjwHFqj364kseYnU3jPKHc5jSmFQyJ05qWpoTTnqeH8kJaliKgCCgCikC7RIDjSTb4XLCl/IES3CCK0VzyWWFuhu1v4gCbJA23yXFMAVR/1lR4Tz3/fOn61FOG4G6tOWOslTvvjJOFCzGyQwmXjhVdHeHYeDfiqcYKqeAeK3dS2xE0ArvhY6UDdNMZeLlLS13y8ccuvPj1r8axf/9bDt5wg9hSUsRY2e5xpcp3nVKDHixpqE0ST8cCVPcqeY8sIUl+6y6FC0s5jcnpzAng88FcXKqkCCgCioAioAiEE4FR7sIpyB8Gcw3VMvBXYK6jCgfFd4fwDpvP2m9h9w52ekRJ5fVo6544YECDNWdDMR4/9VR9lPNYcw1ZL52EA3EtUxGIAgS4KNXStmdm2uTRR+OEtnIkx6FDYofAzpXscVlc0mMSfbM7sBCmcpULAju03n0snYSVo2W/dNNY6C6Ci4YswT0e6fPAFNZpDqOkCCgCioAioAi0NgIjcEGunxoKpkJpNZjE8YrB/EJJ9MiWdinWjKXgA2Ghd7v3qnXrpPKjj+ouy2jnL7/sNCKqnoSluBX41DhcN5LWZYvKhAruUXnbtNKhQqAM6+ePSrH0xDLOvXtdsmwZOgUEerAornNnoV07hXeLXJh+O/Jn2M/FiWTORGcSIjePFNa3g98D/xt8AEzCZeQcI6V/FAFFQBFQBBSByECA6iquoxoCvtCjSpZRCgV6OFcLGcV1hgB/mR3uIuF55t+mDbtVeNJZZ8mxJUuk9OGHjV307Z6YKDJrlhOmPnbYuo+JmYBMKrhbd11/2yUCDLjUD1Z81VU2mT7dId0xLUdzGGdlJfywrxbHYU4I1lPFCgj2ldB2T7JLHLTzLTWNOY6ire6HQTHYyTFyKcNXnw1WUgQUAUVAEVAEogUBKpryPCq7Huk3wRvBodDEJ5wCMRyT347dWDQLJZoD5q0kumfu8tBDknHjjTCnMa3vJ0+2SRXcq/0bQn62jIad+wb4rg+3Zb5RnbD+UcE9rPBq4ZGMQK1UY+JsPQT3MfLss04ZMcImQxAIovbAATlw7bWG8B7XqZPRBOcxs3M4vtElNtioJJ4WvGkM3TRyOpFEzbql35+ENIX1HmB2fkqKgCKgCCgCikC0IkDTzgvAY8Ac0z4BvwMmWWOguRXYXyrXMq6H+IphuPQBS/VllhHXsaPYUzFIg5jvjjvssmCBU6rLUo2Z9SL52MwYxX9VcI/im6dVbxkCfIG7ywDZtS1Nli93yY03Iuxyba3UbN0qnf/wB0nNq9cblPza7Bw63gLTGHQGgRK/8bmo9B3wf8BWV0Nh3RLS9WUEGEqKgCKgCCgCMYUAnSmcAf4umDFFSJi4NsxCmaZJjaXA4ra/xLG4483myHn0FWtUxfh67Bhs4RfCG83X0r+/DbbucUJrV86ub5dV/hYfsfn4QaSkCLQyAuWyef0a+XzzTjlKW5HELMkdNkKGDejZqvXYLu/LWXKVJCAA29//HidJSRTI4yXlXDrAMol2dGnftUv6dWbnEIhpDLsRnsXlMjSBYesGgLuBLSHdEtqxS0kRUAQUAUVAEYhpBNLdreuAXy5wJVGIfwfMMfJkMMdIf9VjCX3NnPQ4Q3IcRgDEToiuesEFUnznndLp9tvhUnK4fAsPD1279pH45CQjmmq3KHaebMkPRoP1jyIQbgSKViyQCbYMGTh8olw5tUCef/5xKZg6WYYP7CW2y+fI+oP89g4/FeO7m/7b06tyjItxEUvFypVS9Qkn8/DFjhXppOpPzN+kwf51I9Y3PyfjqGUnnQamzfowMM1g9KUDCEqKgCKgCCgC7RoB06BF4GtdZCKYv1+CGbV1KzgQ6nSrqQYr+a05CseffLL0+PvfJXnECGOWfOdOl9xwg0N613KR6qpAio64vCpDRNwtid0KFb09R7In3igr2cT8p6Ww0iUrVmyQysLlks99S2bJ8G4Fsr6cG+GlHdC2dz08XqZMcQhm1WAn94BUrlghSXjJSSW/MV/+zHtP/IpQW8BOhu2yqk53jdQokDqD/RP7jez6RxGIMARojYqXxPDUzOVlZR7143vSeMnZHuwrAn8D3gGmvySL9iNhvSXcdxC8Afypm3mORXyzNlkb+HWB3wHzTbOYeSxiOYwlbNE2JKx8/N1iHcAv68xrWsQ6euZl2lOJsBbbnu2meGHlfxdptteiEiQ8xQ7Wkddi/TaCvwJ70k5seF5rL7ZZHvcTS0sFgKRwhQzvhUU8jwvoiSnzcQpTSRGIPgQoxFPJlQemEA/LFoPYQ7AX8Zc63mSO2UdfNcdw67xzz7VLH7ht/vjlEeh1tkLLf8Q6FHW/aioTdbcsSitcukoKLp7lrvwM2bbwBunjfvqS+0yQhdtekcX9r8TxxTL8poul7IUpxtd3OFpbDQeQ+/Bd/+mfrpZLLrFLz641Yrv/fuNSle854f4RQvdV5svfnGkMFrUb0eP4+nOKbyC4I5iUZf7oX0XAAwEKwBQYa9zMQ735x01f4Pd0sNUtUzikUEbhjOdyWOsFJm0DUyAcwg0QtznPw3xkfjbyfSK5wE+AfwU2n2uRPyPNIdHKPwXpQWDSa+A0MJeVkSi0/h+YGq1E8Cng68EkCpHPgO/mhptewS/bmADm4Pkj8Elg0vtgGoydwQ3Qt2AKtRZlI9HXvcH2bQdbbWQ7KBR7Esu36CgSvK5FFGSJt0XmQnNziwKu5wcEy/HMa51j/VJo532wyLNsntvZOoBf3rOvwfx8J7EdbCOxt+rH3sKifyNxFbijeweN6wrBvDe8Ju+DZVTwGdL8OLkUTCoE/w1s3UfqLO8DW3QHEr8DJ7l3PIlfns97SaaIdDaYxOtyn7XNZ+oD9z4+k2wj60IifivAF3HDTTyf9WBetpVtZH1I/ABJAWdyA0TsiSnz8pmi2GbVEUmldo0AnwYyiWMpnzbSPjezF+wCtoEbU+Kp5t7qz11wHekSF751a3ZskGNvvim/vPaXMu22NPnVxHPlm+4fose7uPHpUbFtg89q9oZKikAYEaiVt2cOl4vnbjSukb/wK3nhOg7enlQui67JkILF5r75q0vkllFWJ++ZL7h0WVmZdMRq8yNHjsjejI9l7ae1svSRC+Rvf4uDr1e4f2Q0Now5ZYuc0ulXHLy807fYzQ6FnQmHZi666Qa2xCEklYJAYOnSpfLBBx/I3Llzgzj7RKdQ+KHwRK0qh4BkMO8gicLeAXA/boCYZzWY+cg8l0KS9Uz8C+nRYEtQewPpL8E8j0LLOHAemLQW/F/wPdwA8el5FkwBheVRkLkZbNFfkfgxmEIziedSUOXTxfzDwNlg0jdgCoEU5kn7wdzHfGQ+pZ7vGIWw/mCLKLyRrLJ5zXhjjylsN3yiZ8+eLYMGDZIrrrjCnUd/IgmB0aNHy3/+8x/p0KFDo2rx+bXuKw9RYLaeVX5wULC2zrGeCYpEJH7IbAfzuaaYwPfmTDCJ5S4Hf5cbbuK7wPeJ5fI4hXwaB5LeAfOdsT7C1iK9Esy68D3j+3cdmMRn+Tmw9d5w3xww28F3h4J+Ptj6EGM5fLZPAZP4Pu4EMx/z9wT3BZP4oXkQnA0msa7ctvLy1xMvbLaQNm7cKI888ogsXry4hSXp6XyqtoF3gyvAvLM5YOtJQLIBuRwuOfyoUzpOt0vV+8ul8t13pWzK/8ju6mNy5Mw/yiT5rZzUo6f06NFDPvuMH8XRQaF9QqOjzVrL1kagfJ087RbaBYGOrsxjJ9uY0iXvyhlQuM8zDkz/03KZNuoKY6honDOYbev71OlyynbXB5J88Bfyhxu+ksqFH4r9B/ly9H+TJeOn9roV6tY1OAztAnMo6wrmEENBnXSa+aN/g0KAAzaJAyuG+6O7YIf4FVIbwDxGgWIgmFQGpjB9ITdAHGyfAfNuME3B4qdgq/teiPQ5YOt8ChSfgDkok88GTwSTKBjzuhQcSCzLGsiZlwKtDWxRNhIp1gZ+R4ApjFgCBQVmiyhoky06GYlfWxtefn/WaJ+l3Wy029i0BBHrWHckyL6o8TvHJ9oXNRTamWvHjh2IJtzcOb7K0v2tgcDatWulFh6xmlLjIZ7vFdkbNb6/VJzw+fZGLPe7jQ5c0mjbc3O85wbSLNdX2XyOb2uU/xfY5vtuCfqe72BP7Pd871g3vsdHwDyHz7P1vnDfenA2mFQJ/gvYKpsYPgC2yn8a6UvBfHdJb4O3gBPAceCRYOsd58cCP36sbYqWm8FbcG++xG8hOBtsURUS/BhS8hcB3lmqI8hElwL8PjB7fvba7IWpTLPIFmeT9GsQsOkw9sRNkKzZE6WzzYanIU3ewYfkHvlcampqpLraGo+sMyP7lzgoKQJhReDgZ+/KEusKeTdJnmUjY+1z//Yamgexfp5hBQr1hGx46goZ5WuMaXSuv5vFcV9Lsq2DTMjcieinf5b4Kx8RF/y7drgc3XuKzSiGr3ARmAI7u3V22dYktiXeYVcMkgttIluCG7VzHAAtgZhC7lYwNb0c6NhNngsmcRD6J3gKN9z0R/xyoGR+onoDuC+Y9DqYaA7nhmRmlsioUSxjHZiDoifSvC9WHZA0BOk8/LKeHDz52wFs0VVIWAMv9012M9ONqTd2kC2iAHCFteHld0ijfc0Jy6yXkiKgCASOAPsWT+riudEofXqj7dOwTfZGPbHzBx4H+GF+n8d24yT7M8++hP1VfzAVBuwDs8AWNRan2OdtRN/2jUyaxD6Nfd4tVmb8Pgr+Bbize9+f8HsITIUB+QJwLphEwZ/94zBugPiB8AXYysv+zxOHA9juBo5dYk99qkfz+MRQiM8As/UkKtvie3L8wAi0wSU1m7HdyyVf7xF5YcFVkv9InWRi5ImWP42ftGipt9YzahColXX/fLFBbanT8Ebx3fsa3dRG4+AS+XhrqYwalukta9D7Pi/7VN787dVy5oxe0mn6s+I44JJ4yJI1dpshYlJA/wpM8ZVdJocL87VHImKIg4YlFPLTgh26hdMxpNE7GVPC3E+60Pwx/j6Fvz8Ds8MncbDgJwqFa94ZHrMGi7VIszscDSaVgLeCOQjxfM/BlF3JQLAn/RAbFKxZBs9hV2vRlVbC+N27t5e8+WaGTJ58fYP95ga/3s722M874jlIeRwykhyMlRQBRUARaCkCFAM9iaIg2Rvxo4BsEfvk62TXrg/lsceWyE9+cot1wP3b+IOBfV8FmB8EZE9lBcviMYusmUErbzIOePaJC7B9D9gS8R5Emv03+23mvRps5f8QafaZQ8GkneDtYH6wkDkqZoNJHHuOgK3xhvsig3inrLvFVn4KPgrmHTkZ3B1unRll9dh/nNJ1wzNywQ6H/GPRSdKhBzBis6KIrLsaRVXWqkYXApVS9I0pihv1PrVzA/1Fg7ZgyqrcY8eKNd/ILSEU3Dt0S5AX5veVq/v2kKQN+AKH8sQx1G6Ik1tw3ZPc1z7Tow6hSVajGArUWe7iuP0lmJ0uhWV2yBeALXoWiR+Arc6RHz78nKAgznOuAI8Dkz4HU0tzETdAh8Esm50z2bomkgZNxF8K0RZdiwSFa3Z1jbuDPCuT+7c/fsneiOee1egAu0wlRUARUAQUgRMjQMWGp3LD8wxrdLL2dUeC44Avur/RgXuwzbHDYmroLcqxEu5fKkZKwXvAHKs4I5ANJnEcexrM8iximqoujiEcW34GPglMWgHOBvcDkwrB+8DMR+4CtsYJjoVURFFR0zLiJw9HL46s34I5InJkPD3TJq6LMOaf9HMZU/O6vLvIKX3OPVUOruIYGj3E0VZJEQgrAkkepU8edrpvq770vnLxZHiFXOI+gX1GCGnQ0AkyacV6Oe2BM2T1+J5SkWQzLKF5iSFGx8NOyerQ+AlOoZgdHbXR/D0HbLWGHRI1zFYH9R+kPwaz42HFx4IvB5N2gPnxcjU3QOxOqA9gR2cJ2EjW0RikrHpw52VglsXXleewY7VopJVw//bC7zWN9nluWloWa1/LO0mrJP1VBBQBRUARiEQEOGZw7LLGL8868iPAk07BBtkbcby4p9GBOdjmGMlxj+MkxWaL+iPh+THC8fEbMPPynGxwTzBpP/g18C+5AaKi6tdgav05TvL352CrvHeQHgym8E/aBrZmFfhRkImcPQ2jqdNg8lljzFLbpLgDnFGMjpPemd+XH/U9Jg9s/Ers8S+xgKghFdyj5lZFa0VL5Gu+p3XEl9UXxXvtVnzlDmQ/QyPff9446ZpfKnv3T5eqFXvl/WU75fvz9xrF5OZmSkFBZ7n/fmoDIB7D08xdd3WTqionFq64DH7hhRKphO950qhRqbJlS7UcPuwwtrt2jZcE9BUV8E5TVuYQp/NZY3/DPzc03NStOgS4QMjhcEinTp6dft1hTbQxAlVVVfLKK6/IzJkz27gmenlvCDid0Bz26YMF3p4f9d5y6r7WRoD9Ghc/at/mL/L31mVMTbVJWloc2G7wli2/xkJf8/CYMWnGGHzQHbRx/PgOctZZKUYE9ORkuxQVHZeFCynIm+P1hAmpcu+9hcZ2dk6G3HdPV8nqd7rce/FAeeCI9TFgHI74P+oOMuJvUbRX8KAsuuF8KXiGGmdQ/lvieuEiM93kL1xCXg6XkG6N++T56+S1W4Y1yRXMDg5sf/j1Q1Jc85kcx8d+ba0NQjZcRFXZjeL69+8vdruZDqZ8PUcRUAQUAUVAEVAEIhOB/fv3G+6gWTubzSWdOzugbHNJKpRFE8ZMkfHjx0dmxb3USjXuXkDRXaFEIF7KtrqFdhSbO8Sy2w7lNU5cFoXyO+eotvDESGkORUARUAQUAUVAEYhUBFTFGKl3JmbqFS8Z1lJvtKlvMm3P/KMy/7JpLkVAEVAEFAFFQBFQBNoFAiq4t4vb3JaNrJXqBhJ4MzbuVYWy3FqYiiqfk83V7EqKgCKgCCgCioAioAgoAkRABXd9DsKMQKYMuiiv7hpLXvusgcvHugNeEsPOaLza3Usm3aUIKAKKgCKgCCgCikA7QUAF93Zyo9uymWeeb7lBRC1WFkmJe1V44zrV7t4ii+t2zpCz+tAFlJIioAgoAoqAIqAIKAKKABFQwV2fg7AjkJ57vsyou8pcWbPbu+ReWvRVXa68h38gObp0ug4PTSgCioAioAgoAoqAIqCCuz4D4UcgPkeuX5hfd52nlqyrS9cnauWjf73q3syVu/K/U39IU4qAIqAIKAKKgCKgCCgCon7c9SFoJQSKZM7QbJlleIbMk+W7V8gEK2AaalBb9KokZF9p1CVv9nuy4v6xrVQvvYwioAgoAoqAIqAIKALRgYAK7tFxn2KjluWb5NaMXJlntGayvLj6IRnfI0UO7fxA7h83VQyHMnnzZfeKW+qCIMdGw7UVioAioAgoAoqAIqAItBwBFdxbjqGWEAgCtUWyaNZ0KZjr4ffROD9XZr/4J5kxZaykB1Ke5lUEFAFFQBFQBBQBRaCdIKCCezu50ZHWzKrSPbJ7f6UI4jHFx2dI9z5dRX3IRNpd0vooAoqAIqAIKAKKQCQhoIJ7JN0NrYsioAgoAoqAIqAIKAKKgCLgAwH1KuMDGN2tCCgCioAioAgoAoqAIqAIRBICKrhH0t3QuigCioAioAgoAoqAIqAIKAI+EFDB3QcwulsRUAQUAUVAEVAEFAFFQBGIJARUcI+ku6F1UQQUAUVAEVAEFAFFQBFQBHwgoIK7D2B0tyKgCCgCioAioAgoAoqAIhBJCKjgHkl3Q+uiCCgCioAioAgoAoqAIqAI+EBABXcfwOhuRUARUAQUAUVAEVAEFAFFIJIQiI+kymhdFIFQI1C+Z7OsWfu57Cw5ahSd1TtXRowcJj01PGuooTbKCyveteWy+aMPZPWXX0tZNS+XJD0Hj5SJ44ZJpvZkftxP4Ld+jXy+eaccPY7siVmSO2yEDBvQ049zg8lSK5vefk3W7TsuAy/8gYzqqSHWmkexde/Pwe3r5d1ly+S/738ozyw2I1kv/KpMrhugnaO3+xTWvk3KZTvezY/XfC7fom/jm5LR5TQ5Z/y5MkAHK2+3I4T7amX7qtfki8TRctmocPWFIawui3IpKQKxiEBloevpGXkuPuIG5+a5cq00fu95cZ2rJhbb3VZtCjPehe8tdOV53L+6+2rsm+x6cd2Btmp5VFy3cPnTDfDLy8utfzcmz3atOxD6t+HAew/XXePh1SVRgVNbVbI178/udUtcM/Lc/SLfn9x81/wXl7g2btvtKgv9Y9BWkIbuumHu23avftE1ua5vy3VNzp/cYKzKn73EpW9P6G6nZ0mFq19xTXO/C3kPr/Y8FNFpFdwj+vZo5YJDoNA1O7d+YJr/XqG7mErXe/Pz64SJ/KfXBVf8/2/vfGDbuO47/jUgIbY7KbVT2Zm8zPbstHYWU62MwmoaB6CcFXa3mUZjJ61NF3Gz0F42WHS2xKNROwg9WFO2zqFReLSDmC4sBkvoFKELjFkRSagctBIMuvFpCJ2GqiW0dBupphJqMOWRwNs7/rl7Rx5lSuJJFPk7QOK79/f3+/x4x9979947KpVDwFjeYZ9dsZnWYVdtLMe7yDnMsUv6dCjgVPlZ3Wwono6PD3Uxq+IwWFkwplt8epGxPsEZ4bYJkutRCOSs2Yc7oB7NYIaNBaRIIbEoPkXA2HvbUMChXJs2dy9TL8EY6/UI9z27nwaaSviNlDuvNsFHkH8/LK754w+Q417CLwNVVR4EejvUkXabL5wjVIL5bOpoI380nJNOp1MlYCjvSEAZfTLbXKwvNMRGRiJM6vIKTmfWgXewMI0Yas0X7RVG2u15fBJhn+I4wOoVHAdtNVM7izGPNWuT9Cc57gUIzpJ9tJ00bhObh9EzqgI2EaINvbdFhc6tzafrmHc56LdKMEcJgnHmzdyb7A67cG8kx70EcKkKIjA9AomIX3H0ACuTMqOLYm1xyaM6K2YXPYYU4UwxbDTvLmf6h8vulfIlS0SYy5LrIFJHTAWVYAHhh9/qCalJSkjrZJfiqUXIa1Ovr8yIPjnuCnAhMEv2GenSOCiwuMlpF6xQKGj0vS0WdKnXiUvv2mQsKuSha6iQpaYSn2CRcJhFMwM8QZdFscF8GnGnXWX4MxI6KoeAdPEcpIw6JvsurNdZD7dw/WbYsyr3tCEwOJE9o88pEjCUd3IQbx7j1rT58a+7N+RLVtOIg6cD4GsXlOOzT8eVcNUHxoNwtytXA3aZ1+ogqYN5l3I1oO2HXZjJ1ZAcvoSn9pwFLE54XTad9ihKITAr9hnFK49vQY/SqAV9F/ajQTmnQCECht7b5EZr71GaNk+MKmExsGhxvXhK4RkTqEHjmjXKZga198zPhdjkuM/4i0AVlA+BUbz3enp3BFmmZ/Zuhu5mIzVrsJcP1WaPt977MBukzykRMJb3ROg9cBcQviPf1LejLGvj13FINSWCH/9+ShpUcubRD34G5WowPwfzSt2rASuazGrnp7MT16bd9xlG+3ZLquPsP+3ApvrblYx3xrrNhn2uv/F9HM723bjEDr8Lm+anrzJj3lOrwNh7W0qWRGprrFSw5/BLePdmvoQf/qxLiNS/foUMFKwSAuS4V4mhq0HN5PAv4BV+pCbTWexp+998H2OTZaY0XQJG81744JMIhyLYUcDh1BOq9asP6kVXYVwSwR97NXonNWfqSc3y1arjzl39/o+ndzVcfmUfUg9IvCFsb6zBbdUvURujUIbALNhnvB//JD/9yB5mFxzbV2bP6HMSAkbf2+Sm6x54GHynrMzRg20r9qNfuPSSw+/iHw90ptPNbuxtph5Xlla1f5LjXu3fgArSP37rd8o0GVmtL9y7qKB2Cb5vrnL0dONXwqkST4FJCRjOe+ESrOF7jN9tnEn0D+sXTypyFSXGMXxD6MU+eB8KXg0JzdWA7is3psxprP8UHjvMJ2RYPPi33eumXL76Chhvn8GfnFOfuHDAZvMX0HP+OHa0NmHBggWpv6bWvTh1sV+8G1afKXQ0NvzeJrfZ0IqXO1TXHfz5YsvSHbh0fQzjg5ewc9W2zBQnO4Jv78cSHTkpqjoJkONenXavSK1ra0W1rFi3QmeCeybLfX/8kJgZmqKaFDopRKAseI9/jEB2PggflbLQy2MUc6kzaLk/3fyl1EtdlEQxULca24TpRhB7QmK+QuHxqzjY0sZT+fxpz9OgccFCoLTxxtpnHJffyo62p1eB9BzbA8u+Y/D3qB06qacTbbtaUN90BAM0eKEYaLbubZtffBNu8drjXS3L+qWoX2tJdbqsTh8iiZNoJq9dsQ0FAHLc6VtQMQSioyOCLvxXKCGc5gSXr/5iTgydTpVAOfAe/MkZZVTR1f4kjUopRoziV5qB80kuBv5MQ3QilSqKCozjjec2Qn6g7+w6jU3kYBRFDTDYPhMf451shzbzHNLa4cdInMlbQCMeDcPrFDxGqR2mR09Bf4lkkSpVULbZu7c1YP87I/DwtwDlH2bYDuwEn3VGBxHQECDHXYODTuYzgUUN6/mYX3FHYsrDisXVW0255pz3xABeyczhNTu7cJC8RuHrtxhfbFH32/G/L3ZqhWwzDA5ePIY93Gs3OQJwtDbOsLZqKm68fcQnH/L1ceHF7WjIPIRcuGQNdh+9CL5dqApdaoPnMrnuMpDZvbc1wPK9raodlFAPHlvWhDcGxpQYChABmQA57vQ9qBwCt3+tjL5WjlJlrMmc8k7iXWdbatcZWD14+2hrGYOaC9FqEPtYnRJh2lD6oXB568dv7XqVK2fHj51b77oWYS4olG+bxttH1P2pHV8VTzPhGmx1eMDfnqsc3kAQhRYxK5mqITCL97aBi0ewtOUwp2qCo8OZM/gkYY9pKc6T814N37qidSTHvWhUlLHcCdQsvlcQURxvEqIzwdqcyQGTTSTIL00xMoG55D148QVsa+eLIeFAmM+rLr1bOt9tXIN6YQvo1QuLX8URK0b1ZHbrRxN84X/FGp3H+WKL99QWXBpbTGsVmMdg++QQu5Mo4I7XmbCLv/s9e0h9v6KFqhzGbN3bBi8egmlXewq/3X8JJ148indiEpw5M2f2mZ5A92gBG2aNR59VQ0Dndls1upOilUZA2BcXfF7nb6NJNNfpf8UjH10TtH8I95NfIfAoMjhHvMcHzmNtaqTXir7oCV2nsUgNKjhbEnc0HvgkXdOJIXQp86GBllX33ZXLuORPbf0oX2edr/wd/Ldz9mznu/tIZ/kcmsxx+uizeF/uS4+P44En/wUnqn7nGWPtI6/vKW6taQ1WN8uOe/bpzD305ET+zs7GvY1v1/kPqfsYb48/NXRmt+qs24Cj3VGsP/IEdqUGJ2SBenDoZC+unaAnizKNaj/0vZpqp0L6z0sCdau/ktoXVx6HlX+Ihm7xn66V+mOxt2/9QdXR1owVdCWoPIoMzQnvm92wmPZxCc3wD71GiyEL2moJHtrKh+160leD/50PMH5wU1E7vjT/+fKCteol+M9mdy/RS03HSf5OxTU0tx4rnLFqUgy2z6LFKNqKOSuTaVyX77E+C78lg//9n8rUTuu2lpxrcwl2nvgpAvhG5ski/0Vrfw+DzlYaqKiae0RhRcldKcyGUuYbgSUP4ym+OrVHGT0s9PWewEdXsyNMgO0vvkKjTNOx9WzzHh/A/hXp17d7pLexfWXh7T6no06llfny409xldKOO3qGwR9AQe8BVDLyUWpXmLT+dnylCK6L7nsYdosVf1i+GHxwXff4pO8s/JnLzMTztvC8t29/ggcaC5XQraZiI420D2pW4Wv8Xng2cy/sfv8GDhbYU1Cc0oQVdYX3+69YS+goNgv3tpo/Wqo0/OiGFUpYDchrENphaW/JOPgf4g9xYM3ks0DV4hSqXAJ8ayg6iEDFEAj77Ixfrek/u58ldDWLsA5TJg/MrDeqm4kiiyAwa7wTQ8yZsZmrb6SwZNEuZuI2DcYKZ6malESY2bPXAv/0DelfDSNdTuWaMXf0lgxPyGNV6nVL8ZLVWzEVGWyfkd4OhT9MHazQVRN0WZR8Vm+oYvDOVBGj721DXap9XMFCP0Ix5rFkf6ssdF+bqVFzyktu9R5lcQVzUsv3lBanVm6frCo1W/NX31N3SXj1HII6Ez2Twz/H4exIoOP72Kw/m6Yq+U1V6VLxTo5dx/lXjuP4K2dweTDXaDdxaueq1Jzqjq4I3/axQVfMidEBHH9iCyTr3+AhGpXiK+zW4Hseq8LqtD+ohNVAEr/4ycXMqQkvWr+mJimhJK53n8fxI0dw6o3LKHZzOnGa8J0EHyqkQ0vAYPs0bLaCD1CkD+kwfqz7hqVRvPd69hGlBX//1+u0MlbxmeH3tv/7VKH7On97rf4xjt/cyKSYW7Ga7mv6mKottnz7FCQZEZgegaGAMILo7MqpJMH8dlNmhMnMugoNQ+WUotPCBGbOO868yqiSPLpkZ2FlcDjKuO+pjAjy97bzEXV+bpJtmP4z8XAqLjO63NFLRlWtpT6p4OsCWFdETZFDiSGfwtbs1B9tj4c8Sh7++8hsvrC2kgJn4mhW4RHFAoWrJtpY+8TDqn3lUfcc87OIcK+k0fb8L52h97ZYkPFutXJteaX8x4QR4WmYvcjrLl8LiilEQHzaZHFLhbKVXbz8FjU6iEDFEZC86pQZs8PLQpEIGwpLjL8tULlR8tHbitN7rhSaGe8oc5vVHzDZwexL/YZFmdeW7WSJ6ZOFRad/rmiUWbsxSZgyY2HevhCLDA0xqdfL+DTo9PVgduU5dVktYkGXcs3Ijru5oy+bNOknOe6T4lETDbZPVPKqHVuzgwWkMIvw+6HkV6dqmJ0BRpOZVJOIIWPubekWokGxU2xiHf4gG4nFWCw2wnq9DuW6M9l9LN+tF6WkcPEEEiwei7JQr4fx5fsKY5hsrCsUYfG4MmpUfJWznJMc91kGTs3NHoFIn0d1TIQL1GR1st4hug2W2hLT551gvU6zegO1uJk84zMuiT9qwg1WsKXsSIp/Vvf8madYav6T1sfXCHgcaqdVZWZiTm/v5E7BSJfmB85dcD6uVgLRcS+2jLaGKjoz2D6JkSDrsAnXmHLdmJnLT/Pa7/ZNK/W9TWwvEZWY2653bfJ7m8nC3AGyj8hrpmHxvqTeB7W/I5Yy/x1ZIEPgwtNBBCqUwARuDkcQ4ztq1PK9Y+qXLkfDEtqNxDhjT5d3EsMDEm4lFmO1aR2WFNoQyDjBq6LmibGbiHzC55vzrURqauqxfGUDirkakmPDkG7cwuL7H8S6Rppoa9SXxWj7yPUP/fZWSvxEbT1WrV2pu9OQUfrN73qNvbclx8cQiXwCeTVIIpHA4vr7sZJfn3QrnN/fGiOkJ8fdCKpUJxEgAkSACBABIkAEiAARKDEB2lWmxECpOiJABIgAESACRIAIEAEiYAQBctyNoEp1EgEiQASIABEgAkSACBCBEhMgx73EQKk6IkAEiAARIAJEgAgQASJgBAFy3I2gSnUSASJABIgAESACRIAIEIESEyDHvcRAqToiQASIABEgAkSACBABImAEAXLcjaBKdRIBIkAEiAARIAJEgAgQgRITIMe9xECpOiJABIgAESACRIAIEAEiYAQBctyNoEp1EgEiQATmikByDMPDw5P/DQ7y9JsYG5+YKyl1203evIwjO1rR1LQDp94d1M1z98gJXD5zCK1NTdix/xQGy0vFu4tfKMfYdZw5chz9o/xtcjM6kpzPcZzvni7fGTVOhYkAEZghAXoB0wwBUnEiQASIQPkQmMClI5tgaZeKFslktuKZ52z4zo7NaJjj1zRePdWKjW09GdntCCdOYs1UZUoO4vjGtTiWQWDzhXFm55qieZRjxpuXz2DbYwcgwYq+EQ82zchQSXQf/wa2HOuB2eHD2yd2Ykk5Kk0yEQEioEuARtx1sVAkESACRGA+EliI7SeugcUj8DktWgUsDvgCAQT8XricdpgzqVJPJ9p2PYZltU04c/mmtgydzTmBgYuHsEJ22s1O3pG5MEOnXVanBq1HuxH02NDTvgtL957B6JxrSQIQASJQLAEacS+WFOUjAkSACMwnAmOX0br0MWTHry1uCe/s3yBokMRg92ms3dImxAEeKYanN9Rp4mbrZIJPlXE89xK6b9TjmY4f4ODWQiPl4+jv/gAPPLIZjQtzpZOnyjjw0ulu1Lc8gx+4DmJNXp7cMuV5Psid9rW7XuXC2SHFT2JDifW4/MoOPHbYD9h8iJ3ZibmxenmyJ6mIQLkSIMe9XC1DchEBIkAEZkJg4ir2LtqIzkwdFlcQ7xxszqtx9PIpLHtMcN5NHRi59iIa8nKWT8T1N/Zj/Z4+9MWuYVOFeptj/aewtEW2iwm+cD92GtL7GMWp1mWQZydZ3Pz7sT//+1E+VidJiAARkAnQVBn6HhABIkAEqphAw+adcJoEANLP8etx4bzMguMD57nTfpZLtRq1ZSZbycSZGMDBlNMuO9Qeg5x2WdoG2E57UmL7D2zE+YEyNnzJ4FJFRGB+EyDHfX7bj6QnAkSACMyQQB0eWK2tolwd4uTNbuw17csIW4faRVq5K+Ws/+zRzJMSCxy7jR0FX7jOAldmwcO+Ng/GKgUi6UEEKpTAVNfrVygGUosIEAEiQASyBBLZgPI5hv6Lb+Gc/030dfJ5FSYT7rtvNZrMO/Dt3RZsWlNoX5IJXu4U2o8fhj+zy4vZasdTW9Zh+NodfLf9INblzNseGx5Al/8cjrfdRmf8jDKve3TgIp4y7VLm7IO7tkePbUDr54HP8Cf47vO7sTL7izYxhoErXTj3g124vUPCmafFuf2KUjwwPb3Gbl7H5Z9ewrl9XmyT+iEvHbh66Uc4c47zuXGL13sf/vK57+OF/a1T37Fl/Cra2/i8c/mwPommvKlA43j3zH9AunMv7r0nnS39/w7n8DAO7n8EV87/CL+8A2STPxv5DKbdB7FVd7rNEljsdj5dhs+l72nDW1f3YX9zXqNiQxQmAkRgLgkwOogAESACRKDyCMSDzAow/vuS+uNz3PV1TEiafHylIpPiatZYOCCkm5nT7WHuDptSr1y/xelnUbVIJhRlHmumfYuTdUlhFgr6mU2RycL6Yums8ZEQ87udzGJS5eWTRJR0OVfIa9e0mdUr/WnmeeMs1OtnTptFk6+Q3lPXK8H6PA7GZxVp6nd19TJ3Vs+cNDgCLJGhUezHkE/Vk29lmV8sEWV9fi+zm7VycC+feQJBFo1HWa9btI+JOdw+FopOIslIl6qXzTdlmfOFpBgiQASMIgCjKqZ6iQARIAJEYA4JFOW4J1hXh9bRhc2vOG4xyaM6qVY3iwi+XzzsZ3yGhZpucbMRQd0hvyOTZmEhoRyLh5g95aBbWDDjuEseG7PYncxhNan1ccc9my5Xm5DriPUxi9Imd+xTzmiCp/HEuMRsZgtzdthVJ5Tn1XPcp6dXnPV6PczlFJ1iVX+7y8f6gr2sQ6MDmDck9IIEPvrBmNrZgZkFROB5BSKsQ+O8O9hQJk9ccmc42llRzSe4TRSuVk3HLa9ZiiACRGBOCZDjPqf4qXEiQASIgEEEch13t6RpKBYJMa8jx2nXjLaHBWfOzHrzh9TZSG+H4GiD2bwhpY2gO1u3lUWU2HQg2ieXM2sc81TKkE+oT+u4p9I1OumkZ9rx29UOQL7jPjO9eO+BuS2qwy6PdAfCmR5Iqv0I44t9FT1cQR1wGTnzPuTOh+JAF9YvWy4R8Ws7KSkbDyl284WL7TRodfIU5e1npaBPIkAEZpMALU7lz1npIAJEgAhUOgH/ASt27N2LvXt3oLVpAepXrMee9sxcaq682e5GKKrOKR++9DrkHcTlw+x8GZt1prE3bP5bePgQePY4u+cMBpPps1plV/BOvHy+P5sl9bmk6XH+AqhbyJtLv/xL/N2gMz9WN4nb5Gjrm6lecm3ZueNy2OJ+kc8dF+eEN+LrOzOrPXl695UbcraijuQnN9An5MzjI6TJwZrG7ejkL1LKHv4DJixYsCplNyvft7/4LSTr8NAjqsxdfR9nq6RPIkAEyowAOe5lZhAShwgQASJgDAEJ/s5OdHb60SMvFOULTC18oajLG0B4JI7uk/uxTnHOx9Fzrl0Ro/7ezylhbaAO3zjgEKJexXuh9JaCtYJ3e3ZfC5r2Hkf/cGa7wYXN+K/Y+9go+rupWu7mqgpNTRbkCzP1j5nrlVfvnXyZG5atULMVlEXNkg3Fb/0OmTW8PGo5Fhexvc+Gp/8ZfMqM9rC48e+al21pk/XOPn+vKvN4LF8nvTIURwSIwOwTIMd99plTi0SACBCBWSfAp4zIUyPVv2vX8M6Fkzi4eyvWNORs7ZIj3caH78+JUU8bN23jo+fqcSeRHnJf98Qhzei51HkMLavqsePQGQyMJrGwrg7ZTWDU0rMbmo5ehkooOuqWZqya3CwZURrwvMfPX9OkHuZtj5T1C7RUSSlEBIjAVAmQ4z5VYpSfCBABIlDpBCYi+IU6iwbR/40X1njR51Cvl1rXDE+kV+O8y9n8rx6AaVktTnUP65UyNq4UehkroVp7DMjMOlLjCoRqVn4Th4TeU8+BNnSPFshM0USACMxrAuS4z2vzkfBEgAgQAQMILFyOZmHu+o2hzwo3svABtApOo5ixpnEzLiQi8DnzZ663bVmF4+8OitmND5dIL8MEFWeo9ARwo8gXmY4PdGJfjyhVD7Y8ex5FFhcLUpgIEIEyJ0COe5kbiMQjAkSACMw+AT6JhY/4Zg//leuYyJ7kfk78Hlc0TmM6w8ToIAZHeamaRuw8egHxSBB8q0RN6WPb3sBNTcxUTvImyBdReOZ6FdHItLPUrX5IM+2oqIqSgziWepusCXa70EHy78OxS8V2jJKIDEeU5urqFythChABIlBeBMhxLy97kDREgAgQgTIgUIcv7xCG3DvfwrWxAmIlbgsju1Y8+mB6heuHnrVYe/KaUmhhYzNevHANIZ+4mDWI30x7WLgTv55y2ZnrpShkRGDJn6JFqTeGTwv2lpRM6G5/NrWLjLnjLE6evAC+FaaS+KrlWVwuaspMHMMfqr2vr5rUhapKZRQgAkSgLAiQ414WZiAhiAARIAKlJiCudOR1C7u8FNPSpu8cFBY8+vHDtwZ0i4198DNkp8ObnTY0ZwbCa+/ljj/fbjJ3RH3dTqfGudRWmiOzNhHy/pGqr27Bny3NzZA5n0TXmepVoMUSRa9Ai+J49+B/flOot5Rubqz/FLYckx1uB157flMqcrvTI6wr6MFjzxczZUacTW/GF+9fVCJ9qBoiQARKTYAc91ITpfqIABEgAuVA4JOP0CnIcWP4U+GsiGBDKzwuddS9k+8Df3Ewdwh4FK+9dDhTmQXt9s1CxbIH346X38h1+MW9ZFbjC6KPmCMzcv34RYv5JonZw4+TZy/zBZxJDFw8wvcv34/rKf8ziRvX1E0VcU9OJTPWK6e+3Pq5eLc/i2SF5B2mnPxqik6oBpu//YwSf+XKb5VwXmBiAAdb2lLR7uALWJPFyhcFdwScavbOIqbMjP4Sp7O9L9tzeLwxW5laDYWIABEoEwKz+bYnaosIEAEiQASMJRCPRVlYCjCHWX17J/+5YfKfwxNgoaERFosnihQixvwOc6psug4L80kj6bLxIeaxZd9Qama+kPj2UMYkt1UpZ/P0smgiwRKJGJMCLuVtnx29mbpYgsWi4bw3udrlchpZ48xnzddLls3mC/H642yoz8t4d0NpGyY76w1HeQviMV29Erx+jyJ/iomlg4Wi2TeUJlgk6GN8ra6m/b5INl2UoVBYePOq2cX03rsaG5FYR/btrVZPfp5YUHgDa1oWV1eYFZJiyG9X5O3o02uxkKwUTwSIwGwTkPf0pYMIEAEiQAQqgkCcebMOneg85oTNruCUtA1xZ1vjjAr1mawdLDiidYvlyoMu2eE3M4tJcGKz5cw25gtmnXbu5HtUJz/dQdCWcQfVTkFiKJAji4k5fRJjcYnxpZmKA5pXj8XN1FrS6k9VL8ltKVi/1SuxkLewHi5Bh7vBjwQcSju+sJZtPOxV0hQdzYJu8aC24yIyEfMpQsSYO/udMXUw1SpKBgoQASJQRgQWyLLwi58OIkAEiAARIAKFCSTHMRj6EB9HsvOuP4dV6x/GupXpxai5BZMTfDb6wvRLlsbHRhGNxlL7ktcsWoqVjfplcusoeM5lGR4e4fUtwrKVjaibycyOKepVUKaSJoziVOsytPXwF9w6unDtRGtJaxcrmxg4j0WpXWkAjxTD0xums1uPWCOFiQARMJIAOe5G0qW6iQARIAJEgAhMh8DNbrSu2ALuu8MbimP3uqJeozq1lvhWkkdq1/KVCIDVI+HC0xumVp5yEwEiMOsEaHHqrCOnBokAESACRIAI3IVAYyv8QU8q0571bbiqbqdzl4LFJk/g4gvfSjntJrsfr5HTXiw4ykcE5pQAOe5zip8aJwJEgAgQASKgT6Cu+WlEel088Sw2PnoEAyVz3ifw7vFvYterEswOH94/uR0GjOfrK0WxRIAIzIgATZWZET4qTASIABEgAkTAWAJjAxfxhGkXnzZjQmCoH1tXzsTN5iPtexdhVyff/d0n4cROmh5jrPWodiJQWgL/D7jCTjvb6Ur4AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 9, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='diffusion/diffusion.png',width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure 1d-diffusion** Temperature vs. position curves at various times, for heat diffusion\n", "in a rod with sinusoidal initial temperature distribution and parameter\n", "value $\\alpha=0.2$.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Movie: Diffusion\n", "Here is a movie of the exact solution to the diffusion problem. Run the cell ([how to](#Running-Code-Cells)), then run the video. If you want to see the video again, re-run the cell. (The video doesn't rerun properly from the wysiwyg interface)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "lines_to_next_cell": 2 }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAgMBBAUGB//EAEEQAQACAQICBgcEBwUJAAAAAAABAgMEERIhBTFRUpGSE0FTYXGx0QYUVLIiMjRDc6HwQmJygcEHFiMkgpPC0vH/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAQIDBAUG/8QALhEBAAIBAQQIBgMBAAAAAAAAAAECAxExQVFSBBIUIWKRoeEFExUyQnEzgbFh/9oADAMBAAIRAxEAPwD5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYvpMla0tWa5OOvFEU3mYj3mqNdGuLZ02eI3nDk25c+GfX1E6bPFprOHJEx1xwzyRrBrCobGPRanLkilcN95nbnWY2QjT5pnaMWSZ7OGTWDWFQlbHekxFq2rvzjeNt1k6TPXDbLbFetKzG8zWY6+r5GsGsKRsRo804oyRX9G1eKvKefPbkhOmzxaKzhyRM9UcMmsGsKgXfdcnpMNJiOLNETXn2ztCdTVSNq3R+es35Vng9+2/LflE+5qoiYnYRMTsAEpAAAAAAAAAAAAAbGg0WbpHWY9LpoicuTlWJnb1bmwa49J/uN057HF/3YaHS32d6R6HwUza3HStL24Y4bxPNWL1nejVyhfn03oY55cV57KTvKObTZdPt6WnDv1c/67U6wawqASkAAAAAAAAAAAAAAAAAAAAAAAAbmn6RyYJrw1rMRTg2mPfMxPi0xExE7UTETtdCnSuSM1bWrvWLbzG/XyiP9E46Zy0vM1x14d96xPPh7ebmCvUrwV+XXg3sPSeTHTa0cdu9aZ5xvv8/WT0lb7vbFXHWvFXh33nfb1NET1Kny68G1qddk1OTFe0Vi2OOuI657UtRr5z4pxzjiInn1z17zO/8AOWmHVhPUq29PrrYIptSJtSNonf1cUW28Y/msx9KZMc1/RraIjbaee/Ksf+MS0AmsSTSs7kr3nJe17ddp3ldXU7ejmcdbTjrw13372+/82uJ0TpDdnpG3BwxjrtWNsfOZ4N42n49bSAiIgiIjYAJSAAAAAAAAAAAAOz9kZ4ftLo57Jn8suM6/2Vnb7QaWeybfllln/jt+pH1f03veS/2h5OPovTx2Zv8ASXejNyea+3OTj6NwcurNHyl8/wBD63z66y6s1NKavDR1uj0xx2tjyWm0Rbfatpnl1eqYhPW58lsMWtpfQ7XiYi0bx6+W223j6tlfS9sc3rSkxExNt6xEcursiH0OusxLg11tE6OcA0agAAAAAAADNf1o+LDNf1o+IOhqdZnpq89K2iK1yWiI4I5Rv8Ea63UT/bjyR9FOr/b9R/Ft80aL1rXqx3IpWvBuV1ebvV8kfRbXU5Z9dfJH0alVtepnascHXTHTg2q58n93yR9Ftc1/7nkj6NavUtq57RDqpix8sL65LdlPJH0WRee7TyR9FNVlWFnTXDj5Y8l1bb/2cfkj6LK7dzH5I+iqq2rGZdFcGLljyTrFfZ4/JH0WVpT2ePyQhVZVlMy1nBi5Y8k4x45/dY/JCcYcXscXkhiq2GU2niynBi5Y8mIwYfY4vJCcafB7DF5IZhZCk3txZzhx8seSEabT+wxeSEo0un/D4vJCcJwrN7cWc4sfLHkr+66b8Pi8kM/dNN+HxeSFiSOvbir8rHywq+6ab8Pi8kH3TTfh8Pkhayjr24o+VTlhR90034fF5IYnSab8Pi8kL2JT17cT5VOWFH3XT/h8XkhGdLp/w+LyQ2JRlPXtxWjFj5YUTpsHsMXkhGdPgj9xi8kLpRsmLW4rxhx8seSi2DD7HF5IVzixexxeSF9ldmkWni1jDj5Y8lNseOP3WPyQrtWns8fkhdZTZeLS1rgxcseSueH2ePyQhMx3Mfkj6J2V2a1mUWwYuWPJC1v7tPJH0V2vPdp5I+iVlVm1XPbDj5Y8mJy27KeSPortmvt/Z8kfRmyqzesOW+LHyx5FtRkj118kfRXbVZe2vkj6MWU29borWODmvjpwhK2sz96PJH0Z02rzX1eGlrVmtrxExwR2/Br2Z0n7dg/iV+bbqV02OTLSsRPc03V+zM7dOaef8X5Zcp0/s7O3TOGfdb8ssM38dv0iu2HvvSuD9sL8XRmL3ZY+Uuh6X3uR9p78XRtNp5+lj5S8Xo1dMtZev0ummGZ/X+vN5dTlzV2vttNt5mKxHFPvmOvr/m2+mpicmOa8e2208V+LaeW8dc/1JrsubLgj01cdZi8b8E77Tz6+fKf69R0xlvx0xxkmccxvEcW8T2T1z/o9mNsPBj7o0cwBq2AAAAAAAAGa/rR8WGa/rR8QbGr/AG/UfxbfNGiWr/b9R/Ft80aNafZCcexdVbXqVVW16mdnXRdXqW1U16l1XNZ10W1WVV1WVYWddFlV1VVVlXPZ01W161lVVetbVjLWdi2q2FVVsM5YynHWshXHWshnLKUoThCEoVlnKSUIwlCqoywyIYYlliQYRlJGUwtCEo2SlGy8NIV2V2WWV2XhrVXZTZdZTZpDaquVVlsq7Naosqt1KrLbdSqzerlursqutsqu6Kua6qym3rXWU29boq5LqrM6T9uwfxK/NizOk/bsH8Svzb/jLjy7Jabo9Azt0rjme7b8suc3+hJiOkqTPVw3/LLnyfZKtPuh6b0rndPW4ujI5zv6WvyldOSN+U8ve1Ol7Vt0bG0zv6Wu/hZ52Kml4l7nTskTgn+v9cyuS+a+KNVaa4Zvztttv2z75Z6Q1Uam1NrxfaOcxTh58o7fct11tTbSxXUZYyTivw8p6p29fv5fNzXo1jXvfO1jXvAF2gAAAAAAAAzT9aPiwu0mKM+ppjtMxFuvbrRKJ2NnVaPU21ue0YMkxOS0xMVntYro9T+Hy+WWvqsMYcsVrM7TWLbW6439UqVq2mI0K6xDp10mo9hk8srK6XP7G/lcgVnWWsZbQ7ldNm9lfwW1wZfZ28HnhnOOZ3tY6TeHpa4cvs7eCyuLJ3LeDyy7SYoz6iuO2+07zy652j1M5w/9aduvXdD09cd+7KyuO3dl52mhrOq4LVyzSaxblHOI5dfw3aV4iL2iu8xE8t2fZutv9F6/E77oh7OtLdiytZeGET0PxejT6nk4Q99X/JZG3bD56KT0HxenupPxG87ofRYmO2PFOJr3o8XzcR9P8Xp7qz0+87ofSotXvR4pRever4vn+bSRTTVyV45naszy5TvXfl8GNdo/utcMxaLcdd5mJiY33nqU7BE/l6M+32ndD6Hx171fFmL079fF8wE/TvF6e6e2X4Q+ocdO/XxOOnfr4vl4fTfF6e52y/CH1Djp36+LE3r36+L5gH07xenudsvwh9N4696vixNq96vi+faHS11E24uL9atf0fVv6/hCeHRVvpL5bzaLxxcMbcuUb8+SOwRH5enur2+0d2j3fFXvR4o2tXvR4vnLC/0/xenu0jp143Q+iWmO2PFXb4vn4nsPi9PdaPiF43Q95aFdqz2PDi0dC8XovHxPJG6HtJpbsV2x37svJY68eStN9uKYjdvT0fX71jp/xIx2iZtv1xtv7vXt/wDU9m6v5eitvil42xDt2xX7sq7Ycnct4PP63DXT6m2OkzNY22mevnG7XaVwb9VO33tGukPSWw5fZ28FVtPm9lfwcAaRimN7Oel3ndDt202ef3V/KqtpdR7HJ5ZckaREwznNaXRtpNT7DJ5ZS0uk1FdZhtODJERkrMzwz2uYlj4OOPSb8G/Ph61+tOjG02tCLd6ImI19Znq4L/llr6nHGLUZcdZmYpeaxv7pX9FzEazed9opffb/AAypbvrJE73T9Ip6RtFujp69/S135+6yFssTaeGJiPfLGqvW3R9uGJi0ZKbzM+6zGKaTEu/pGXrY9P009RXVxT/mJyzWNv1pmY/rlLWdLW0zY9PkjJk498sTb9Dh/S2n3c/i5ras6w86s6wALLAAAAAAAADNZmsxMTMTHrhgBmZm0zMzMzPrlgAAAAAGa2msxNZmJj1wwAnGbJE7xkvE+6UZnfrYAAAAAAAT9JfaI47bRyiN0ZneI9zAAAALdPWl89K5J4aTPOd9toYz1pTPeuOd6RO0TvvvAjXv0VgCUq3tTea2mszy5SekvtMcdtp5TG6IAAAAAAAn6bJvv6S+/bxSgAza03ne0zMz65lgAAAAAAAZmd53md5bPR0xXUzMxvEY78v+mWqswZpwZOOK1tymJi2+20xt6kTsROxd6RZe8W6OyRwxvGSvPt5WVfeafhcPjf8A9mL6nixTjrhx0rNotPDxc9t+2Z7VrTEx3Jte1o0U2ve8RFr2tEdW89SLb1WoxZccVpWd9943rEcEdkbdf+bUVhEbABKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/9k=\n", "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import IPython.display as display\n", "\n", "vid = display.YouTubeVideo(\"b4D2ktTtw7E\", modestbranding=1, rel=0, width=800)\n", "display.display(vid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Summary\n", "\n", "This section is best summed up by the insightful comment of [Strang (1986)](#Ref:Strang)\n", "[p. 587]:\n", "\n", "**Nature is nonlinear.**\n", "\n", "Most problems arising in physics (which are non-linear) cannot be solved\n", "analytically, or result in expressions that have little practical value,\n", "and we must turn to numerical solution techniques." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Discretization\n", "\n", "\n", "When computing analytical solutions to differential equations, we are\n", "dealing with *continuous functions*; i.e. functions that depend continuously\n", "on the independent variables. A computer, however, has only finite\n", "storage capacity, and hence there is no way to represent continuous\n", "data, except approximately as a sequence of *discrete* values.\n", "\n", "#### Example Four\n", "\n", "> We already saw an example of a discrete function in\n", "Example [Two](#Example-Two) where the rate function $\\lambda$, depended on the temperature. If $\\lambda$ is not known by\n", "some empirical formula, then it can only be determined by experimental\n", "measurements at a discrete set of temperature values. In\n", "Figure [Table](#lab1:fig:table), $\\lambda$ is given at a sequence of six\n", "temperature points ($(T_i, \\lambda_i)$, for $i = 0, 1, \\dots, 5)$),\n", "and so is an example of a *discrete function*.\n", "\n", "> The process of interpolation, which was introduced in\n", "Example [Two](#Example-Two), will be considered in more\n", "detail next.\n", "\n", "#### Example Five\n", "\n", "\n", "> Consider the two continuous functions\n", "$$f(x)=x^3-5x \\;\\; {\\rm and} \\;\\; g(x)=x^{2/3} .$$ (In fact, $g(x)$ was\n", "the function used to generate the values $\\lambda(T)$ in\n", "[Example Two](#Example-Two)).\n", "\n", "> The representation of functions using mathematical notation or graphs is\n", "very convenient for mathematicians, where continuous functions make\n", "sense. However, a computer has a limited storage capacity, and so it can\n", "represent a function only at a finite number of discrete points $(x, y)$.\n", "\n", "> One question that arises immediately is: *What do we do if we have to\n", "determine a value of the function which is not at one of the discrete\n", "points?* The answer to this question is to use some form of\n", "*interpolation* – namely to use an approximation procedure\n", "to estimate values of the function at points between the known values.\n", "\n", "> For example, linear interpolation approximates the function at\n", "intermediate points using the straight line segment joining the two\n", "neighbouring discrete points. There are other types of interpolation\n", "schemes that are more complicated, a few of which are:\n", "\n", ">- quadratic interpolation: every two sucessive points are joined by a\n", " quadratic polynomial.\n", "\n", ">- cubic splines: each pair of points is joined by a cubic polynomial\n", " so that the function values and first derivatives match at each\n", " point.\n", "\n", ">- Fourier series: instead of polynomials, uses a sum of $\\sin nx$ and\n", " $\\cos nx$ to approximate the function (Fourier series are useful in\n", " analysis, as well as spectral methods).\n", "\n", ">- Chebyshev polynomials: another type of polynomial approximation\n", " which is useful for spectral methods.\n", "\n", ">- …many others …\n", "\n", ">For details on any of these interpolation schemes, see a numerical\n", "analysis text such as that by [Burden and Faires (1981)](#Ref-BurdenFaires)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An application of linear interpolation to discrete versions of the\n", "functions $f$ and $g$ is shown in Figure [f and g](#lab1:fig:discrete-f)." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AeydCXxU1b3Hf3cmO2RhCVAQEgiiVIgKRRAEDdAKqISngAjBiq0Blwr4VBSf+ASfFGzZahXiApVFBGqJsmkhtCAIVSibQpEtIBEIIZCQfWbuO2f2SWayTiZzM7/z+YQ596z/8z2Xmf8993/+R1FFAAMJkAAJkAAJkAAJkAAJkIBfE9D5tXQUjgRIgARIgARIgARIgARIwEyAijtvBBIgARIgARIgARIgARLQAAEq7hqYJIpIAiRAAiRAAiRAAiRAAlTceQ+QAAmQAAmQAAmQAAmQgAYIUHHXwCRRRBIgARIgARIgARIgARKg4s57gARIgARIgARIgARIgAQ0QICKuwYmiSKSAAmQAAmQAAmQAAmQABV33gMkQAIkQAIkQAIkQAIkoAECVNw1MEkUkQRIgARIgARIgARIgASouPMeIAESIAESIAESIAESIAENEKDiroFJoogkQAIkQAIkQAIkQAIkQMWd9wAJkAAJkAAJkAAJkAAJaIAAFXcNTBJFJAESIAESIAESIAESIAEq7rwHSIAESIAESIAESIAESEADBKi4a2CSKCIJkAAJkAAJkAAJkAAJUHHnPUACJEACJEACJEACJEACGiBAxV0Dk0QRSYAESIAESIAESIAESICKO+8BEiABEiABEiABEiABEtAAASruGpgkikgCJEACJEACJEACJEACVNx5D5AACZAACZAACZAACZCABghQcdfAJFFEEiABEiABEiABEiABEqDiznuABEiABEiABEiABEiABDRAgIq7BiaJIpIACZAACZAACZAACZAAFXfeAyRAAiRAAiRAAiRAAiSgAQJU3DUwSRSRBEiABEiABEiABEiABKi48x4gARIgARIgARIgARIgAQ0QoOKugUmiiCRAAiRAAiRAAiRAAiRAxZ33AAmQAAmQAAmQAAmQAAlogAAVdw1MEkUkARIgARIgARIgARIgASruvAdIgARIgARIgARIgARIQAMEqLhrYJIoIgmQAAmQAAmQAAmQAAlQcec9QAIkQAIkQAIkQAIkQAIaIEDFXQOTRBFJgARIgARIgARIgARIgIo77wESIAESIAESIAESIAES0AABKu4amCSKSAIkQAIkQAIkQAIkQAJU3HkPkAAJkAAJkAAJkAAJkIAGCFBx18AkUUQSIAESIAESIAESIAESoOLOe4AESIAESIAESIAESIAENECAirsGJokikgAJkAAJkAAJkAAJkAAVd94DJEACJEACJEACJEACJKABAlTcNTBJFJEESIAESIAESIAESIAEqLjzHiABEiABEiABEiABEiABDRCg4q6BSaKIJEACJEACJEACJEACJEDFnfcACZAACZAACZAACZAACWiAABV3DUwSRSQBEiABEiABEiABEiABKu68B0iABEiABEiABEiABEhAAwSouGtgkigiCZAACZAACZAACZAACVBx5z1AAiRAAiRAAiRAAiRAAhogQMVdA5NEEUmABEiABEiABEiABEiAijvvARIgARIgARIgARIgARLQAIEgDcgYcCIack9i0+bvcOuDwxEXVp3h5+PY/m9w5NhZXC8V5UOaI7HHL9Dj5rbVqcwyJEACJEACJEACJEACGiBAxd2fJik/E+vefROjpqUJqZKwJ69qxT0zYwkmDJqE7dZxJCUlYvv2Q5ar5JnY997L6BHLafanaaYsJEACJEACJEACJFAbAjSVqQ01b9cpzsJniyZCiYq3Ku2ygygEV9FP5pZZiLcp7SmLcaZIRUbGQRSd2YYUWTd9Bnq2moD9+VU0xGwSIAESIAESIAESIAG/J0DFvYGnqPjYMijh7ZCcEYEpKUnVlyZ3JyYMnWEtPwUnlk60m9WExQ3E0hNrrXkr0POpVaDuXn20LEkCJEACJEACJEAC/kiAinsDz0pQu1/hxPkrUNfPx/z3/oDkasljwJa3nrGbx6QIpT2hnDVMUMK9WGpedhcNrhiHpXtzq9UyC5EACZAACZAACZAACfgnASruDTwvQZFtkdC2mV2KSHuskkj+PiyebbVjRyJGJXV2UzgSSaOm2NMnv70NxfYrRkiABEiABEiABEiABLRGgIq71mZMyJt94J9It8md9BSS4sott1vz2t2aJNR6a1ixAgdpL2OjwU8SIAESIAESIAES0BwBKu6amzID9n260kVqg8uV4yKodUeH4i5U/b0/0FzGQYcxEiABEiABEiABEtAWASru2povIW0RMk/bzGTE5Y0tEO5pDGVlLptSM7457akk00mABEiABEiABEiABPycABV3P58gd+KFOiUm97gJHs9oiuyIoc67XUucKjJKAiRAAiRAAiRAAiSgKQLujaM1NYRAE/YKjrssnJdVAiAIzkp+JQVrlVVUVITSUnlUa8UQFBQERVEqZjCFBEiABEiABEiABHxIwGg0wmQyVehR6ikRERGQOotWgnYk1QrRepczAl36iC2nhyzmMulfXQIm1nunbjuIjo5GmTDHYSABEiABEiABEiABLRK48847sXv3bs2ITsVdM1NlEzQIeT84bNwTuztcSdpK+OpTPsGmpKTg7bffrtAlV9wrIPFKgnxQiomJwdWrVxEcXNXZul7pko0IAh999BG+/PJLrBDemRh8RyA1NRW/+MUvID8ZfEcgKioKZ8+eNX/X+K7XwO5pz549mDJlCuQng/cJeFpx79ixI3JzteW4g4q79++Pem4xCOI71R46hlVfecuz1/JeJCQkBHLlncE3BGxvOOSrPSruvmEuewkLCzO/SpXcGXxH4MqVK+YfVXL3HXPZk06nM5sPkLvvuMvvGBt33/XauHv68EMTHn+88q2cWjTprXxEjXtONTo6A0pcNPBKTFWKz2Cb3eE70Ce+hUbHTLFJgARIgARIgARIwD0Bo3gLnffhh/bM779X8fXXFW3a7QU0HKHirrnJa4afD0myS52+/oCLy0d7hptIj1tau0llEgmQAAn4J4FWrVqhdWt+b/nn7FAqEvAfAgXr10MtdpwPv2+fip49G6eDDCru/nPfVVuS2wY/7Ci7PRNXPJzAZDj/Hzgscqfg9jiPjiMd7TFGAiRAAn5CQNqeas3+1E/QUQwSCCgCwcJWPVLsubOF/fupuNtY8NMPCEQmDsYUuxyz8c1595p7buZRe6mkOQ8igTsa7DwYIQES8H8CBQUFuH79uv8LSglJgAQalED43XdDZ90AaDKpuPNOhSvuDTojAdN5NTeaBiXg8aWOJ8t30ve5IWTA15+vs6Yn4sWUO92UqVuS3LiUkJBQt0ZYu0YE5IZUuQLJjak1wlbnwmPHjsWyZcvq3A4bqBmBzz77DK+//nrNKrF0nQlkZ2fT6UCdKdasgd69e2Pnzp01q8TSbgnodApGj9aJzb5Vm8q0adMG8fHxbtvx10SayvjTzORnw+HoUQhWiR7f/bE3MFO4c5dh++SXkZFlidv+NWSuR/ICS2tJM9/GkLbeX26Xu7HlLngG3xKQ7iAZfEtAek+ihw3fMpe9Xb58GXl5LrvxfS9EAPYoPYVp0duGlqdKr9cjMjJSy0NoMNlz582D0cml47ffmsRRN2q15JE6jNb0GGpd1Zra+i1kMBQjN+sYVs1f5KS4p2PJXzKQlZsPg1tLmDi8+tUhq8nMdgxqNwKr9h5DVmYmDu9chZHxoyxCJy3Eilf71+8A2DoJkAAJ1AMBeSjK8ePH66FlNkkCJNAYCBTv24eyH36AvpnjTJv331fFW+nGMDr3Y/D+Mqz7fpjqiUDxfowM7wknr432kmmTBiFtkrxMwb685ehR/mE8sjvml53BrTMmY8LsdIzr49xKImaufBtTxvZH+Wr2DhghARIgAT8mMGbMGD+WjqKRAAk0NAG9eAPd/LXX7GJcu6bi/HkVN91kT2p0ESruDT2lYT2wXq3eKx23ogbF4bE312PMC1k4f7HIbF4TFBSF1nGxoA8Zt8SYSAIkoBEC8oRgmilpZLIoJgk0AIHgcvvsvvlGxe23SzPequ3bG0Bcr3RJxd0rGBu+kbBmbZHgeFPU8AJRAhIgARKoI4E1a9agU6dOGDx4cB1bYnUSIIFAIBAaKmwUUhq3FTgV90C4kzlGEiABEtAggdTUVA1KTZFJgAR8QUCelBrSvTvCevWyd9e/f+NW2uVAG/8I7dPJCAmQAAmQgJYImEyN88hyLc0BZSUBfyRgkmc8fPopQm65xS7e1asqPv+88X9nUHG3TzkjJEACJEAC/kRg/vz52LBhgz+JRFn8lMDeDBOyHCfe+6mUFMtbBFThbq9VWhp04jwZW9iyRcXp03XYM2hryM8/aSrj5xNE8UiABEggUAlMnTpVcz6WA3WuGnLcx1YZ0Gecij15OrSlV4aGnAqf9a0XZw2IU8Jc+pMbU0eNarybUm2D5Yq7jQQ/SYAESIAE/IqA1g5G8St4ASJM/mEjugqlXYZG7Lo7QGaz9sMsKVFx9KiK226j4l57iqxJAiRAAiRAAnUgkCZehW/durUOLbBqQxMQ5wt6OESw7pIZskwYn2izaVYQHF73NtmC/xMo+OIL5C1d6iLopUvAU0/pEBbW+BV3msq4TD0vSIAESIAE/IXA6NGjzX7c/UUercpxLMOIJUtNyDgEtGgBRLVTMHSUDmOH61wO6Ms/ZsK7a1VEt3IdaYk41KbLQ0G4J8iEtHQV0uWeOYhVzmuhOjw7UShMzlUMKrasMGLufBXbRZ+2kJikYNpsPcb2rky5UrFznejnHRNWbLfUTEwEBo7T4fEJenSPtaRli5X2h4XSbi0iElW8OsOAgTHANSh49Dk94qjh2NA3qs8CsSk1epL5dEr7uNq3VyD/AiHwtg6EWeYYSYAESECDBGLEqYgMdSBQrGLuGAOmyUO1hfI7pY+CBWnSrERFulCsJwnFd8/WIPS2KsMGYWtyQ7SKcZNkGacwRYd9QSrKRNJ3k4VSbc1KTFHwaqoCF0UiV6yCNzdihSiTmKwgPU2PW1uq+OgJI2ZsF233MeDHHUF4sX9FJas404TJ8UZL+0LJX5muoPSYignTVBw6ZMKCaSYsFHWfFXVzDouHAicRZTR9thiXOU3Fr54UijuPDS9HSPuXqvA01eL//g/6li1dBrNliwl9xP0dE1PxvnIp2AguaOPeCCaRQyABEiCBxkhg9erV2L17d2McWv2PSax6T+9tUdqT5+hRdDAY85cEoeySHnbv+IdU9GllQKZVmmYJYhX+2SBc2uGq/ExJ0qFHnILIOB3uTLYUnrI2CAeXB2GkUKIdiruKJQ9ZlHZZaurCIAwXq+txot1XvwzCFGs/0wYY7X1ak2DINKK3VWlPWahHWUaQeCOgx2MvBmHHHFspYPIAA/YL85vOo4Og5ulhFcdcYM+VYKhqMMrKgtGbSrsDWiOKKTpdBaU9O1vF4sWmgFDa5VQ6/r81oonlUEiABEiABLRPoG/fvohwcvem/RH5bgR73zFgtjRTEadIrn7RYcoSFKvDQrGJL62rzTZcxZvrhMI90qGsx/YPwuaXyzB0tkXeBckGjBfKcIv1BkyQS9qpOsx2Ku8YlYKfPyraESvr5pDnyEGQglullm1eEldxIR9OK+Iq5g03wWxVI+R971mdi3LSa6hYYxSr7bZQJpb+g6RtjnhD4KyfB1s1miAvazY5OSqmTTPaujd/vvuuHsHBCl56yYjLlx1vKKZM0aNbNwVLhWnSrl0OmYeKMTz0kE48iJrw4YeO9E6dFEyfrkcg9CF59Ovn/fXif/1LxR13OO5fl4lqhBdevr0bISEOiQRIgARIoEEIdOjQoUH61Xyn+SbMnmwZRaowV4Ewmcktso1KrJCX28T5g1DkIezCncOQGXqkzHasnvcMloYyMijY9we9q027JUP8q+Lfwq7dFhJusMUqfh74Aejdw5KeLWzwp5m1dmDpixXbDusuHjaShRmN2eRHQcty8lds3bsp0mLr5Zf1Lo1KpV0GuSFSPkjYQtu2ltj99ysYMMBRp1kzS3piouLSVph1c0Ag9HHrra73mI1ZdT9Lf/gBVxcsQKs//9mlinQD2a9f3dp2adDPL6i4+/kEUTwSIAESCFQCmzZtQluhCd12222BiqBW487+xmS19QbSRlltxitpafsME3Jf1cGqW1pKhukwb4fYIDrAoYjLjIV79OjhvMzt0q6Cp74Kwl3fqwhuqaC7tcHiXBW7NxvxkVS8raFEKPm2h4WNixx9JMbbSjh/Knh2fTAmiFX6cNG3rxUXvV5BQoKzPI54hw7uFcbYWAWx1r0DjtJA06aK+HNOscQDoQ859rqEwi1bENanT4UmbrhBQX83eyYqFGwkCb6+/xsJNg6DBEiABEigvgnIFffocoes1HefjaH9c0ccivDibXr08rDH175SHCHs190MXJrMpAuTmWSryYwsktSzcuUrKFJBD6vXmNyTJix/24jJC9w0bk9SkWczqRG29O3dCWItG1lJnr05RhotAelJRgmu6K3/t7/1vvmNP0Ok4u7Ps0PZSIAESCCACXTr1i2AR1/7obeIl8q1VXkXNu09ute+reG/EUrRbIdN9mQRzxCr85WFfOEd5t3/EeYvKyylFm/W4zdDdFgzvgzjrGn2+vkqMrZbr4Rt/AWx8TTWxbekvSQjAU7AndJ+THgdMortB7fcUvkDZWNCV/n/vsY0Uo6FBEiABEhAUwR27dqF48ePa0pmfxDW4CRE5nnH6rtTcrWjq+Y6lHZZafsM4RN+v+fq2XuNiBLeYcxKu7CvP1EUjIlCaZerhPnC1KXyoCK7yjKVt8DcxklAVd3fx3/6kwmlpY1zzJ5GRcXdExmmkwAJkAAJkIAGCVw741ByZgvFuypdeOcSIzIyKw408zMDxgmn7dIfe2qSI39STwNOOj8d2LLESaaD+9gUfQVHVwchwWn13HZuk624+VOY1vR1anvRx7b6LqXsF/nC/CZDrLJWDIGz4lpx7I07RRU2XT8NHw5jbq7LQAsKVJw+raJ7Hd4ouTSokQsq7hqZKIpJAiRAAoFGoF+/fujSpUugDbvO4+3Y2+mnfbsJS/e6U3Qt3WRlGDBgkgln7V5nrN1nmzAh2VIvTfhrX7LUqU1hhvPEvIoK9knh6tDqHAaJM3W42Ulp9zwoBdFOmemTjdiS5ZTgHBXecp7qbMQb/3Q3HhWnqnpCcW6Lcc0QKN67F6G33w69zTWPVfJ9+1RITzVBwtVoIAXn/4mBNG6OlQRIgARIwM8JHDlyBOfOnfNzKf1PvGY9dY5DloR4k8VppcvcKO+ZO41oN0gowcJ3+pibncehYpE46XS7SJqSLk5WlZtC4/Q4tNihIG0Xfs2XHXauAxQKf+e2cEjYq7usj4oDoY6ftuUCoVZ3ijJlyBRHu/J6aDtDhTcAxWI1f+pd0j2lgnd+bVVdhBtGZ129U3NZm6GxEQi/6y60mDmzwrDk5uoxYwJPjQ28EVeYeiaQAAmQAAn4I4GzZ8+Kg2ly/FE0/5ZJrEBOXemqDE8QyvvAqWI1e6cJO4Xf9Flio2j8AMuq+WZxsqrz4vjhZcITjHTdmKzDjOGOdrpP1GNmkmPoExJdTWbKShx5ECv9z8414rAwazks7N6nCvMa84FQ1iL7D5twUqR/dlhFnDghdWaiU12xoj8ovgzjZwk5pxowVfyFtzNigVjOn7ND71jJD1fQ2qna/DQTpAXP4XUGKIoBx9yZ8ziVZ1TbBAYN0plX3LU9ippLrwiDf8cjcs3rs0YAE4iKihInvk0XJ8e9FMAUOHQSIAES8EcCKlZNtNioVybd0j1BeMzqvlFqvYc3GYRNu0UtWLpP5PVwKO6ynZ3TyzDAyT2kXK0/sUiPBOGzvfikEeGdK5rQmPsXdvJThEK+wMmXu0xPWqxHxkSxhihMc8a3chz4ZK5T7p8pK/WYP9Z1vXGdeAAZVd5TjaiXulaY97g93bVco7z0awJqifD4L5bWdeWc3+cLb0Ty4KWBA13vh5oOprswkJduZzdu3FjTqg1Wvm4jbjCx2TEJkAAJkEBjJyBX3C9fvtzYh1lP41MwdkkwtjmZtzh3lJgiTkC9FOxQ2kXmkpFldqVdlp0gVskXOXmQObyknNIuC60woXPzMnO5sAQ9zmzTwWXxXBR5eakeeeuDMH+hHk4L9kgV1+lSaZdBuK1cXhSElTNdHxTMeeK00bXiIaK80i7zRrzh2qZMm7lWT6VdgmgE4bJYGCw5eLDCSDZsUPHdd4G57iw9NDGQAAmQAAmQgN8R2L17t3k1rGXLln4nm1YEGjgxCGWjVRwV3jeESbA5tGivQ5ybUz0nitNJJ1YysO4Tg6FWVkDUjRuox8EyPbIuCaVKnJXTXJwgajfDidMho0gnXD6qCBPeZCLtGdZOw8TDxqtBGD1FxflLMJu9BIUD7dqKDYge5AqSbZbpkJmpmsu3ihPteirsoQ0m+ycB6UVGLSpye1rqXrFnY+xYNw95/jkUr0rF29urONkYCZAACZCAtwiMGTPGW00FdDtBzRR0F38+C0KzaCuUbbdBKOuxQkGvLMjTV+PkhtjqBtFfXELlbVa3KZbzHwLSi0yrxYsrCCTdQB4/ruL22wPTaCQwR13hNmACCZAACZCAvxG4evUqCgsL/U0sykMCJNCABH76SexhSNUh2MkzUQOK4/Ouqbj7HDk7JAESIAESqA6BNWvWQJrLMJAACQQWAbkhtezMGbeD7txZwYgRgau+0lTG7W3BRBIgARIggYYmkJqa2tAisH8SIIEGIJC/fDnU0lJET5pUofe//92Eu+5SEC7cgQZiCNxHlkCcbY6ZBEiABDREwGTy4FpQQ2OgqCRAAjUnYPjxRzR54IEKFU+cULF8uSlglXYJhIp7hduCCSRAAiRAAv5AYP78+diwYYM/iEIZSIAEfEig+YwZCGrXrkKP0ptMb9u5AxVyAyOBpjKBMc8cJQmQAAlojsDUqVOh03F9SXMTR4FJoJ4ISMX90UcD00TGhpTfiDYS/CQBEiABEvArAlTa/Wo6KAwJ+IRAyYEDZvv28p2Vlqq48UagR7nTfMuXa+zXVNwb+wxzfCRAAiSgGQLFyFsyFaduvRVnJi7CX/+chq1bt2pGei0IasrNQn7GKmRNHIgTI5bAqAWhq5SxGCUn9yNnyXScvHUirudXWYEF/JRA8Tff4Np770EJCakgYUiIgt/9Ti/ewgX2ijtNZSrcGkwgARIgARJoEAKG87j+zgKYDkH8TUaPv+xH6743NYgoja3T4oxFOD9oMlwOiU9+WNPDVLN2Iuup11CUvt1pHMmuY3TKYdT/CRjOnUPUo4+6FfTgQRXiTCZxmnJgK+5ccXd7ezCRBEiABEigoQnoI6IQERHR0GI0iv6VJl3QfMcORKYmOcaT54hqMaYiBKGjn0Lky8kO8ZP6IrQmp646ajLmBwSaPvggwnr3divJ668bERrqNiugEqm4B9R0c7AkQAIk4McEgtqh6VNToEtMRFDqQnxX9E09HcCUL8xFdqKk2I9ZeFm00N5D0Kx/f8ROrd9VduPJvcg7nOVl6d03p2vbGy3HjkTrl192uMiLiobefXGmapjA8eMqIsUDWevWgb3aLqeQpjIavpEpOgmQAAk0LgJhiJo4X/xZRqU7e7ZeVtwLVz2Pi+P2oHXeQYSGNS6CVY1G166X+YffUFXB2uQXH8P5zn1QNmcPorq3rU0LtasTHGxW1s1e/zX+FqF2ABpHLbkpVd+6NYJ+9rMKA5LeZPr0odIuwXDFvcLtwQQSIAESIAF/INChQwe0bNnSq6IYDy9D1rg00WZHBKQaEIx6Gnc+Lj/RFaWCrD5MdMJAAjUgYLp+HTmvvAKdNGJ3E4LEMvN991FllWhIwc0NwiQSIAESIIGGJ7Bp0yYcEKtw3gpqVgbOJU6wNhcJJdxbLTfidgwGmMSfWukSvQF5c8fj6gorh1Af70sI4oOC1u/AsjNnEP3009CFuX8F9sgjuoDflGqbYyruNhL8JAESIAESaHgCxbko2LkO50YouHF/CVq0aOEqk8gv3PsZfpo6AifGL4M0jzBl7cfF6RPNbiRPKrfi1PjpuHoy16Ve6eF1ON1uEBz65wpkz5iLC3PnImvuKhQ7Msz11OxjuDzX4pry5MCBODVwBM7OWoL8TE++Bg0oObYTF6ZKN4sWuYq2LBIyjcD5WROROX2dvW9D1jFcWTYLJ5WJKJD95h5D9qyp4lrBGXHo1CkxhsxZq1DkqSuzhLnIX7cEZ8cPNNc7KVxoShnPzVqG/HJjdwFRzYvSw1uEy0jBWJihnBJ/J4MVnLDKVeLCKhdXpv8Kl6al21s2THoJPy1ahJ9mzUL2zkx7ui1Sc7bWmsVZuLJouuBjkUXyOjl+FnJ3/CfgPckUbnf2rGMjrZ3P0G7d0GTYMLcCZ2Wp2L/fxR+S23IBk6gykEAtCURGRqqzZ8+uZW1WIwESIAEbgSK1YEe6ej41Wf0BsP+dXrjPVkA1nd+hnk1OsueZy6UsVq9tXuiaZq+fqF45X2avX7Byiodysr8kNS/PXlQt3DzHXvZ0aqp6Jskhk+z37NJ9qsla3Hj+kHp54cvqSXu/omzqYvXK0or9nfvfF9TTic5tJauX1i5WTzjXdYmnqNecxmCT0HBis3rGXi5JPb94qXphTqpdZinj6ZnpqmP0tpris2ifo27SYtXglGWL5i1Osbf14+J0teDMGTVv5cv2tB+SFqrF1sKGfZ74W8Z5cs4eW7Pmz5qwda5oPLNZPW0bc2Kqmr15m5qzdI4LdzNHD2Nybqsxxs/dfXdjHJZ5TK+9ZlA3bzbWy/i6deumDhs2rF7arq9GueIeMI9oHCgJkAAJ+CmB4h9w+bUPgQRXu/PSUwdw/Phxs9BKZFs0GfEwQpKsY0gUnysm4dLQyUDSFMRs24NWa+c4DfAQcqatMa/Iy8Tw0fPROW+Pk0eGZLS+UobOahkSyr40e6yQ5Yq3TMf5odNELAUtzxQhfskSxGWUofXSVJltDiUTeiJri8VzSum363EtY4+9H0i50iYhZ8ICKEnywhGMWWEIGejkuhDpuDZqEtTEFESuTUeLtYvhavSxApfazYaz8xtpo3+681CUyWZTFqN9WQbaTnwMrV9cgk4n0u32r4YZyTgjDliSNuc1CaZjy3BxksXmRTdzB9pNHI6IuDhEjn0TbVdOsTS1fTIufWZZSdf3eFYwVNFmsWNcQQv3mNMSysrQ8UWHa7+asrXJrWZtwZn4oZY3FmLMHQ4uQcshA9H8sRfRqegoIqz3BNdkbcS09Vl67BiKv/3WrdBlZSq+/VZF376K2/xATKTiHoizzjGTAAmQgD8RCOuODhnr0fbF+Wg2xVXZtYsZmSAUtYm4YeFiS5I4pEmGoDmb0SljPloO7I2okS+iw7aZlgz57/l8u0KtiM1tECYfzj//itzxJlR5y6eI5u9F1tDZIgJEH3oPMXE2e9sgRD62ENEp5izzP0VD30KRMBkJG/4qOq3PQLu1VqXWKpdu8T4kZBxE+z1rEZ6aiojF23DDkploO//3wvu4I+imrEX8weVoPXI4mo2ciDj1EqJTnRnMwJWMbGuFk8iy2+gnodWiiQiVQ7AGXcJw3LDD6eElfRIurDpmy67WZ+GX6+3lTMfPuZysGtb9Vnte2Zkce1xGFDg7T7c8fkiudt61YGvpIBeXUoZa5zEFbd6b6MIPYTej1WynMbtI5Z0LU34+rr79Nq6JhzjnkPfhh+Z0Y26uPblgwwZzmlRGbUGeBirrFwk/+rZQJjwmybTra9fakmAqLjanyXTnkPfRR+Z0w6VL9uSCL77ApUmTcPmll3B14UIYfvwRl194AT+NHInLzz9vL2fIyjLXzf/4Y3uaajTa+5FxW5BlZN+yji0UbttmTiv5979tSSg5csScJmWwBSmbrCtldQ4yTf7JsXkKV//4Ryji/6a7IE1kEhIUREXZ7yR3xQIqjYp7QE03B0sCJEAC/k0g9FaH0hrS6TZ06dLFRWDXVdVktHx2iH2VWRYM6d7Pcb39KxRXaifu0jSuL51tVRCnIOKGMkiFzGD9MxaXIcjFwc1BlDj0NYTe5FBqkfiyWAXvYW48tPdItBMKX9uJA63+xdshPNnRb8Tj9zq9BZDpsYj98ycIdRRB4dKNZgW6+LMPUGJN1818HVFuHHCE9H8S0U7tl45bYn7AcGqu0mjI7X3t+Ur3BBef6IqTbmXK+MZFqbdX8hCpLVvj4TXI325pVDcnFU1tz1JO/QR1ubMcQ6dMb0TFA4h0Uahv08alNZvrQvuDn8jVNW9uLqs4HRyma9rUnKaLjrbXV8RJQrJNnZPXJEWnM6eVd4eob9XK0maI45FPL7yvBHfsiOBOnRAUHw9FbOoMEvHghAQEiXRbUEQds+yxsbYk8ZSlOPoRcVvQizKyrKxjC7qYGEuaGIMt6Jo0sbTp5AHG3o+Q1TnI9sxtirG5C6a8PET86lcIFXs03AXhbAaPPea+rrvygZDm9KweCMPlGEmABEiABPyagE0zFUKW/XQC587Fon379p5FljYjzspcZIzDpzdqoLUjC/kf2DZYLsBPzRd47tOcsx2Fp3IRE2vRnlW7Si0yO8aVM3mppKkysWxfPgTdjBbCNCdrQpol53yJ2HwpDo360PI2QCbqopuUr2W9jkTUpJdxLd1WdgHyjs5EeHfnFXEPVUVySP/n0P7QYJQWBgtlqru1YDGK9+9G7hKn1dQa+UuvLdtwsVo7yS5sxOBu9rhLJLyJY2XfJcM7F7rwcDR96KEKjTW5774KaeF9HQ8+tsyQrl0h/5xDkPBXXr5NqfyWT5N1mgwZ4lzVHA+74w7IP1u4On8+Yp580nZp/9SLB4PybcoHhPJpskLE4MH2erZIWM+egPxzCuYHBqeHA5mlFwq+uzbdpTk1BV1UFJqOGuWc5BIfNIhKuwsQcUHFvTwRXpMACZAACfgFAVPuBeTk5FSuuHtL0vwLKLGauSipi9HqmV5QzIbk5Tsog1oml57LENzFgzJcI6W2fPuW67Ced4qIVXEXMce6qCU/pJvr6q8l1fJvaO+h4q2D7e2B2NHp7uHAuYJLPAih3XtYVvwNuchbtxyXR022mxy5FK3uRa3ZFsF0sbqdsFxjI5Cbqwp3sCqSkqi8O88tFXdnGoyTAAmQAAn4DYHQn9+Fm267zTfyCF3cphyrF0PRRCivDakuuKzgSwLF51FkeyEgLo3XizxzESvQUnbzSaKeS1WSI1b3V72LS+Ommd0s6qYsxs+m/wbhOStwquuESup5yKotW8MllDqN2UPrTBYEWr37ruY4GC5eRNE//oHIhx92K/u6dSr0erH3PMltdsAmNuT3UsBC58BJgARIgASqJmAUK+6XL1+uuqC3S5w+Z/Ha4u1269CeGtYaoU6268Yz1zy3FtYeYbVWdrJxcUQULlqV9iabT6DT/IloEhskVu6d7Jg89155Tk3YFl0uNw9ca/QEt7wpjqdy/pR+/ZNPxIsrt6+1zGLu3GnCXXfZHqf9SfKGlYWKe8PyZ+8kQAIkQAIeCJSePmh3B+mhSB2Sy5m5CP3BvvH10Azk7q/cPl7NzMCFZTvrsKpdhejO+sytYmOktGx1MsExfHPMc9/FwuzHuqGzil7KZRtwddbDyLeucoesPIqfDUkoV6YWl7VlG9nJ5QGk+Kvva9E5q/grgeCbbkITN3sHpLznzqmQjmi6dKHiXn7+qLiXJ8JrEiABEiABvyAQ3uNe4b+54mY/7wi3AiXOunmk6yr19eeX2k86rdhfJn4aPgjX15+rmOWllIKNYjXSGpqM6S/MeCIRMcJpyX3FGhTk2kqU+ywrdDyECH/0TW9sVq6Ah0vDCeTPsGn8SYj65c0uBV1UqCiXrMovas02DIpTP4bJqz14yHFyd+NUvnKhmNvQBJrcey/kxl93Qb5o+93vqKK6Y0Mq7qgwjQRIgARIoGEIOPlBNBXlo7Cw0HtyOK/8IhmhzZ2bjkX0b1MdCeKQocyJy1BS3ulLcSYujI9HodjIGvP7B93bwddAeVSC3Zh/5O/HFbsCPRPNe1sU78hHnrXb4UMc3nRlzWGHvE4xw4F/2h86dDOFC0XnlwvODMrLWVTo5OJxO4qF1xznUHo603GZvtnehyXR+SnIUcwSqy3bSEQLDzmOsAAX5+10XFpj6vnDDpOa09ecxlChKBM0QuD22xX0708V1d10kYo7KkwjARIgARJoAAIGlBwUGrE1FB/OwO7du22X5k8l2EmzF6vQzr7FzQWKClwVN6fFWIRHOCna6chJ2ylWpg0oWDcdJ5SJUIc/43K4j5o2AeeCR+CnVVvE2Uw7kbNkFk6Fx+P6CrGR9eXNaHFzmF02l9XoPOm+sXrh+ttflDN5yUb2Uz3tSnHTPc84fLrHDkTrhY5V97JJKcg5Wf5gG1H/tWnWzpMRO6W/iyDq+UP2tpG+H6XlH0ycSl/vMwE5O/ej8NhhXBGHPf2YbHMxKQol/hxlmceQs2yLuT1di472mobJ85GXbYCaexjnhZ/wTHEIVPiDtWMbNmQinNdkDdMG4MzcLXa5jZni0Kwnxtn7xqFpuLhoCXIyjjnSGPMrAqrBgNx582Aqcr/BuqRExfr1JqjiRF6GigSouFdkwhQSIAESIAEfE1ANwlf43jXIW+BQ3EMO5+GOjj3tSrCanymU54+cJFuBvH8IW2+r8qkWZyHnrdecFOF05K7e67gOikeTFEf1sskDcFJo/j+Nmo2QtVMR0bQ72h1a6ShgjqWjYNxQXOwzALmTZljaSl2K9m8Osax+C7lLM/fj4qvvOOqJ1fqfhP17aX6xXXZHpmtMTRuF0+NnITcjA7mfrcP5ga1wTTwYyBC69ijaWFfbLSlA02eXo/nLSdbLQ8jtPAY5h60nq4q3AdkTB6PAbO2ShGZHlyPSvtpugDH7GC4Jf9+OkIbc9fthKLYCjPw5Ip1eOshV/dwBPZHVNRFXJqchdKb1dFjZwKHZuBDfFbkTFpttkcNu7+VoFitwqVUwTjZPRBGmIPZBYXIjTsetMVtzi3Foe2az0wMXYJg2FGeDFfGwpeB0fB8U2ax7rBKUTJ6E3EEfeTCrcRKT0QYhULRzJ4zCo4wnM5m//13FkSOqOCfK5XG4QWT1x06puPvjrFAmEiABEggkAsWHhSIWjh/7jHOsBsvxH1qAS52b4+SIJTAW70dmVDyuLXDV0gqGdsWp4IkoyNqPs+HtkDvbNb9kQh+cGijqm3mGofkbrkqgWDpGxNpD6DDSYs+t7z4Wnc5sQ0iiuwlIRJO1+5Cw5DH7ynzBB0/gbHxPFKQ7HjhkzZIJA3A2KhwX97uam1RoNTEZyooZyBk0CDnJo6xKaDKi95xHe6tMrnUi0fzNDLTdvNCqzArlOrGVWYk9Id4GXEs7BCVlDtpc+lK8EbBr7ShcNgGnW3VFvsh3DoWjeuJMeLCQU5q6hKHFwjNCeXcdvJLyMlqeyEP7V99CC/tDgyiemIqWZ5abTzNVEh5Ei5mOtwGyDyV5Jn52ZT4irC8maspWtiGDEjcEna4cEg9drnKZ81IW4mcndlgOpUkU9vwrt+GGS0XorL6JcDdWSOYG+U+DEpCHTzV7/nmPMuzapaJfPyrtngAp4lWE6imT6SRQGYEoceLZ9OnT8dJLL1VWjHkkQAIkUCsCf/zjH3GT8Dxx//3316q+x0qGfBRnXhKr4eEIiWsLvVsFT5jtHDuK0mtlZnMcJaIFwjrHeSjrsSc3GfnIFu4Wr1k9t0QfLUJs5zKzPCbpGi84CmEJbV1WmN00YkkS4yg6+r1w8W57OGiC0K7dEBFXzc2oHhsWfuKzs2AQ4iiRzRESadW8reWN2dkwBoUhuJkwVSrXhjE7E6V5BnEiZiuExjoeHFyL1Z6tuf0c8YZAmEDpmrdDaDMpm5zPfISKuSwvj2u/vPJ3AsXFKh580Ii//lWP8PD6n83u3bujQ4cO2Lhxo7+jscvn9uvKnssICZAACZAACTQQgalTp0Injmf3egiKFMqxJ6XS1ps4QfTm7g77cluylz+NhcLON6hZNeRx07EYR3j33uLPTV4dk/Sx4oHGQxv62NhK8uIQHuuhoj259mz1se7aF/MZV9V82jtnxI8JXLgATJ6s84nS7scYKhWtHr4RK+2PmSRAAiRAAiRQLQL1orRXq2cWIgESqA8C1xYvRunRox6bjo9XcO+9VE09AhIZpFMZHeaRAAmQAAk0GIG0tDRs3bq1wfqvn44Njs2y5g744rt+OLNVfyMgTawKN29GcJcuHkX705+MwgUsLbg9AhIZ/MaojA7zSIAESIAEGozA6NGjERIS0mD910vHhh9RbLVvl+2rZVaPLvXSGRslAT8iILzExL77LhS9eyOsfftUHBNePCMi6t+23Y+o1FgUrrjXGBkrkAAJkAAJ+IJATEyM+BGP8EVXPuhDuLs8vBMXXpjsOCxI9FogfKVfWLcF149lVek60gdCsgsSqDcC+pYtEdS2rcf2d+ww4e67qbR7BGTN4Ip7VYSYTwIkQAIk0CAEVq9ebfb40Ldv3wbp36udFv+A7JRnYExMRHBKikvTxe9MQ8GN0xC/ZKzHTZ8uFXhBAo2MgHRw+NVXKt5+m+vJVU0tFfeqCDGfBEiABEigQQhIhb3RrLiLA4jaHzzYIBzZKQk0NIHrf/sbYDKh6UMPuRUlJwf4zW90+NnPuOLuFpBTIh9tnGAwSgIkQAIk4D8EpH/lluL1OgMJkIC2CVz/5BOE3n67x0G0bKlg2DCqpB4BOWWQkhMMRkmABEiABPyHwKZNm3DgwAH/EYiSkAAJ1JiAKg4Wa7loEYI7dfJY9+OPTbh6ld5kPAJyyqDi7gSDURIgARIgAf8hIFfcW7Ro4T8CURISIIEaE1CCgxHUqpXHesePq9i82YSYGJrJeITklEEbdycYjJIACZAACfgPgW7duvmPMJSEBEigXgjs3Kmif3+uI1cXLklVlxTLkQAJkAAJ+JTArl27cPz4cZ/2yc5IgAS8R6B4/37kvPJKpQ3SDWSleCpkcsW9AhJtJuRmZSKvzI3s4hVVzrcfoOer0bhy8Fk0c1OESSRAAiRAAiRAAiTgbQLypNTQO+7w2Gx+vopHHtGhSxeayXiEVC6Dins5IJq8zN6C5u2GVip60sI9VNorJcRMEiABfyPQr18/fxOJ8pAACdSAQMxzz0EXHu6xRmSkgiFDqLR7BOQmg6YybqBoLWnn0rlViJyIF0f2rqIMs0mABEjAvwgcOXIE586d8y+hKA0JkEC1CVSmtMtGpDeZrCx6k6k2UFGQK+41oeWPZfP34o/TtgvJEpGS2gcVDwcvRMQtE3CP51OG/XFUlIkESIAEcPbsWbQVR6S3b9+eNEiABBoZgQsXVKxda8KYMfpGNrL6HQ4V9/rlW++tH/7r20gXvaQsXYHlj3Wv9/7YAQmQAAn4isCwYcN81RX7IQES8CIBU34+Lowdi5+tWwclNNRtyzt2qLjrLgWKQlMZt4A8JNJUxgMYTSQbjuHtCSuEqEl45iEq7ZqYMwpJAiRQbQJyxf3y5cvVLs+CJEAC/kGgaMcOhN91l0elXUppcQNJpb2mM8YV95oS86PymZs+QppZnu3oE3UrklPvw9C7B6Bvv97oHkf/MX40VRSFBEigFgR2794NeQhTy5Yta1GbVUiABBqKQJP77oP88xRKS1UkJyvo1Yvrx54YeUqn4u6JjN+nZ+GjV2c7SXkI6Wnyz5qWPBN73nkBvduGOZVhlARIgAS0Q2DMmDHaEZaSkgAJVJtASIiCwYO52l5tYE4F+ajjBENL0eLDn2PGoUokTp+BPu3CsWhnViWFmEUCJEAC/kvg6tWrKCws9F8BKRkJkEAFAmppKUzFxRXSnROkN5kffqA3GWcm1Y1Tca8uKT8rF9b9N7hy5RLOnz+BfTs2Y/HMVOFXpmKYPKAdVh2r/D9QxVpMIQESIIGGJ7BmzRpIcxkGEiAB7RC49OSTKPvhB48C5+SoWLXKhI4dPRZhRiUEFFWESvKZpSUChlzs37QcE5Inw2UxPmkhLmU8i1gvj6VJkyZo1qyZ2V1b+abfeust3H333eWTeU0CJEACJEACJNBICRh+/BG5c+Yg9k9/8jhC6QLyzBkVL7zgOzeQM2fOxIYNGyrI9P3335t1lY0bN1bI89cEKu7+OjN1kSt3P6bf0xOznbT3hfvy8GyPyLq0WqFuZGSkOKr4EYwVLp/Kh27dunFDWXkovCYBEqgRAZPJBJ2OL4ZrBI2FScDPCUyaZERqqg49evjOxv3YsWO4cOFCBTKPP/44unbtCi0p7tycWmEaG0FCsx5486t9OBfVE9JZpAwZ3/wgFPcelgsv/St9r3bq1An33HOPl1pkMyRAAiTgIDB//nzcdNNNuP/++x2JjJEACWiWQEmJiiee8K3SLmHdfPPN5r/y4KTlgNYClzK0NmPVlTeyB15ZmuIoXeKIMkYCJEACWiAwdepUKu1amCjKSAKCgFpSAkNW5Q4xQkMV9Ozpu5X2xjgxVNwb46xax3Tzr8a53bDaiIfMoZEACTQiAjSTaUSTyaE0egLX3nkHRf/8Z6XjfOstI86d49bKSiFVkUnFvQpAms5u3s6uuOdpeiAUngRIIBAJpKWlYevWrYE4dI6ZBDRFQBX7UeRqe8SQIR7lPnlSxf79Ktq354q7R0jVyKCNezUgabbIlfN27zJ9urXR7DAoOAmQQGASGD16NEJCQgJz8Bw1CWiIgCI2kbcU3uQqCxkZKgYO5HpxZYyqk0eC1aGk0TKZu7+wKu5JGNy9lUZHQbFJgAQClUBMTAwiIiICdfgcNwk0KgLbtpl4WqoXZpSKuxcgNkQTuScPY+/+w8jM9nC4kuEkFoxaYBYtZelCDIzly5WGmCf2SQIkUHsCq1ev5gFMtcfHmiTgEwLyOKCSgwchzWU8heJiFXPm6MWhSzST8cSouulU3KtLyo/KGTI/Q/POiejTMxHxrcIxfu5nyHaWz5CFJRM6w6y2Jy/GvMe6O+cyTgKNhkDJv//daMbCgVQk0LdvX3Tp0qViBlNIgAT8hkDRtm24/sknkOYynkJYmIK4OCrtnvjUJN0z5Zq0wrI+JWAouuLS34ppyWiljMCidVuQsW4JRgS3wyThwD15ZjqurJ/o9RNTXTrnBQk0IIHLzz3XgL2z6/om0KFDBx7kVt+Q2T4J1JGA3JTadMwYj63IFfkpU4y4fJneZDxCqkEGFfcawPKXomE3P4T0mcnlxEnH5FFDMWjUJOSlzMS2o5ew/tXhaFauFC9JgARIQCsENm3ahAMHDmhFXMpJAgFJIOrRRxGamOhx7Pv2qSgthXgI54q7R0g1yKDhcw1g+U/RSAx/dT3KXsjF+fMXkVcoJSsDgiPQpl0cYiM5rf4zV5SkLgTkSs3160BkpAKDQcWePSpMW/6G4mtF0BmKkXDyJPJXrcKJH4Qrsjbx0Pfqh9hY4IYbAHmyL4O2CcgV9+joaG0PgtKTQIAT2LZNxaBB/D721m1ADc9bJBugnaCwZohL4Jp6A6Bnl14mIDcu/fgj0LmzgsxMFe+9ZxLXKn76CbjlFgXz5ulRKB5Qv/hCxc9PFiJGuYoWu/4ijuoTinxBATKPmZB19BpOnzDh4kUVv/udDr16KfjgAxN++EE1K/JyU9Sddypo3pw/IF6evnprrlu3bvXWNhsmARKoO4Hi/fsRHBcHfYsWbhsrK1Px1VcqnniCBh5uAdUikYp7LaCxCgmQQN0JXLmi4rPPLAdynDih4r77FKG46xEcDAwZoghlW4d27cSLpGCLoh0VpWDWLL3oeDzkj4X6TE9ceeUVRD/xBEY8AWRPmYLQW7IR9dZjduGGD1cgFuUhT+E+ckSF3Ds1dKiCDRtMkK9vExMV3HGHIvqhMm+H5keRXbt2iTcosdyg6kdzQlFIwEbAcPEicmfORJtPP7Uluf1cuVIP+f3N4B0CVNy9w5GtkAAJVEGgpETFzp2qeeV8+HAdvvtORZmw8HrsMR3kwmpIiOWLvW1bBfKvfJAr66arVxEktPnQ7t2hSA3fKTT/n/9B3rJlMBUXQxcWJhbjVaH0KeY/p2Lm6IABCpo0gVl5//hjEx54QIfx43W4cEEVphlAeHjF/su3wWsSIAESCGQChsxMRD/zTKXeZOTCS7mv6kBG5pWxU3H3CkY2QgIk4InA1asqFi82YdcuVSjoCh5/3PLKtH9/Hfr391TLNd2Ym4vsp59Gy/nzzRk2pb35m2/aC+pbtkSz55+3XxuFnU3Bxo2IHDsWOqmlOwW5+pOUJP8sibm5Fm8Hp06p+P3vTejeXREn/Cm45x4Fej2VeCd0Po3269fPp/2xMxIggeoTCLvjjkoLFxSo+O1vjVi6VA/pDpLBOwRodOQdjmyFBEjAiUBenoqtWy2HcZw6Bdx4o4Lly/WYPVtvjjsVrVa0+KuvEP3kkwhq3dqlfPidd7pcO1/o27SBKgzjr/7hD87JbuPNmll+VPr21WHtWr1ZqZcbqlassCj0586pMBrpyswtvHpMPHLkCM6dO1ePPbBpEiCB+iIgv0N//nOFSruXAXPF3ctA2RwJBDIBaWryyScmobSr+M1vLOsCPXookH81DSahdCtBQVBCQhA+cGCFVfOq2pOHgcRMngxTfr69qHkjVbzwPtO8uT2tfCQ0VDEfyz14MIQLM4uy/v33KiZPNpk9I0izmg4daj6e8v3wumoCZ8+eFWZTbdG+ffuqC7MECZCAzwiUiIdqGUIr2UAunQn8+tf8rvT2pHDF3dtE2R4JBCABk0mF9AwzcaIRTZsq+OgjPUaMqP3XizE7G5d++1vp09FMs7ypS00Q6yIjXYpf/PWvUXr0qEuapwub3f299+qEuY/ebPv+3HNG/OtflrcJXIX3RM476cOGDcNtt93mncbYCgmQgNcIyE2puqZNPbaXlaUiO1s1e/fyWIgZtSJQ+1/WWnXHSiRAAo2JgFxhf/11o/lwDb1w+PLJJ3rzSrvN9KS2Y72+di2iJ02qsAG1tu3Z6oX16IHWK1bA7F7Gmijt56sTWrWy2OevWaNHfLzlgeLNN014/30Trl2jGU11GNa0jFxxv3z5ck2rsTwJkEA9EpDeZJo+8giC4+M99iIdDKxZI96YWhdfPBZkRo0JUHGvMTJWIAESkL5509JMmDTJiIQEiw2j9B5Qlw1I0huMLTQdNw7hAwbYLr36qRduY0Juusne5hWxcpRbDTt4WwWdToFU4mV49lmdOCBKRUqKEX/+s9HsycZWjp91J7B7924cP3687g2xBRIgAa8RkHuNmv7Xf1XaXmGhOGNDvIll8D4BKu7eZ8oWSaDRErB9EX/0kQq5AVV6C0hJqfvXiEE4Ws958UU7N6lc+yq0EJ5p5OEhpqIic5eqyWIGU53+o6MVTJmiN5sGyTcO0pxems/INxEMdScwZswY9O3bt+4NsQUSIAGfEZBnZjzzjFG82LQscPis4wDpqO6/uAECisMkgUAnIA9Jkgq7DCNGKHj+eT3qahJjY3rt7bfRVChpDRF04eGImjAB8lMGaV9/ZfZsGGtgoiE5TJpkOWREvhl+8kmjOO3VKMw8qMDXZU6vCr/9hfLIXAYSIAG/IFAmvDwVbNhQqSxffGHCr35F9bJSSHXIJNk6wGNVEggEAvIgo+XLTUJRN6JPH8sKSosWdV9JUeXpS9YQM3Uqwv1kZVW+Bg4WXkyuioeJ2gS5yiRPCoyMlDbxRrtbzNq0Feh11qxZA2kuw0ACJOAfBPLFIXfCJtCjMNKM8h//UPHLX9b9N8JjJwGeQXeQAX4DcPgkUBWBN94wmU1APvhAD28o7LI/uWpzfdUqNJs2zdy9Xhxr708hMiUFzg8WRV9/jaCf/azSzVjO8kdEKHjiCQUjRyrYu9fyI3fokIouXVCnDD1zTgAAQABJREFUfQDOfQRCPDU1NRCGyTGSgCYIqEYjQoWXp4ghQzzKe+CAirvuUrz2W+GxowDO4Ip7AE8+h04CngjIVXZpGiPDgAEK5s71ntIu27zyyisI/+UvZdRvg+10Vimg9Pt++b//G8X79tVIXmlCM2SI5WtWep559FEjvvyy+jb0NeqsERY21WC/QSMcPodEAn5FQBEbeZo88ECl3r569dJh2jSx4Yeh3ghQca83tGyYBLRJQB5T/dJLJmRmWhT3u+/2zteEXK2xhRbChly6ZtRKkF5o2nz8scvBTfKtQU1C//4688mxf/ubZeOWbaNvTdoItLLz58/HhirsaQONCcdLAv5KQH6nnTql0rtWPU+Qd36R61lINk8CJOAbAvLQjNRUI+LiIE4J9d7XQ5nwx3199Wr7IILatbPHtRKRJ7gGd+xoFzfv3XeRM306auKFRrrOfPddPe67TxG+3wH5kJSfb3lAsjfMiJ3AVLH34f7777dfM0ICJNAwBKS73quLFkE1GDwKkJ6uYvVqE323eyTknQzv/TJ7Rx62QgIk0IAE3nrLJDZU6vDUU9571SltxS8/+yxCNbTCXp0paP7GGwjt0weqzY1kJT9o5dsbOlRn9sgjPdA89pgRmzbRfKY8I3mt0/Enyh0XppGArwkUbtkC0/XrUII8b4388ktVeJPhptT6nht+K9Y3YbZPAn5OQNqz/+tfFsXxued0Xltpt61Eq2KlpuWCBQjp2tXPSdRMPEUolU2HD4euSRNzRZNYQr/8/PMoO3Om2g3JTax//KMen3+uCn/wRvMKfLUrB0DBtLQ04ZVnawCMlEMkAf8mENShg/k0a09Snj2r4soVFT17UnH3xMhb6VTcvUWS7ZCABgnI0+2kPfuFCxbh27f3zpeutP8u+uc/zY3qIiOr7Y1FgwjtIstDnMIHD0b+ypX2tOpE4uMVvPOOzrwJWLpRk4H27xZyo0eP5gFMFhT8lwQalIDckyQ36XsKhw+rwpOWjmYyngB5MZ2KuxdhsikS0BKBkhLLKm98PDB8uPe+Coxy5fl3v0NwQoKWcHhF1ibCTVozYfduC4X/+AeK9++3XXr8VITNzIMPyrcdlgenWbNMOHqUtu8xMTGIiIjwyI0ZJEAC/kHgvvt0GDzYe78j/jEq/5SClP1zXigVCdQ7gU8/VcWBSjpxyqd37NmlyY0MRrF831J4AwkWr1YDMUgl3Bbkw8u1hQtRtHOnLanSz7AwS125eXXGDCPee88U0Kvvq8WGZh7AVOktw0wSqHcCV4Wpo3Qw4ClcvKhC+m9n8A0BKu6+4cxeSMBvCGRnW75gb75Znuzpna8Aw/nzKDt+3DzGYHHKkLP3Fb8ZeAMIIk9gbSVOGnR++1Dy3XdVSvKLX+iwbJkeZ86o4jNwfxD7itN0u8hTqxhIgAQahEDZyZMo3ru30oWY2bPlIX2B+z3l64nxzq+2r6VmfyRAArUiIDcQvfSSxZ/67bc7VoZr1Zi1kuGnn5D99NPQt2xpTnFeca5Lu42lruQR1LatfTiFn3+OS+JEUOeTWe2ZTpEmTRT83//p7Zu99u0LvB/GDuKtTUvrfeWEhlESIAEfEVDCw81vUD11d+6cCvnXr593fk889cN0BwEq7g4WjJFAoyYgv1ynTjXi17/27n/70mPH0PKPf4TcnMlQNYFmL72EyF//GtLbjgxVKfC33mr5QZSvoqdNMwr/74GjwG/atEm8gj9QNVSWIAESqBcCctEhqE0bj21v3Ggynw6t01Fx9wjJyxne/QX3snBsjgRIwDsEpHlMQoJB+GeX3kvq/t9errKb8vLMwoUPGOBiCuIdiRt3K+H9+kF625FB+oG/+PjjKKlCQX38cQXSvOk3vzHiP/8JDOVdrri34ANh4/7PwNFploD0fhUVpeCRR6i0+3IS6/4L7ktp2RcJkECNCRgMKkpLgb17g7zio73s1ClkP/kklNBQsyyK3jubW2s8sEZSQRcVhWjBs2j79kpHJE1uJkzQ4fXX9Vi3zuJ3v7G7jezWrRvai30CDCRAAr4nkL9qFQq//NJjx3KVfexYcZ5FUyruHiHVQwYV93qAyiZJwF8IFBer+OYbFSEhgLds2ot370aLt96yK+7+MlYtyxHWqxdipk61D6Hw73/3+IN5yy0K/vu/LV/dn3yi4scfG+/q+65du3DcuunZDocREiCBeiegipOgr3/ySaUnXm/YYMLJk433+6feIdeyAyrutQTHaiTg7wQuXFDx6KNGSIuW2Ni6rYgYLl2yD7fpww8j5MYb7deMeJ9A6O23o2DzZhR88YXbxm1uI7t3V/DMM0Z8+aVlBd5tYSaSAAmQQA0JSMU9VpxcbHM6UL76Tz+peP99E+Liyufwur4JUHGvb8JsnwQagIC0aZcbUceP1+Hee+v237z0++9x+bnn7KNQgoPtcUbqh4D8sYwVvvDDfvELewfFe/ZANVo8AtkSu3VTsGCBHqtXm7BiReNT3vuJvQB0B2mbbX6SgO8I6MLCENS6tccON25UxW+L8JgVVLdFIY8dMMMjgbr9ontslhkkQAINRaCgQMWaNSY895wODzxQ9//iBZ99hub/+78NNZyA7tfZU4/cvHpx7FiYrN5obGDi4xUsWeLYZ5CX13heXR85ckS4mjtnGyo/SYAE/ICA3FuzebMJ999f998XPxiO5kQgdc1NGQUmgcoJSP/fTz+tR69etf/vbczNtXcSPWUKQjp3tl8z0jAEoidNQvPXXwfKyswCqGLHsc2VZHCwgpQUy3yvXq3i668bx+r7WXFaY05OTsMAZ68kEKAE5EnPuWIfk6cgfx5mzNCLjeNcbffEqD7Ta//LXp9SsW0SIIFaEXjvPRNWrqyb0la8fz9y58619y9fmTL4B4GQm292uJEUCvyFRx5BYTlvNMnJCubPN+GDD+p2H/jDiIcNG4bbbrvNH0ShDCQQMAQKNmxAqJOZXvmBt2ihwHa+RPk8Xtc/ASru9c+YPZCATwh8+KEJhw+rePjhuq2C5H3wAaInTvSJzOyk9gR0TZqg5Zw5kEeS24JqMqF1a0VsGtPj++9VzJ7tahNvK6eVT7nifvnyZa2ISzlJoFEQaP7qq4hISnI7ltxcFa+9ZoTR2HhM8twO1I8Tg/xYNopGAiRQTQLbt5vw97+bsHixvlabhUzXr0PXtKm5t5ZitV0qhQz+TyA4IQHR4s8WpBtJ05UriBw9Gn/4g074e7f8uF68qJoVels5rXzuFq5H5SFMLcVmXQYSIAHfELD9Frjr7ZNPTBCHqUKvr9sCkbu2mVY9Alxxrx4nliIBvyVw7ZoKuV8xLU2P6Oiaf5kW/+tfyPvLX+zjo9JuR6G5SPhdd0EekFWwcSPkgU2jRlm+4j/6yISMDO2ZzowZMwZ9+/bV3DxQYBJojATKylRs2aIiOZmqY0POL+k3JH32TQJeICCV9aFDdYiMrLnSLt0LXv3DH9D0v/7LC5KwiYYmIB+6mr/yCiIGDrSLIk8+/PWoIrPP5Xff1ZbpzNWrV1FYWGgfCyMkQAL1R8Bw8SIuiLd10uTOXcjIUNG1q4I2bWr+W+OuPabVjgAV99pxYy0SaHACcvXj6aeNZtePNRXG7lJQfEG3ev99BMl3nwyNhoDzq27pIcjw7FgsWVCMM2eAv/3N8aMsNyGb/FgxXrNmDaS5DAMJkED9EyjauhVhAwZA0blXDXv3VjBzpvu8+peOPdgI0MbdRoKfJKAxAvPmmfDznwOjR9fsi7T4229hOH8eTZOTIQ9T4oFKGpv4GoobKU66Db/nHujCVfz+9zp8vaMEprxSXCyIhPAbiSg/3oicmppaw9GyOAmQQG0JRI4bV2nVmBiutFcKyEeZNfvF95FQ7IYESKByAhs2mPCf/6j47W9r9l/YKHxi5wpPJOHiREqGwCEgT0DURUaa7d779AYuiB/otal/xdWr/u0ZwuThlX3gzBxHSgL+QWDePKPY7O54W+cfUgWmFFxxD8x556g1TKCwUEW7dgrefVeP0NDqrYDIg3rkyroqdrFK0xh9dLSGCVD0uhDIe/dds+eZYRdnoODcJXx35zA0byXevISGot0XX9Slaa/XnT9/Pm666SZxQuP9Xm+bDZIACTgI2A5zc/cGNj9fxfbtqjgjpGYLRY7WGfMmAc6CN2myLRLwEYHERFRbaZcHKpUcOmSWLKhdOyrtPpojf+0mZupU3LBrFzqf+B5RA+/CnxI/Q/GTb/id0i75TRWyUmn31zuJcjUmAvIwN8OFC26HtHmzin79FERFVW+hyG0jTPQaASruXkPJhkig/glMm2bE8uWmavvQLTt9GrlvvomQG2+sf+HYg+YIhIUpmDdPj5JdX+H6+vXCrah/mc7oPGyS0xxoCkwCfkyg9PvvEdypE4Lbt3cr5VdfqXbXsm4LMNGnBKi4+xQ3OyOB2hP4y19MKC0Fnnii6v+2Nnde0qNIq/fegy4qqvYds2ajJaAXBxs1idSj65zJKDr8PSZPNiEnx3+U97S0NGwVni4YSIAE6o9AiPByIA/e8xQWLdIjIYGr7Z74+Dq9ag3A1xKxPxIggQoEvvnGhI0bTZgxQwedrvIv0JKDB2HMzja3EdajB/TNmlVojwkkIAmYH+rEplVdeDhavvQC7rlHwZNPGnHimHhC9IMwWviU5gFMfjARFCFgCfz0kwpp487gPwSouPvPXFASEnBLQPprl4cs/eUvejRrVrXSfmXmTCrrbkkysTICclPaI4/o8MwzOiz99ecozS+qrLhP8mJiYhAREeGTvtgJCQQiAXmmh22hp/z4L15UMWmSUeynKp/D64YkQMW9IemzbxKoBgHpEa9jRyA8vHKlXTYl/bPLVVQlJKQaLbMICVQkMGCADo8+VIictGW4cKFhV9pWr17NA5gqThFTSMBrBK4K98DF//qX2/bWrzdh2DAFISFV//a4bYCJ9UKAinu9YGWjJOAdAl9+aTKfjlrZHr2SI0fsnTUZNgz65s3t14yQQG0I3PTieET3uRXiBHR88okJqtowCrw0k+nSpUtthsA6JEACVRBQS0pgvHIF4QMHVihZUKAK80wVDz1ENbECnAZO4Iw08ASwexLwRODyZRXvvGPC9Ol6j15kir76CrnCNIaBBLxNIKJfX3TvDuz71oh5T30Hg8H3ynuHDh3QUmygZSABEvA+AXl2Q+zCheY9LuVb//57aSajE///uNpenk1DX1Nxb+gZYP8k4IHAW2+ZMHKkDp06ef7iLPvPfxArDtRhIIH6ICA3Qs+ZG4Se/3gFabPO1UcXlba5adMmHDhwoNIyzCQBEvA+gV69dMJMhiqi98nWvUXOSt0ZsgUS8DqBc+dUDB+uICWl4n/RspMn7f1FPv449C1a2K8ZIQFvE1AUBX0//T1uvPJPc9PyFbqvglxxb8H721e42U8AEVCNRpR8951bM7hTp1Rs2yY2VzH4JYGKWoFfikmhSCCwCLRvr4iT6ir+9yzYsgVX337bDkMqVQwkUN8EQrp2xaD/SzZ389G713D+vG+U927duqG9h0Nh6nvMbJ8EGjOBgvR0FH7+Odz9hrzxhhExMfxt8df5r6gZ+KuklIsEAoSA/NLcsMH9akfJN9+g+YwZAUKCw/QnArZDvPrdXoSV97+DEyfqX3nftWsXjh8/7k8YKAsJNAoChp9+QpMHH6wwFnlmiFwP6tmTinsFOH6SQMXdTyaCYpCAJPDZZyZcugTcf7/jv6YhK8sOp9krr9BHu50GIw1BoPvANhja+SjmTfy38DpT/8p7Q4yRfZJAYycQ8/TTCHHjsemTT1SMGeP4/WnsHLQ4Ps6OFmeNMjdKAtKLzIcfmvDCC47/ltf/+lfkf/yxfbxKZX4h7aUYIYH6IyBfrXdbOQ/PPqXi229VqPKggXoK/fr1ozvIemLLZkmgPIHCQtV8CNsvf+n4DSpfhtcNTyCoYUQwIDf7PH48dxbZlwpgO1y7SZNmiIltgxvatUOzyAYSrWGAsFcSwK5dKqZN0wmbXscrysK//x0t584lHRLwKwLygK+bH+qJ9mKjaun33+HTr2/AI0/EeF3GI+KMgujoaNq5e50sGwxkAsXC5DLk5puhi4x0wRARoQgTGZckXvghAZ9qx/lZh/H5ig/x/rQF2F4FjMTkVDyVkoIH7u+PtmFVFGY2CTQCAsnJllUOY06O3VNM7J//DEWvbwSj4xAaI4EmTRSUCcU6fO4zWJj3Pn43NRTShaS3wtmzZ9G2bVsq7t4CynYCnkDpDz/g6oIFaLNypQuLq1dVvPGGSfzpEBbmvf/DLp3wwisEfPI+xJB9GEumDkRUu0SMq4bSLkd2KD0Nk0YNQDtxzPv0ZTuR65XhshES8D8CZWUq/vxno9lTx/W//Q2FW7fahaTSbkfBiJ8SCBZeX+5+40HkHzmJ117zrtnMMHES8G233eanI6dYJKA9AoYff0T0pEkVBP/4YxM6dwaV9gpk/C+hnlfcDdi/bjZ6jnLvBSMxMQkdO7aD5W1NhKBTiPzzh5C+/ZALqdkTBmD2hFRsO7MQA+O4/O4ChxeaJVC0ezeMFy7gg3PJEC510SY0BznC3WPLefM0OyYKHpgEmj38IKb98ireWgzkn72MiHYtPJ72WxNCcsU9IiKCp6fWBBrLkkAlBCKSkirkFhWp+PJLFe+/z7e7FeD4YUI9Ku7ZWDZxMCakWZXwxGS8PG4oBtzZC11v7ojWzZohzFPvhmLkXjqPI9/uxKdr52PBCtlGGgbFp2Hpvit4rEczP0RJkUigZgSM2dn48Zuz+NexfKStiAZK9TCbxgR5+o9Rs/ZZmgR8SSC4eQymTwdy1u7GsSvNcdMj/RAVVbdX7rvFw608hKlly5a+HAr7IoGAIvDpp6o4N0QRh53V7f9rQEFrwMHWk4aQjSXjW2HSCjGyxFSsXTodI3rEodqdBYWhWdsE9B8u/x7DzDnCNv6DuRg3YwUm9Gwu7Gjy8Fh3100VDciQXZNArQioJhXHNxzG1GcOo0mT/oDYnM1AAlonEPPLAYh5+HFM2Xk7/rAoAs2b114ZGDNmjNZxUH4S8BsCJQcOmDekBickuMg0bpxPrKZd+uRF7QnUw2wZkDHrYbPSnvTyWlw6uAQja6K0uxlLZNvuGPvqclw5tBbyJc8EsXqfke2mIJNIwM8JlB49ih/vucf8d/l3z+CWM2vEJqFXzNeF26vasu3ng6N4JCAI6GNi0HHp2xiaVIKnnzYiL6/2vt6vXr2KwsJCciUBEqgjAdVgQI44vE8nNpM7hwLhGUpuTGXQDgGvK+5ZGfMwaMZ2JM/Zhi/fHIlYL7Jo1n0kMi7tQLLwSTPo4UWg7u5FuGzKJwTk0fE3/OMfaL5pOy7eNxXRr/4vbtixw5zmzvbQJ0KxExLwMoEg4Qlm5OPNMHasDp+++e9at75mzRpIcxkGEiCBuhEwb0p94gnonczOpGOERx81IpfeP+oG18e1vay45+PzqdOAKelY/eLA6pvG1GTQsf2x+kQ6sH0yPt6fX5OaLEsCfkNg9mwTrkZ2QlBotQ3I/EZ2CkIC1SEgD2p64AEd7mh9Crlz5uDcuZqv6qWmpmLw4MHV6Y5lSIAEKiEQHB+PJg884FJi40YVXbsqwklI7c3ZXBrkhU8IeFlxj8Rv9uahaP5weM33S+5hrFq3F8VOOMIShqMoLw9P9aCduxMWRjVC4OBBFaeOl6LvoCYuqx8aEZ9ikkCNCHSd/CDka/q33jJB3vs1CaZ6PJW1JnKwLAk0NgJGowrpAnL8eC+rgY0NlB+Ox+szFhQW6VFpLy52Vr+rRyNz59sYN+qfKCpXPEz4kORaZTkovNQEAemzfdrlxxF2YydEjhunCZkpJAnUloCi06H5K68Ie3ed8PNuxNcZ1X9TOn/+fGzYsKG2XbMeCZCAIFB28iTK76ES260wcqQON93E1Xat3SQ+1H2Fy7vwKOERpgjPdq/eenzmzkWIT04DkhdTSa/0zsrHsf3f4Mixs7heKgqGNEdij1+gx81tK63FTN8TyMlR8dyDp9BicyuEyNMuGEggQAhIBWHuXD22PPgndP38CcR0rHoH1NSpU8VJrF5fXwoQ4hwmCVgIXFu8GE3uv98FR7duCuQfg/YI+PQbMTQJmPzxP6qmVJyJZeKk1fgBky1l86quEqglMjOWYKASha49B2HUuAn46KP5mDAuGT27toMyYhb2ZxsCFY1fjlv6yb15SBfELlzol/JRKBKoTwJduihInj0I2W/8HpcvV202Q6W9PmeDbQcCAbWkBGH9+iGsv3A5bA1nzqjYtMm7pxzb2uZn/RPwreIuFtwxeyjGL8qAp5elmTuXYWB4PCYs2F7/o9d4D5lbZiF+0CThY0eElMU4I04/y8g4iKIz25Ai09JnoGerCeAeXgmj4cOaNSYsWCCOSGUggQAmEPdAb7SdNA45OcBf/lK58pCWloatW7cGMC0OnQTqRkAJDUXTESMgTdZsYeZMI2KrfuFlK85PPyPgmEkfCrZi8iBE3ToVOzOdbN7zT2KJeZV9gkURdZZHKvwMrgRyd2LC0BnWtCk4sXQi4qwWSGFxA7H0xFpr3gr0fGqVxwcl10Z5VV8EpInMypUmPPJQGeSJqQwkEMgEmvTqAWkp9vXXKpa/uMcjitGjR6Nv374e85lBAiRQMwK7dpkQHKygV68GUf9qJixLuyXg05krOQ2krtyGtXPEevChBRgQH45ZwmPM4Qyxyh7VGZPKrbK/vHIH9q2dIlaOr4EGH87zZ8CWt56xP+CkCKU9odxuhaCEe7HUvOwu6q0Yh6V76ajVmaCv4++/bzK7xgtZuQBFO3f6unv2RwJ+R0CvV8QbKB3CNy9H+qy9buWLEYc5RUREuM1jIgmQQOUEjNeu4dqSJS6FVqyQvttp2+4CRWMXPlTcIzHxqyv4w+iBGPmi4xTUGaP6IHFQuVX25DnYd6kMb47tjx4jZ+LE0RTQ8aPTnZW/D4tnH7ImJGJUkrtNjpFIGiUeeqxh8tvbXFxq2tL5Wf8EsrJUlJUB4x8xwJCVhYhf/ar+O2UPJKABAmFhCoZt+V/gwNdmaU0mV7v31atX8wAmDcwjRfRPAgXp6VDlj481yFOMp03ToV8/H6p+ts756TUCPpy9YmQsfQ/fm43bi3H69CkIE8cKIXnpIajrX0SPWNsSciQShHcU21WFCgGYkH3gnxBHUFlC0lNIinNPp92tSUi0lVuxAgc9bSywleFnvRBo21bB//yPHqFNQhD7/+3dCXxU1b0H8N9M9kACCQQUZJFNVAgI5YkgPALUCi6hKEglWGg1UGsx2LqghSr44EFVwIUCPgUVKKJYggpqBSwIggpiQEEWJWBQCCSQQNaZue+cmcySZCaZSe6d7f7ux5g7dznL914m/zlz7jnPPw9j06aa5MNEKRCKAvFtU3DL65nWosuuMxXlzudAZDeZbt26hWK1WGYKBFwgSvRHS7znHkc5EhMN6NiRre0OkBBd8WPgXokjrzyKzFmzMW1UHPqmPwp7m7GrXfbrr+KDQ+zW4WpSfd2EPe+sqrbJUzeiyNZXOgN3EervPkLXanB+eHH6tIIPP6z7ATw/FINZUCCoBSKb2LrD5OUB/xryN5RcsgXv7du3R0uXKdqDuhIsHAWCTCBOfPA1JtoeEty0yYInn3R+KA6yorI4Pgj4MXAHYq6UXdtnYqGjuViWNAPZOQVQlAJky77vWxdixNXJmDB/A6yP8BXuxfNiFBqXx1h9qF44HlqK3B9cPvJ0bYE4T9UUX5G5NrJv+UI8ZMDFrwJPPGGGbGBXxAyQFd9+a/3t1wIwMwqEkMDYsUY0TYrCS3e8C5NJDlm3Efv27QuhGrCoFAg+gfJyBfI5q4wMv4Z8wQcRJiUK6FXMmJeNM8obuL1nkuBMwu2i7/uZPW8hXbxa+Wg6WvWajPl/n4UHXzlQa+bUMPFvUDViXM5K73OVx5lqkXAlRkhM+1JuX+Fvfwhs3mxBTIzB2p+wRAQgF99+u9qQXP4oA/OgQKgJ3LLxb+jYJwV79yq4os0VaNGiRahVgeWlQMAFCufPh1mOuSqWt95S0Lu3QYzkxG4yAb8wKhQgQIG7aGU/WCCGAbsdNYcSTelzJ9ZX5mHV9DTRPL8Mj84VzfNXxrCPu+NiF+BwtYZz54MnjkMcK5FwDfIdm1VaMZvNWLFiBbKysnD//ffjJvHQpVyXPzNmzIDcL5fVq1fj/Pnz1vV3330XJ0+etK5/8skn+Fa0Qstlz5492L3bNrLE4cOHHWM3//TTT/jXv/5lPebixYti3OfXrOvyf0vEbHDBmofZrOC55y6gV6/PreU9J+q5S4yQIZdQqocsbzhcD9YjtP4Nllx1FPLZkNaRKXhn8bqg/XfO+yq07qtQ+fvR2Puq/KuvcHTLFpwqKUGpmN/lo4+OY9iwIzLZsPtb662VjEOGDh2KqVOnWmOUm2++GX/4wx/w888/W11C6X9+DdzL5QyoYqKgPNnK3l22sntYItvg7jlbcHzzIg8H6HlzPLr1dzxyiuxPzwQUo6noB9KqVataP8nJyTAYbJ/uE0UfO/sMiPL4qKgoa5nlMG8xYnIIucTGxlp/5Hp0dDSaNGkiVxEZGYmEBNuYQjINOTycfUlKSgraPIrEvf7EExfRs6ettHGTJiH6mmusL0KpHrLA4XA9WI/Q+zd4xRUGfHviIJJeeg/HvpZ/PAA9vpfw3g29e9d6s4r/BepvlFH8/S257z7r39q4OAMeeOAsWre2/d0Nt7+13v77kO8dNWOVFDELlYwxQm0xKGLxT6GL8bwhEWU5pXikZ9VMQV5kfOztCegypicKlEdEZxouQCGeH5qMB7faLFLn7cLXj1zvAaYYK0YlYpL40kIu6Yv2YP3UPrYXKvxf/kN4/PHH8dhjj6mQGpOgAAUoUF1gx44dOLf5DLZ/EI+JL9+Ea6/lV/3VhfiKAp4FysrkbOoKhg83iAYY/ttxJ9VTtK7Jh+Dff/99d7uDcpsfP2ok4P6iApgSvA/apVjnXz2JTZtLOI674/aJFK1Ojhe4Mtb2Kdq5xfOarc3K837uUUfgzTct+PFHBX/+c4Q1wbK9exEthuWyP92vTi5MhQLhLzBw4EBA/Nc+rRBymvbViy8ggn3ew//Cs4aqCLzwggXJyQzaVcEMokT82lUmMiHJ84OUnlASOuPmoT3Zx93hY4K1y5HjdR193MuOY3NVa7s8vH9HPuTlYNNoRU5wsXq1BePH2/5pVZ44gcK5cxm0a+TNZMNb4MCBA9ZnYnoPSsKcOREwiedjjr70dnhXmrWjQCMEil55BWW7duHECQU7dij4zW/Y0t4IzqA8VeXAvRhLexnQa77GU7oXbsdQ0X966X7XwQ6D0leDQiXhmpvTHOlmr99XbchHxw43K32ube1mKzepKbBypUU8BGTAZZfZ3ixNx4+jmXhwlwsFKOC7wAnxwfdc1cgYnTuLlsNrr8Xp1Rvw4co83xPjGRQIcwGLeBj14jvvIFp0/3j5Zdvwj/HxDNzD7bKrHLgn4LYFs5Dz6GBMXrFXG6uyQ3h8yGBsxXTcfLXtoUVtMgreVHsPv8tZuK25KPAwA5Mp7zusdByZhes6+NZNyXEqV7wSOH9eEU+oA7//vfOfVdzgwYhPc37Q8iohHkQBClgFRo4cKYax6+3QMIgH26996yVk/7MY69ZxYjMHDFcoIAXEfCGtXn1VDJ8djwkTjLjzTuffIgKFj4DqV7XN0OnIzkrFskl9MUHliZPKcrdj2vVXY26OGJf06Ex08GMP/WC65Ampw5HlKNBcfJHnPnIvzD3oOCpt3mh01qmXA0HjlebNDaIfboQYEYctHBpTM3mdCMgW97Nnz1arbfM2CXhqRTesX2/BgW1noJRzgopqQHyhWwGjGLUtsnVr69+gbt34dyhcbwTVA3cxgB9uX7AB88SIhSsfHIa4oY/jg/2n4D609I7VVJyLDc9PRlzHwVgogvZZm47jzs46bj2O7IzfLRezzFYti7P32Fddfpvw2bv2vqCpeCTjBpd9XFVbQD69/+GHFutsj/a0y0X/3AoxJj0XClCgYQI7d+60ziNQ8+yUFCNeeCEC+V/nIv+hh2ru5msK6Fbg3/+24NFHbXOo6BYhzCuuQeAuxTrgkd0HMV0ON751LkaktkVUrwmYv/oDHMrNR1l9UbypDIX5udi7fQPmT5uAqMSOSH9wmfVSLNp8HDNu7mBd1/P/ek58GrOkr1i2PjgdW07Z1u3/N+WuR7r8lCOWtFkv4uY2bG6322jxe+lSi3gYSI47b2vlUMRXlgViEiqOJKOFNtPUi8C4ceMwYMAAt9WV33DdOOUXiOnVCwuePCt6CfhpZGO3peFGCgRW4NKHH+LsS0sh/xa5dtcMbKmYuxYC2kVzsd0x5+sz6DP7PoyZKYY2yVmJR8eLn6papKVnoOuVLdEiLs66pbS0FCXiK9HTeTnI3moLOKtVOC0Lu1bOxfVtdNzSXg2kA2Z8moOCxFQsFD3+h7UdhVW7/hdDLovDuRM7MGPweNvRaYuwcsagamfyhboChYWKmOlVwcqVzs/Bprw8JPz2t4i87DJ1M2NqFNCRgJxxWU4AJidrc7dERRnQLDMTp6ddwpNPWvD4AxcQ2yrZ3aHcRoGwFrgkZhj/pPW96NvXAHaTCetLDb9MwJS/dwP+Oikdy9zE4/XzpmLWqmV4+O7rfR9Ksv7EQ/8IUy5WzHwQk+a6jPtorZV0exFZdw/SbAx8TsBku32WLDGLKdmBP/7RNm576N9UrAEFgkNg2bJl6NSpk5hAZnidBTKbFTz9tAVtd76KexbeiOirr67zeO6kQDgJyG94L/x4Af9YlSj+DhnFXC/s3+7t9Q3FCZg0CNzLsHfDO8i5mIxBtw1H5wR7o74Jx3ZvxCsvLsTclVXTftYlm5aBRfdn4je3DkIKG9nrkrLuKys8hbzTpYCYjykyMhGtO6Ro/kGHgTusfdo/+0zB9ddzkot6b1IeQAENBeQk4Itn5uLXBx9Gyj/XiuneGbxoyM2kKRAWAgzcxWXcu2IC+k5aab2gmasOYund3WtdXFNxPnKPf48jP5xEQcFFVIivQlFRgeimybis3RXo3KkrOqToc6jHWlhBvIGBu/uLUynGbq88ehTx9bQSuj+bWylAAbuARbQkGo3OLmj27XX9Ljt0GJ/+2AV9+hiss0bWdSz3USDUBc5MnozIuUuwebOC0aMNiIjgB1ZfrmkoBu725nBf6lnHsfn4dIEtaJcHnS6uPqtnYf4pMb5oHNqkpKBzT/lzfR1pcRcFglugvFzBzJnyCX5jtQCh6OWXETdkSHAXnqWjQAgILFiwAFdddRVuvfVWr0sb270bOkYqosuAGX8f8ymuGD3E63N5IAVCTaB83z7sHHQvmj7zMoP2ULt4DSyvb00Z9WVSfBJb7P3YMxbh2bt7upxRjDeGt0XbVm+g0GVrvaumQhw61LjhJOvNgwdQoAECb7+toHlzVAvalcpKxPTtK4ZBHdqAFHkKBSjgKjBt2jSfgnb7uV26GHDPPUasfWovfvq/f9o38zcFwk7gYl4BTrS6ETffzJb2sLu4HiqkbuAu+lfLJX3RZlS+MVX0b7e9tv8/8UqxlhYjRnr3fik++DKuvvoVFHt/Co+kgOYCsrX97bdtU0q7ZiZndmw6ejQMEXxQ1dWF6xRoiICv3WRc8xgxwojr5v8B+94/7rqZ6xQIeYGC2bPxo/hWN/fG/4bpdD5GlqxAnpih+6c77gj5urEC9Qv4EkPXn5p8MlIs13Tr7CY4r4rqxX7nmvXwOv9X/MNPQOqVbtKr8zTupICmAu+/r1iH3WrXjq0cmkIzcV0LeDuqjCektF/F4ftOf7Hu/u47Bd06VsAQE+PpcG6nQEgIJD3xBOJ/9SsRG/WD8VdpaPefT0Ki3CykOgLqBu6xV+N3WaLFfURHlM5bhdtu6IzmTUSYLrq6R0Wdx+EiUehzh/DJ7t1IEg+jVnisQ7QYu7cCJ/d9gsVTFopW+iUej+QOCgRCYPRoo3gQqHrOlosXUbxyJRLFw0IGAwP66jp8RQHfBcaOHWsdx933M51ndOpqayp65hkzsvA0rl40HUYP48I7z+IaBYJTQA79eHbqVETdfBtKCiAe3ubfmuC8UtqVSt3AXbSL3/74NjFj52AsfHS8mBjI3bIQI/q73+PuaOu2RI97uIMCfhcoLVVQVgYkJVV/w7z03nuwlJQwaPf7FWGG4SrQXD5EotLy2GMReH18Km59eAn6vfSQSqkyGQr4V8AsJqqM7D8Qf/znMGS1VtAxtWoKdf8Wg7kFUEDdPu6yIimD8PaZXZiermKtZEs9FwoEicDkyWacOFG7MFEdOyLxd7+rvYNbKECBBgmsWbMGO3fubNC5NU/q3NmASWvuxOrvbsCFC0rN3XxNgaAVkK3sFWKIYblEJCXh7dK7xLN/BvTrZ0TKokVBW24WTBsBlVvcbYWMTLkec9YrePjUIXz15V4cOHQMP//0I3YtXIatSENmVi+4n8C6eiV/2LIQ2TliG1vcq8PwVcAEPvvMIqZfN6BXr+qt7bJAsf37B6xczJgC4SgwYMAA8e/Nm78W3tW+Y0cDnljTH8VitIOYGAWGIwcQ09N19DPv0uFRFPCXgByp7Oyf/4yEiROtWR7/MRLvv2/GihUcAMFf1yDY8tEkcLdXMqlNdwy9Xf7ILWVY8YMI3IvuwaIFE72c1fPv2P38nej/ij1F/qZAYAXWrFFw1121g/bAloq5UyA8Bdq3b696xVq2NEDOsnrsGPDjmL/i+ncXIq7rlarnwwQpoIZA+f791kah2D59rMmdPStmCF4cIYYi5t8hNXxDMQ31u8p4VBBPqMouL1vPiEmYvF0i0SttAJBzASZvT+FxFNBI4KefFHTpIp6VTqv9z6bwuefEsFynNcqZyVJAnwIbN27EPjHBjNqLfHhcjvX+5a+ewWt/2gb53AoXCgSLgOwaI/uyyyW6Wzck3H23o2iye0ybNgzaHSA6XKkdgWiGkICMdcexJ+cu1Bjevc4cY7tmIOfgJCTVeRR3UkB7gcsvN+BPf6r99WT5N9+gQrSKRLZurX0hmAMFdCQgW9xbtGihWY3/sqgrcNMoPPGEBXJUKC4UCLSARYx8ILvGKHIEBLEYmza1/s7PVzBmjAl5efyQaQXR8f/8GLgDkUkd0KdnB9/GZI9tg57dU3R8iVj1YBC4dElBdrb4426p/aZpTEhAi7lzg6GYLAMFwkqgR48eaNeunaZ1mvJQM/Etmug+IwKlU3MWaJoXE6dAfQKl//43YkS3mMgrrqh26P/8jwVjxxrRti1b26vB6PCFpn3cdejJKoepwCuv2B5KdTdmbpQG/XDDlJHVooBPAjt27EBKSgq6ie4CWi633SbbsFri4JYTKLrqS3S/4xdaZse0KVBNQD5zAbMZhshIa3/2CHHPuy7r1slGI+DOOxm0u7rodd2vLe56RWa9Q1uguFjBv/+t4I47+KYZ2leSpadA3QJX/mM+XnjBgi++sED2M+ZCAa0F5Nwf5/4iZveVwbtYagbtcujSwkLg6aeNnCNE64sRIukzcA+RC8ViBk4gO1vB4MGGWhMuyRIVvf46SrdvD1zhmDMFwlhg4MCBmre2u/LJWVYf+Ec/zJ1rwfHNB2GWERMXCmgoUCz+hkSLIUkNUbYZfmtm1ayZAffea0RiIhuOatro9TUDd71eedbbKwH5FWanTsAf/1j7n4pSXo6Lb72FaM5c55UlD6KArwIHDhzAyZMnfT2tUcfLiW0WLYrANz8mIf/++6FUVDQqPZ5MgboE4keOROLEiW4P2b7dgldf5Tc/bnF0vLF2NKJjDFadAjUF5LBxAwYYrZMu1dwnJ8ZotWwZIpo1q7mLrylAARUETogpis+dO6dCSr4l0a6dAcN/czkS7rkHLz180O1D6b6lyKMpYBOwXLqEgjlzHByenpE6cULBs89acMstbGl3YHHFKsDAnTcCBeoQmDXLjO+/rz2SjDxFDtMVefnldZzNXRSgQGMERorWyN69ezcmiQafGxtrQJMRI3A+rj0efdSC4hP5DU6LJ1LALlAoRiCL6tzZ/tLtbzl62Zw5Ftx3nxGtWzNwd4uk440M3HV88Vn1ugX27FHE1/SyqwzfOOuW4l4KaCMgW9zPVk1Eo00O9af61/9Nghw4auHvP0fxx1vqP4FHUKAOgYSMDCTcdVcdRwAbNijo2BGitZ0hWp1QOt3Ju0KnF57Vrl9g/XoLRo1y/0+kZMsWnH/ppfoT4REUoECDBXbu3InDhw83+Hy1TpQTr/X63SCcfnYxSs+XqJUs09GBgKW4GEWvvuqoaXT37o51Tyvy785jj0V42s3tOhdwH5XoHIXVp4Ccpe7rrxUMH+6+tf1SdrZ1kgxKUYAC2gmMGzdOPGMyQLsMfEj59t8kotU/FiPvaAm2bbM9MHjxnXcgf7hQwJNAflYWIrzsUllUpGDxYjN++sl990xPeXC7vgQ4AZO+rjdr66VAYiKwdm0EYmJqB+5yfOfkJ59ERFKSl6nxMApQoCEC58+fR3R0tHg4PL4hp6t+TmLHVoi53ILHJ1hwdte3GNaqiGNrq64cXgk2EyMTxfbtW2+lKisV/OUvZowYYcTll9f+u1NvAjxANwJscdfNpWZFfRGQAbt8OM3dYjAaGbS7g+E2CqgssHbtWsjuMsG0xMQYsWRJBI5uOYr9z7C1PZiuTTCURXaNufTee46ieBO0y4MXLbJAjmb0618zLHPgccWtAO8QtyzcqGeBrVst1pYPPRuw7hQIBoHMzEzRXW14MBTFUYayL75Ayeg0jCtZgOY/fAY5SsjJwf+NH4cMgdzHRb8CitmMM/feC6OP38bu26eIb3ch+rUzJNPv3eN9zdlVxnsrHqkTgX/9S8GYMe5b2yvFZDAFf/0rWr/2mk40WE0KBE7AIrqlGcU3XMG0xPbrhys++cRapKKq94GdrScgtdkxmPK+gSK6Rchv5bjoT8By8SKaT5uG2P79fap8794GMewpH0b1CU3HB/PdRccXn1WvLSDHbP/5ZwUDB7oP3Es++ACxN95Y+0RuoQAFVBdYsGAB3nPpdqB6Biol2L27AQ/Nvxy5736OCy++qFKqTCYUBOSESvZvWozi4ShfgvaKCgXPPWfGt9/yYdRQuNbBUkYG7sFyJViOoBDYvl1BRoZRtPK5D9wTxdegze67LyjKykJQINwFponWy1tvvTVoqxnZrh3kT8eOBjwxqwlmnp+FvZePcZS3PCcHSkWF4zVXwkvAUlpq7RpjqHp4Ws607e0iJ1l67DELmjQBrrnG+/O8TZ/Hha8AA/fwvbasWQMEfvtbI26/3fM/C1/emBuQPU+hAAVcBIKtm4xL0ayr8UOHQv7IpWdPA5YujcAX37eyvjabFZhPn8bPYrIdU16edRv/F14Cld9/j2YPPICYa6/1uWLyYdTYWCAz0/PfG58T5Qm6EOAdo4vLzEp6I1BYqCAvz/NXlvLBIzkUJBcKUMA/AsuWLcPHH3/sn8xUyKVlS4N4sN32Z3XNGgVFPYej5cKFkN0p7ItSXm5f5e8QFJDXsvL4cWvJo7t1Q9zAgT7X4sABBW3bGvDUU0YOJ+qzHk9g4M57gAJVAllZZhQUuOeQAfvPd9wBc36++wO4lQIUUF1g7NixQTMBk7eVi4iwdXvo0cOA++8340BBe8gAz77k/+lPKF650v6Sv0NIwFJUhDOiq6RBzC0gF0NUVINKL++NsWONiIpiF5kGAer8JAbuOr8BWH2bgByOK0I81C+/7na3lH/1FaKvuQaRrVu7281tFKCABgLNmzcPmsmXfK1er16yRTUCc+aYHTOtyjSSZ8+G6dQpR3L8Fs9BEfQrpZ99hmZTpiCyTZsGlfX0aQV/+pMZhw97/ma3QQnzJF0JMHDX1eVmZT0JZGdb6pz4Qk6i0WLOHE+nczsFKKCBwJo1a4JuAiZfqikbApYti8B339nOKi9XrB/+kx55xJGM6YcfUPTqq7CUlTm2cSV4BOQDqPauTnGDBiFu8OAGFe7SJdvMqCNHGtCtm/sGogYlzJN0J8DAXXeXnBWuKVBaqqBZM+Dmm/lmWtOGrykQSIEBAwaIIMfZzSSQZWlo3klJBtx7r+29ZckSC44dq97aGtmhA8znz+PCCy80NAuep5GA+dw566gxYpgxaw7GqtFjfM1OjiDz5JMWXH+9ASNGMOzy1Y/HVxfgBEzVPfhKhwJxcQZkZXme/EK2hCniJ0J8bc+FAhTwn0D79u39l5mGOdlHo/rlL43485/NoruEEcOG2QI4Q2Qkkh56CLL/tH0p+/xzRIkPLHzPsYsE5vfFf/0LiaJPuzEurlEFkN+4/O1vRjRtysahRkHyZKsAP/rxRtC9wEcfWSBHlPG0FM6ahfIvv/S0m9spQAGNBDZu3Ih9+/ZplLr/k5XjdS9aFIHXX7dg48bqI1TJyXvsixzB6vSECag8dsy+ib/9JODaZanpmDGIHzKkUTnLfu3JyWDQ3ihFnuwqwMDdVYPruhP4+msFa9ZYIL/OdrfIvo3mCxca3K/RXZrcRgEKeCcgW9xbtGjh3cEhclSHDrZ+70pVW4EM7GoucTfcgNavv15ts7mwsNprvlBfwCTG3T8rJv2yLxGyD2UDF0Vc4NmzzVi40IKWLRuYCE+jgBsBBu5uULhJPwLvvWcRMzN6/mdgFNPatXrpJcfwX/qRYU0pEHiBHj16oJ2YmTTclpgYA265xfa+89prFrzzTvXWd1nfiKQkRHXu7Kj6uccew3kxJjwX7QQu/OMfSPjNb1TJYP58C0SbD2bNMooRy9w3DKmSERPRnYDniEV3FKyw3gQuXlTw2WcKbrqJb6p6u/asb2gI7NixQwyddzg0CtvAUsqZM//9bwXTp5tRUlK79d2ebMvnnoNBNCTYF8Vksq/ydyMElMpKx9nNxSyoDR01xpGIWFm1yoLUVAPmzuVY7a4uXFdHgIG7Oo5MJQQFxLeidT4wJP8wVhw5EoI1Y5EpQIFQEWje3ICXXjKiUycD/vrX2i3v9nrIb/+aiQcl7Yvpxx9ROH8+2IXGLuL7b7uh/cwIFfq0yFGDxo83WkeP4QRLdln+VlOAgbuamkwrpAQ6dzagXz/P/wQurl2LkvffD6k6sbAUCCeBgWI6+VAfDtKb62E0GnDffUZMnmx7P/rkEwsqKz23vss0I0X//wgxIVzRsmXeZMFj3Aice/JJxN90k5s9vm+SQz7On2/GxYu+n8szKOCLgOeoxZdUeCwFQkzg1CkFr7ziuXVLVseUl4cmo0aFWM1YXAqEj8CBAwdw8uTJ8KlQPTW56ipbtz3xTDwyM834/nvPwbtBjC2e+NvfornLw5Sl//kPKnXkVQ+n291yxB770uKppxDbr5/9ZYN/y6B99mwLzpyRs283OBmeSAGvBBi4e8XEg8JN4I03LEhIqLtWSQ8/jKiOHes+iHspQAHNBE6cOIFzYhIcvS3ywVXZ3eKhh8yi/3vdDQyG6GgHj1GMO3h26lSUf/ONYxtXnALyQ02xy2g9kW3bOnc2Yk0+KyUfOfjf/zWKuZr4zFQjKHmqFwIM3L1A4iHhJSAfANu+XeFMqeF1WVmbMBQYOXIkevfuHYY1q79Kw4cbsXRpBOSQtXK5dMlz67s9tRjR3Nv6n/+E65jwbIG36SgWC87+6U+IUaGF3e5tNtuuyU8/AU89ZURkJIN2uw1/ayfAwF07W6YcpAJyBIf/+i8DEhM9v8mW7d0LS2lpkNaAxaKAPgRki/vZs2f1UVk3tWzd2oC//MU2q/PmzQpWrrTAHiy6Ody6yRgbiyiXITTPP/MMzs2Y4enwsN8uA3brIkaPaSmG04wRQ4yqschJ+2T3GLnceSdb2tUwZRreCTBw986JR4WRwNVXG8S0455v/fL9+3FBjN3e2Gmuw4iMVaFAQAR27twZ9sNBegsrh6399ltFPMRqxsGD9be+29Nt+eyziOnTB/YAVqmosO8K+99y1JiSf//bWk9DTIxqXR8PHVLEg8Rm65CPYY/ICgadgOfoJeiKygJRQB2Bbt0MaNLEc2u7SfSDTPz979XJjKlQgAINFhg3bhwGDBjQ4PPD6cTYWAPmzInAPfcYxbCRZlRUeBe8GyIj0fTXv4Z8mFUuZvEE5dlHHw37h1gtxcXIF+OyR3ftquptkJur4LHHzOL5AyNGj2YIpSouE/NKgHedV0w8KFwE/vlPCzZurPthryaiX20cg4VwueSsRwgLnD9/XkxKVBLCNVC/6EOGGPH66xFQRNwuR8eq7+HVmiWIvOIKxA0aBDncbTguioQRi1l0sZLfNkR16qRKNeXIMXL57jsFL74Ygf79GT6pAstEfBbgneczGU8IVQHZN/TNNy3o29dza3uo1o3lpkA4CqwVwaXsLsOluoD8xjAmxoCUFGDdOgUPPGDG0aPetcDLlJrceiuaP/SQI9FLH36I8q+/drwO1RXTqVOoqBpRJ7JjR0R17qxKVYqLFTz+uK3BZ9gwA664gn9DVIFlIg0SYODeIDaeFIoCu3Yp6NjRAPnAl6elfN8+VIoH4rhQgAKBF8jMzMTw4cMDX5AgLYGcmXPJkgiMHGnAo4+aHSPQeFNcg8H5PhjdpQsKxUOsZV9+6c2pQXmMSXQByv/jHxEhP82IxbV+jSnw559bcO+9Zlx3nc0rIsLp1ph0eS4FGirAwL2hcjwv5ATkaDLyAS9Pi6WsDOf++ldENG/u6RBupwAF/ChgsY8I4sc8QzGrkSNt3WfsZd+6tf6ZV+3Hyt+yZbr1a69BdqOxL6E2Fnzl4cNoMX8+IsVssmotX32lYMECC6ZPj8BddzFcUsuV6TROgHdi4/x4dggJTJ1qFC1Tnm95k2hpb/aHP1QbAzmEqseiUiDsBBYsWID33nsv7OqlRYVk95levWwNE8ePA3ffbRZ2Ftj7ZteXp3x4NfKyyxyHXVyzBmfE+6G9z7hjRxCtmH7+2dqXXRYp9oYbVHsQ9cgRW7cj2V3+1VcjxFwCnht8goiDRdGJgOcoRicArKZ+BJKT637zje7WDU1uuUU/IKwpBYJcYNq0abhV9Mfm4pvApElG/M//ROCTTxTcf3/dD+N7SrnF7NlI+M1vYJ0SVBwkv5EMpqUyNxf5U6bAEB9vLZYhwjbefWPKWFmp4OWXLXjhBZtZnz4GxMXV/XejMfnxXAo0RICBe0PUeE7ICcjhu778smF/wEKusiwwBcJEwFg1hGGYVMev1ZDD3j7zTIR4cNX2Z/6HHxQRyFt8akGPGzwYhqgoa7ktFy7g9L33ouLbb/1aD0+Zle3aZe0aY6wK3D0d5+12OUb+xIlm/PSTgrlzGRp568bj/C/Au9P/5szRzwLyjVgO4SVbTzwtFaJ/ZOmOHZ52czsFKBAAgWXLluHjjz8OQM7hk2WPHrb3vVatgLffVsQ48GZ88IFvAbzUkH3Hm4nAvWTr1oDhyAdQ7UvT0aMhvyVt7HLunK1bzLZtFjz8cARmzoyoc56PxubH8ynQWAEG7o0V5PlBL/DRRwrkEF5Go+fA/cILL0BOVMKFAhQIHoGxY8dyAiaVLofsAy/HH//LXyLEhyEF//ynLWCVw+R6u8T274/mYuQW+3Lp3XdRsmWL/aWmvyu++w5nxYRK9sX+TYD9ta+/CwsVMaGVGZs32+o/ZQr7svtqyOMDI8BIJTDuzNWPAlu2WDBjhuf+jxYxwUvckCGIvf56P5aKWVGAAvUJNOcIT/UR+bxfPsDaq1cE8vNtAeuKFYqY5MqC224zWofL9SXBmH79UDhnjrU7jZzUScvlknhIOVn0u2/sIj+oLF5ssX54GTXKiDvu8Nyg09i8eD4FtBBgi7sWqkwzqAReey0SXYej80YAADNLSURBVLp4fnOWfSSb3nFHUJWZhaEABYA1YmQTTsCkzZ2QkmJ7Txw3zoCEBAMeecRsncjp7FnvW+DlKDQpzz+P6B49HIUsFRNmKSoN42kuLHSk20y09EdfdZXjta8rubm2ep08KUagiTVYR4uRD/FyXHZfJXl8oAUYuAf6CjB/TQUqKhTIkQK4UIACoScwYMAAdFOhH3Po1dx/JZZdaCZONIoPSREYP96As2dtectZpvfuVbwaTjIiKclR4PLdu3F6/HgoZrNjW0NWynNyUPj0045TjbGxjnVfVnJyFOvkVE89ZStPhw7AffcZ0aKF58YcX9LnsRTwtwC7yvhbnPn5TcBkUjBmjBn/938R1qnB3WVsPncO8ivYxN/+1t1ubqMABQIo0L59+wDmrq+s5TNAN9zgDGYvvxzWoRFPn1YwZIgBmZlGa0t1fSrNxRCe1smbZOAuhmi0XLoEQ0yMz88QFS1fjuYufdrry9d1v+wOI1vS77vPJEbRgegOYxST79naKdWaUdU1P65TwJ8CbHH3pzbz8qvAZ58p6NzZIIJ25x+jmgW4uG4dlMrKmpv5mgIUCAKBjRs3Yt++fUFQEv0VYfBgI/7xjwi89FKEtXU6P99msGKFxTqs5MWLnr/JjLn2Whiio60nKGL899N33w3ZhabmophMKHe5vpaLFx2HtBCt7XJGV2+XggIF69ZZMHmyGQUFtrPkCDH/93+RGDGCXWK8deRxwS/AwD34rxFL2EABOZrMTTd5DtplslFdutgmGWlgHjyNAhTQTkC2uLdo0UK7DJhyvQKXX24QXWiMaNfO9l4qvwSR761jx5rxxz+aIUdnkYunQD5CXL9kEYRXHjniyMveB162xhc89ZR1e9kXX6Do5ZcdxxibNHGsu1spLlZQVmbLe/p0M+6914yjRxURuBsdjTX2Mrs7n9soEKoC7CoTqleO5a5ToLRUwcmTCoYOrfuzafzQoXWmw50UoEDgBHq4PPQYuFIwZ1cB+Z4q3zZld5T9+2HtiiL3z55twZEjCjp1MojBAIDRo41o1cqAoiIFTTp3RaLLswqXsrOt33TG/fKXjqQL589Hy+eec7y2r8j3cvvspbLf/fffKzhxApAPm77xRoTovgMxO6zzg4X9PP6mQLgKMHAP1yur83rJN/oVK3h76/w2YPVDXGCHmBQtJSWFD6gG4XWUfch793YWbN68CPFgq2INrI8dg2iJhwjcgTffVLB2rQWJibC2hMs5NW46fxY/rdmIEy9sR8vjudh773I0bZGGpLw8XGx6BZ580mIN+IuLAdEoj02bbO/lslejnEhv1CgD5AAz9rk52LLuvA5cC38BRjbhf411WcOff1asfyji4913lZFf1Z4XrTvNMjNhlH9RuFCAAhSgQKMEWrY0QP781385k5EjuNx7r8EayMuJT+U8d8ZdcYi/LR1xBwoRkbcDUWJbdGKc9aQ48ev3vzda37+bNQOSkpzv4RkZdX+D6syVaxQIXwEG7mFybQtP5aLI3TOWUVE49+Ur6DujGQq+ngrnoF1hUnE31ZAPKd13nxnvvON50qUyMWSZSQzoy6DdDSA3USBIBAYOHBgkJWExGiMgR3JJTob1x5pOlwwkiJW2Fy7gzMRt6LVkUrXkU1OrveQLClDARYCBuwtGyK7mf4DktiPqLH7aol26CNolwtatCm680YCoKGdLTU2ciJYtkfTEEzU38zUFKBBEAgcOHEAz0ezarl27ICoVi0IBClAgcAL83ilw9qrlvH35/HrSSsUjd15fzzHhs3vzZgWyH2VdS3TXroiUHTC5UIACQStwQjyFeE7MtcAlPAXkyDHJf/tbeFaOtaKARgJscdcI1m/JFu/Gs49uFdmlIiOzP+JrZVyC+GsnYUibWjvCcoPsJiNHj+vbt+7APSwrz0pRIMwERo4cGWY1YnVcBQyiw3uM6xOurju5TgEKuBVg4O6WJXQ27l/3IrJFcTOWr8QbE3uGTsE1KmlyskEMS+a5b7vM9sKyZYjt1w8x112nUSmYLAUooIaAbHGPj48XDzy2VCM5pkEBClAg5AXYVSaUL6HpEF6ctFLUIA0P3MGgXV7Kb75RxPBhtkk53F1as3gY6tK77yL6mmvc7eY2ClAgiAR2itk2Dx8+HEQlYlEoQAEKBFaAgXtg/RuVe+7G17HMmsJW9E/shVGTH8fS1R9gf64YQFeHi5yY4+mnzWjSpI5uMoqCVqLF3RATo0MhVpkCoSUwbtw4DBgwILQKzdJSgAIU0FCAgbuGuNomfQqvz5jrkkUOspfNxZTxI5DaMRmGUbOx+1SZy/7wX5UPpdY3U2pE8+aIvPzy8MdgDSkQBgLnz59HSUlJGNSEVaAABSigjgADd3Uc/Z5K2f53MTOnjmyzZ6J/2zg8v/1UHQeF167Nmy31jiYTXjVmbSgQ3gJr166F7C7DhQIUoAAFbAIM3EP0Tojt+XsUFJxBXt5R7Nm2CUtmZYpxZWovDw5ui9WHwr/lPS9PwZAhBnTq5LmbjOzbXrxSPhPAhQIUCAWBTDGz8fDhw0OhqCwjBShAAb8IGBSx+CUnZqK9gKkQeze+gUnpD6JaY3zaIpzZMhUpKpcgISEBGRkZmDBhQq2Uu3fvLmbJE1PlBdFyeuJEJD3yCB9MDaJrwqJQoC4Bi8UCo5HtS3UZcR8FKFC/wNGjR3HmzJlaB8r4RcYr77//fq19wbqBgXuwXpnGlKtwLx4f0hdzXaL3RXuKMLWPnGRavaWJmDwjMTERrVu3rpXoggULkJaWVmu7Vhs++cSC/v0NiI113+KumM2wFBZCzpjKhQIUCA2BZ599FldddRVuvfXW0CgwS0kBCgSlwMyZM7Fhw4ZaZZOjVslYhYF7LRpu8LtA8V5MSOwLe8eQ9CV7sH5yH1WLIYP2xx9/HI899piq6fqa2N69CpYts2DJkrrHb/c1XR5PAQoEVoAt7oH1Z+4UCHeBnj17on379iEVuEeG+0UJpfoVH9uO1e9/BbgbqrC8HAnXpePuQR28q1JCHzyxPAMrreO8i1PKvTstFI/autWCm25y39IeivVhmSlAAZsAu8nwTqAABShQXYCBe3WPgL46su5vmPLoVo9lSJt3o/eBu0il+03jxQOrK6v3d/eYemjusFgUbNum4Le/9dwPtvybb1D08stIWbgwNCvJUlNApwLLxJwLnTp14gOqOr3+rDYFKFBbgIF7bZOAbWnWXfYJP4dUd8PD5OSga6so38qW3NY60ozs6l7k25khc/QpMdrl+PFGMSW65xb3kg8+QOwNN4RMnVhQClDAJjB27FhER0eTgwIUoAAFqgQYuAfRrdD59hlQlBnqlaggz9Ha3r/HZeqlG0QpXXGFAWPHeg7aZVGbT50KQ5SPH3qCqI4sCgX0KtBcTJjGhQIUoAAFnAKe+xc4j+FaiArk7vywKnBPw/CerUK0FnUX+/33Lbh0qe4RTRm0123IvRQIVoE1a9ZwAqZgvTgsFwUoEBABBu4BYW98poXH9mP33v3IzfcwuZLpGBaOsfXpzli+CENTwu/LlW+/VbBunQVNmnhucec0BY2/15gCBQIlMGDAAHTr1i1Q2TNfClCAAkEnwMA96C5J/QUy5W5AcpdU9O+bio6t4jBh/gbku55mOoWlk7rAGranL8FzE3u67g2b9W3bLPjv//Z8C1vKyvCTGP/ZcvFi2NSZFaGAngTkMG0tOfeCni4560oBCtQj4DnqqedE7g6cgKm0oFrmKx9NRyvDKDz/9gfY8vZSjIpqiykrgfRZ2ShYP1n1GVOrZR7AF3I0mUGDPLe2l332GWL794exadMAlpJZU4ACDRXYuHEj9u3b19DTeR4FKECBsBMIv/4TYXeJalcotvsdyJ61Hukzs112ZuPBMbbXaRmzsPmJKRjaPcVlf3itFhQoGDXKKIaK8xy4x4vZ0OQPFwpQIDQFZIt7s2bNQrPwLDUFKEABDQQYuGuAqn2SCbh9xnpUPlyIvLzTKCqROVYCUfG4rG0HpCSE/2VNTq5/NBntrwNzoAAFtBTo0aOHlskzbQpQgAIhJxD+EV7IXRLvCxwZm4QOnZO8PyGMjnz3XQsGDDCgRQv3Le6yfztMJnaTCaNrzqroT2DHjh1ISUnhA6r6u/SsMQUo4EGAfdw9wHBz8Ar8+KOC11+3eAzaZcnP/vnPqDh4MHgrwZJRgAIUoAAFKEABHwXY4u4jGA8PvEB9D6Wa821j7MT84heBLyxLQAEKNFhg4MCBDT6XJ1KAAhQIRwG2uIfjVQ3zOsnAva5hICPEV+utXnoJBoP7bjRhzsPqUSBsBA4cOICTJ0+GTX1YEQpQgAKNFWDg3lhBnu9XgZISBb/8pQG9ejEo9ys8M6NAAAROnDiBc+fOBSBnZkkBClAgOAXYVSY4rwtL5UEgPt6AO+7wHLQrFRUwnTqFqI4dPaTAzRSgQKgIjBw5MlSKynJSgAIU8IsAW9z9wsxM1BLYsMEivjpXPCZX9OqrKN2yxeN+7qAABUJHQLa4nz17NnQKzJJSgAIU0FiAgbvGwExePYHCQgUvv2zB5Zd7TtOUl4f4W2/1fAD3UIACISOwc+dOHD58OGTKy4JSgAIU0FqAXWW0Fmb6qgl89pmCG24wIDLSc1eZFrNnq5YfE6IABQIrMG7cuMAWgLlTgAIUCDIBtrgH2QVhcTwLyNFk5KRLXChAAX0InD9/HiUl1qmh9VFh1pICFKBAPQIM3OsB4u7gEDCbFQwcaMCgQZ4D97K9e6FUVgZHgVkKClCg0QJr166F7C7DhQIUoAAFbALsKsM7ISQEIiIMuO02z0F7qZga/eLbbyN2wYKQqA8LSQEK1C+QmZlZ/0E8ggIUoICOBNjirqOLHcpV/egjCw4c8DyajFkMAZkwYUIoV5FlpwAFaghYLJYaW/iSAhSggL4FGLjr+/qHRO0tFgUvvGBB27aei9t0zBjE9unj+QDuoQAFQk5ggfgG7b333gu5crPAFKAABbQSYFcZrWSZrmoC+/YB7doZkJTkuauMapkxIQpQIGgEpk2bBqOR7UtBc0FYEApQIOACfEcM+CVgAeoT+PRTC2680XPQXrZnD0ynT9eXDPdTgAIhJsCgPcQuGItLAQpoLsDAXXNiZtBYgWuvNSA93X3gbi4sRMGTTyIiObmx2fB8ClAgyASWLVuGjz/+OMhKxeJQgAIUCJwAu8oEzp45eykwbJjnz5cmMSV68z/9CYaoKC9T42EUoECoCIwdOxbR0dGhUlyWkwIUoIDmAgzcNSdmBo0R2LHDArMZGDzYffAe06tXY5LnuRSgQBALNG/ePIhLx6JRgAIU8L+A+2jI/+VgjhRwK7B8uQXJye67ybg9gRspQIGwEVizZg0nYAqbq8mKUIACagiwxV0NRaahicDp0wrOnQOuvdZ98uXffANUVCDmuuvcH8CtFKBASAsMGDAA8fHxIV0HFp4CFKCAmgJscVdTk2mpKvDppwoGDjTAYHDf4n5+3jwY4uJUzZOJUYACwSPQvn17tGzZMngKxJJQgAIUCLAAA/cAXwBm71mgQwdg4kT3t6i5oABNRo1CdPfunhPgHgpQIKQFNm7ciH1yIgcuFKAABShgFWBXGd4IQSvwi1+4D9plgeXwj01Hjw7asrNgFKBA4wVki3uzZs0anxBToAAFKBAmAgzcw+RChls1DhxQcPiwgtGjPQfv4VZn1ocCFKgu0KNHj+ob+IoCFKCAzgUYFen8BgjW6r/5pgUJCe5LZzp1ChfXrXO/k1spQIGwEdixY4f4AH84bOrDilCAAhRorAAD98YK8nzVBSorFdGv1fZgqrvEi1evhiIHd+dCAQpQgAIUoAAFdCTArjI6utihUlUZtHfqZBDDwNUeTUZRFESLr8/j09JCpTosJwUo0ECBgQMHNvBMnkYBClAgPAXY4h6e1zWka9W8uQF//rP7W1MODdnk5pthiIkJ6Tqy8BSgQP0CBw4cwMmTJ+s/kEdQgAIU0ImA++hIJ5VnNYNToGtXA9q3r93aHpylZakoQAGtBE6cOCEmYROzsHGhAAUoQAGrAAN33ghBJVBYqOD55933X1cqK1H47LNQysuDqswsDAUooI3AyJEj0bt3b20SZ6oUoAAFQlCAgXsIXrRwLvLWrQoqKtzXsGTLFljOn2c3Gfc83EqBsBOQLe5nz54Nu3qxQhSgAAUaKsDAvaFyPE8Tgd27FVx/vftuMpFt26J5VpYm+TJRClAg+AR27tzJ4SCD77KwRBSgQAAFOKpMAPGZdXWBigoF+/crePJJ958nYzgZS3UwvqJAmAuMGzcuzGvI6lGAAhTwTcB9hORbGjyaAqoIFBcDTz8dgbg49y3uqmTCRChAgZAROC+6xpWUlIRMeVlQClCAAloLMHDXWpjpey3QooUBffq4D9rPP/88Ko4c8TotHkgBCoS+wNq1ayG7y3ChAAUoQAGbAAN33glBI7B4sVk8iKbUKo/p1CmUfvIJorp0qbWPGyhAgfAVyMzMxPDhw8O3gqwZBShAAR8FGLj7CMbDtRE4eVLBf/6joGXL2i3uhqgopCxeDDn5EhcKUEA/AhaLRT+VZU0pQAEKeCHAwN0LJB6ivUBdo8lEpKQg8rLLtC8Ec6AABYJKYMGCBXjvvfeCqkwsDAUoQIFACnBUmUDqM2+HwK5dCn79a7aoO0C4QgEKYNq0aTAa2b7EW4ECFKCAXYDviHYJ/g6YgMWi4JZbDLjhhtqBe7F4OO3ihg0BKxszpgAFAifAoD1w9syZAhQITgEG7sF5XXRVKqPRgLQ0o2hZqx64K4qCi2++idg+fXTlwcpSgAI2gWXLluHjjz8mBwUoQAEKVAmwqwxvhYALfPihBcnJQL9+NT5HVlai1dKliGjZMuBlZAEoQAH/C4wdOxbR0dH+z5g5UoACFAhSgRqRUpCWksUKa4Hlyy1o3bp6a7ussEH8wWbQHtaXnpWjQJ0CzZs3R3x8fJ3HcCcFKEABPQkwcNfT1Q7CuubmKmKYR6B9+9qBexAWl0WiAAX8KLBmzRpOwORHb2ZFAQoEvwAD9+C/RmFdQk/DQJbt3o1zTz4Z1nVn5ShAgboFBgwYgG7dutV9EPdSgAIU0JEA+7jr6GIHY1VjYoDRo2t/fry0cSNi+/cPxiKzTBSggJ8E2rdv76ecmA0FKECB0BBg4B4a1ylsS5meXjtol5VNeuwxGOPiwrberBgFKFC/wEbxAb5Nmzbo3bt3/QfzCApQgAI6EHAfNemg4qxi4AV++EHBmjXupzRn0B7468MSUCDQArLFvUWLFoEuBvOnAAUoEDQCbHEPmkuhv4K8/75F/FHmQ6n6u/KsMQW8E+jRo4d3B/IoClCAAjoRYIu7Ti50MFbziy8UMXZ79cDdXFiIU7fdBsVkCsYis0wUoIAfBXbs2IHDhw/7MUdmRQEKUCC4BRi4B/f1CdvS5ecruHAB6NKleuBe+skniB86FIZIfhkUthefFaMABShAAQpQoEECjI4axMaTGitQVgY89VRErWSa/vrXtbZxAwUooE+BgQMH6rPirDUFKEABDwJscfcAw83aCrRrZ0CvXtVb27XNkalTgAKhJnDgwAGcPHky1IrN8lKAAhTQTICBu2a0TLgugcWLzSgtVaodYhHN8PKHCwUoQAEpcOLECZw7d44YFKAABShQJcDAnbeC3wW+/VbBV18piIur3uJ+5t57YRJ/qLlQgAIUkAIjR47kGO68FShAAQq4CDBwd8Hgqn8EbKPJVL/1Kr//HhGtWiGa05v75yIwFwqEgIBscT979mwIlJRFpAAFKOAfgerRk3/yZC46F/j889rDQEZ16oSU557TuQyrTwEKuArs3LmTw0G6gnCdAhTQvQBHldH9LeBfAJNJEV9/G8TX3/7Nl7lRgAKhJzBu3LjQKzRLTAEKUEBDAba4a4jLpGsLREYacMstRhgMzv7t8oFU06lTtQ/mFgpQQNcC58+fR0lJia4NWHkKUIACrgIM3F01uK65wNatFuTkVB9N5sKiRSj77DPN82YGFKBAaAmsXbsWsrsMFwpQgAIUsAkwcOed4FeBJUssSEpyZqmYzTDn5yP+ppucG7lGAQpQQAhkZmZi+PDhtKAABShAgSoB9nHnreA3gRMnFBjFR0U5+ZJ9MUREoOUzz9hf8jcFKEABh4DFYhHvGWxfcoBwhQIU0L0A3xF1fwv4D0AOA/mLXziDdv/lzJwoQIFQFFiwYAHee++9UCw6y0wBClBAEwG2uGvCykTdCVx2GXDDDc7PiopoTavYvx/RPXvCwFY1d2TcRgFdC0ybNo0t7rq+A1h5ClCgpgAD95oiQfDaVHgMGzd9g16jb0eHWG8KVIxDe7/AgUMncLFCHB+djNQ+v0Cf7m28Odlvxwwc6AzaZaYlH3yAss8/R4tevfxWBmZEAQqEjgC7yYTOtWJJKUAB/whUj6T8kydz8SRQnIu3509GVHIXpI9fiJ8rPR3o3J67ZSmGGhJxdd9hGDN+El5/fQEmjU9H36vbwjBqNvbmm5wHB3AtL0/B+vWWaiUw//wzEsaOrbaNLyhAAQrYBZYtW4aPP/7Y/pK/KUABCuhegIF7MNwCZaew4fnJMCR2xJhHl1WVKBFR9ZQt94PZ6DhsCrbK4zKW4Hipgi1bvkbp8c3IkNuyZ6Jvq0nYWyxfBHbZtElBcY1yJP7ud4i+5prAFoy5U4ACQSswVnywHzBgQNCWjwWjAAUo4G8BBu7+Fq+RX9mhFTDEtUX6lnhkZaTV2FvHy8LtmDRiZtUBWTi6fLKjW01sh6FYfvStqn0r0ff+1agRM9eRsDa7vvxSwXXX8cFUbXSZKgXCU6B58+aIj48Pz8qxVhSgAAUaIMDAvQFoap4S2fYmHM0rgLJ+ARa8/AzSvUrchA/+/oCtpV0cnyGC9s41nlaI7PwrLLc2u4sDVo7H8t2FXqXsy0GKokD+1LdcvKjg5EkFV1/tPLLsiy9gLlS/TM4cwneNM0n6/9qaTCaUl5f7P2Od57hy5Ups27ZN5wr+rz7fY/xvLoc+LROziHPxr4B09yaO8W+p6s6NgXvdPprvjUxog85tnDMSJXiTY/EeLJmbU3VkKsakdXFzVgLSxmQ5tj/44mao/ZYg39yPHj3qyMPTiozPH37YiIgIW4t75cmTKJw3D0bRmsbFN4HKyko0adIE8jcX/wnIAHLChAn+y5A5WQXWr1+PXbt2UcPPAvKbjvPnz/s5V31nJ+/z/v376xshALX/WTxr98MPPwQg54ZnycC94XYBOzN/33+Qbc897X6kdajR3F61r22vNKTajxOBx9cB6i8jJ1waMsR5q5lE4N7sgQdgMLDrjP3y8DcFKFBboGnTppA/XChAAQpQwCbgjKYoEiICJux5Z1W1spqqvXK+iGx9pTNwF6H+7iOB6ZryzjsWFBY6u9TEiYfN4ocMcRaUaxSgAAXcCPz444+im91JN3u4iQIUoIA+BRi4h9x1L0XuD/ZuMqLwXVsgzlMdRHcK10b2LV/4/+ug/HwFb7xhQVISW9c9XSZupwAF3AvIbmFscXdvw60UoIA+BRi4h+B1j3Epc3qfq+BxjqaEKzEi3eXgADxbt2ePgj59nEF7+ddfo+LgQZdCcZUCFKCAe4GkpCTxod/5DJD7o7iVAhSggH4EGLiH3LUuwOFqDed1PaQYCdcgPxBV3btXQd++tsBdEU9vF8yaBWOzZoEoCvOkAAVCTODMmTM4ffp0iJWaxaUABSignYD7pxq1y48pN1ogHt36i0dOc2zdZbI/PQNMbnSiDUogIiICr776qvXHcwJ3iV3vip8StBL/7yF+trzzjvg/l8YIREdHN+Z0nttAAT5Q3UC4Rpy2adMmzBIf+Ln4V4DfdPjX254b32PsEv773a1bN/9lpkJODNxVQPRvEpEoOuLs457aM3BfI8thlC5evOi2+jExMWL4x4iqfS+6PYYbKUABClCAAhSggNYCFRUVkPNxuFtatZLNiqGzMHBX9VoVYvvqtfhKPBHqrotKeXkC0jPvdsxw2rCsI5GY6Dzzytgo54t61orq2e/r7uTkZMgfLhSgAAUoQAEKUIAC2gswcFfTuPgw/jZ+imNG09pJp+H6SY0N3MUMjtUi8Dr6uJcdx2bHgO9A/44taheJWyhAAQpQgAIUoAAFQkKAgbualymuJdLSUnHunPtEc3K6wvv2cfdpAEm45uY0YOtW6wHZ6/eheOr18GbG1T7XtvaUKLdTgAIUoAAFKEABCgS5AAN3NS9QZGfM2PI1ZqiZppu0eg+XD3zaAndszUWB6LaV4OZKmvK+w0rH+Vm4roPHgSMdR3GFAhSgAAUoQAEKUCA4BTgcZHBelzpLlZA6HFmOI+biizz3D1wU5jrHS0+bNxqd3QT3jmS4QgEKUIACFKAABSgQ1AIM3IPq8njZkUa07P9ueYaj5Iuz9zjWnSsmfPbu21UvU/FIxg3OXVyjAAUoQAEKUIACFAg5AQbuwXTJivPhHOhRFKyOOL7nxKcxSwznLpetD07HllO2dfv/Tbnrkb7QllrarBdxcxs2t9tt+JsCFKAABShAAQqEogAD9yC4aiZTGQpPHcLqBc+7BO7ZWPraFpwqLBZjj7orZAfM+DSnqsvMVgxrOwqrdx/Cqdxc7N++Gnd2HGM7KW0RVs4Y5C4BbqMABShAAQpQgAIUCCEBgyKWECpv+BW1bC9GxfWFy6iNbuqYgT1Fb6CPu6FjTLlYMfNBTJpbM4VUzFr1IrLuHuTViDNuMuUmClCAAhSgAAUoQIEgEmDgHkQXozFFKSs8hbzTpdbuNZGRiWjdIQUcQ6YxojyXAhSgAAUoQAEKBJcAA/fguh4sDQUoQAEKUIACFKAABdwKsI+7WxZupAAFKEABClCAAhSgQHAJMHAPruvB0lCAAhSgAAUoQAEKUMCtAAN3tyzcSAEKUIACFKAABShAgeASYOAeXNeDpaEABShAAQpQgAIUoIBbAQbublm4kQIUoAAFKEABClCAAsElwMA9uK4HS0MBClCAAhSgAAUoQAG3Agzc3bJwIwUoQAEKUIACFKAABYJLgIF7cF0PloYCFKAABShAAQpQgAJuBSLdbuVGCvgiUJaP3R+9j492HUZBqZi9FXG4st9w3Dl6KNpw+lZfJH06tvjUIezYuQuHTxVZz4tJbIN+acPQp0OST+nw4IYLmAqPYeOmb9Br9O3owHu94ZDVzizGob1f4MChE7hYIXZEJyO1zy/Qp3ubakfxhXYCvK+1s62Wsknc65/twK5vD6OoXO6JQZse/TBscB8kMTqrRqXqi1CPWRQuFGiEwPFtS5Q0QBH/qNz8pCrL95xpROo81a1A6VFleVaaG2/bNUibvkqhuls59TYWHVfempdZdQ3SlF1F6iWt55SOb67+fpKWluq8z9NnKXvOVOqZR/u6877W3rgqh+PbltfxtzNdWcW/nZpci3CIWaCJDBPVhcDx7OnOP6ppGUpWVqabN6I0ZVuBLjj8U8nSg0qW2w9JNT44pS9RyK7BJSnNU7IX2QN2u3m6soeBe6Oxj2+a5Xw/yViiHC+1JVl6fLOS4bjnM2jdaGk3CfC+doOi3aajb2U573XHvW1/P3H+XrSL7+JqXoVwiVkYuKt5V+gprdI9VX9M00TLQJ5LzYuUXcurvymlL9rjsp+rDReoVDZPt7dApimLsncpx8+cUfKO7lFWzcqo9YcgK/tow7PimbUESg8utxmnZylZGa7feDBwr4Xl64aCbS4f+rOUozUa1iuPvuW8vzNWKfyc5Cuw5+N5X3u20WRP3iYltSpYT8tcpOw6eFw5cyZPydm8yuUDqj14n17r34ImZdJDomEUszBw18MNq0EdD66SrY6pyqbjNf7CVuW1bV664w8tA3eVLsCZzbY3/NQsJcdNQ0zetkUOc2vXpbQlDHBUopfJVBblKUfzquDFH4F0R0sZA/fGMVcqmxwfSKFkLD/oJrkiZXmGPZiBwpZIN0QN3MT7uoFwDTxt8yxb40vWqpzaKVTmKYvSnfe5fB9fxK/zajs1YEs4xSwcVUbVJx70klgx/jNvGTLfegc3d3D/BE2/20c5MGyPTjpecqWBAsf+8yZyxLlvbfg7erp5/rTNoKnYPF08cWBfzp1BsX2dvxstEJnQBp3bOOETGp0iE7AKFO/BkrnyzpZLKsakdbGtVvt/AtLGiE5iVcuDL25Gmf0FfzdKgPd1o/h8O9l0DG/OFPd6Zjb+fnfP2udGtsHUxZvEvwLncuE838WdGg1dC6+YhYF7Q+8DXZ+XgMl7KrH0zs4eFSpLrI/IW/enXdfO43Hc4a1AMbYvXmZ9wx/l4cOSTGnAb+5yJphzGD/zPd/pwbWgFMjf9x9k20uWdj/SPNzfbXulOQOalSvxNe9tuxp/h4hA2cGPId7F8dbjI+G+yUvsbDMQ08TXefZlz5Gf7av83WCB8IpZGLg3+EbQ+YmRHt92BEwZ3l262AaUtghTBqXoHEuN6icgfflRHP/fOt7wRTaVrlml3YiubBZ2FeF60AmYsOedVdVKZar2yvkisvWVzsBdhPq7jxQ6d3KNAiEgENt1LI4ezENdjS81qzG0X9eam/i6IQJhFLMwcG/IDcBz6hAwYffSBzF+mfg6MH0JzmyZCobtdXD5sCupQ2d08GVw37YJiPIhfR5KAf8LlCL3B3s3GZF71xZiFggPS2Vlta5fW774wcOB3EyBIBWITUJnMR9BXc1esuTO76uBxPggrUvYFCv0YhYG7mFz8wW+IsW52zF7VBT6T5FfBoqlKBff57Inqg3DP/8/snOTI6NF00aAcwI5OLgSpAIxLuVK73OV53s24UqMcOlCUC26cUmDqxQIaYHiI9hk7zuWtgTp3fm1qVbXM1RjFgbuWt0ROkq3cP8HmDbKgMSOgzHT/oYj6791Lvp3jMPS3fk60ghgVU2HsHRK1QUQb/gT+iQFsDDMmgLeCBTgcLWG82qdvWokECnmleRCgfAWOPbuUsczH4vmjgXfxdW/3qEeszBwV/+e0F2KRfkFuHLEcixfMg+Z6a7Pw9sopvR/CHv5IJnm98WhtQusDz4Badi88vd8w9dcnBk0XiAe3fo73zOyPz3T+CSZAgVCVaBsP+aPt31jnTZrM6Zez7Bdi0sZ6jELA3ct7gqdpdlh6N2YOnkiJk5+BEvXf43SvD1wHZUQWIlZq/frTMW/1TXlbsBdVW/4S/asw9A29fWi9G/5mBsF3AtEouiIs497qrtxTt2fyK0UCDMBEz6Y9aCt8SVjOdbNGBpm9Que6oR6zMK/7sFzLwW8JMXHtmP1+18BMW6+kC4vR8J16bh7UId6yxnbpg/mbDyI0rirsbDq6B9y8yFHi+ANV5OvENtXr8VX4hsJN+ooLxejyWTejQ51dVYvO4SHO6Zbx3ifnn0Uk9lFpiaym9cquLtJlZt8FYhEYqLznCtjvX+cush5GtcoEPICx95+GCPmbhX1mI6jyyfyG1M/XtFQi1kYR/nx5gj2rI6s+xumPCrfONwvafNu9Cpwt54d2x0Pb56FhcNmWl/m7DogRoQYyjejmrTFh/G38VNQhzqun1RX4F6IpffZPiClL9qFObd7Hlu/Zta6ft1od13rqVh5E8qrReB19HEvO47NVY9wyAL079hCxXIwKQoETqB4/wp0GSObuTKwq2AOOjMy8//FCKGYhbeH/2+PoM2xWXc56+Y5pDq7nDrLmpODrq28bw2TJ7bpdwvSMdP6oE1qr47gs/FOTsdaXEukpaXi3DnHlmorOTld6xjS0YQts+/AlJVivsnpm7Bm6vXVzuWLOgQa5V5Hutzlo0ASrrlZvO9stX10zV6/D8XiPvbmvaLPta19zIuHUyAIBU5tQXrqJFGwNGQffxns1h64axQqMQsD98DdI0GXc+fbZ0BRZqhXrqgoxx/gFldewW4y7mQjO2PGlq/REPX9K/6IYTNFwJO5Cp/OudnzMHru8tX7tka4651O7fr3Hi5n+636zmlrLgpEn7oEN3+ZTHnfiadl7EsWrquz/5j9OP6mQBALFO/H5LbDrHf/8px1uJ33dGAvVojELHw4NbC3SVjnXnZ8v+MP7T1pnP1NzYud+8FspE4Sow/ISa6W3u34gFQzj+2ze2Ho83trbuZrCgSNQELqcGQ5SjMXX+S5nzu1MPeg46i0eaPZncChwZWQFDDlYvaNqdaHURftOoOJnh7MLtyCXoahHJnNDxc5VGIWBu5+uBnCMouyQpzKPYVCj/MrmfDR0nm2qmdlI6OnN19+h6WU6pXK370UHUeIZwfSFyFv/WT3M9OayrB/w2wMnpmDe27ihybVL0IdHZjUzyvMUxTffvxueYajkouz9zjWnSsmfPbu21UvU/FIxg3OXVxTUcC37pAqZqyzpE7h+Ts7Qrw9Y97mPDHso/v5xcvy92P2HcOQk3EvruGf0MbdI+EUsyhcKOCzQJGyPB2K+Fdk/clctEk5U+maSKWyZ3lW1f4s5WCp6z6uN0agKGeVw136p6WmitfVf1Kt26quT9o85UxjMuS57gXObFbEoyBV1yJd2cN73L2T11uPK7NS7Z5pyua86idWHn/Lcd+nzdpWfSdfqSfA+1o9S48pFSjic6rjfhYPOdneS1zey+V7uPP9Bcq8bXwX98jp1Y7willEn2YuFPBVoEhZkubyxmMNYNKU6YtWKZs2rVKmVwX1aVnLleMMaHzF9Xh8gQjaXd/M7R+c6vqd9dZRj+lxh+8ClZWlSkHeQWXV9HTnH15x/2cu2azkFRQpldU+wPqevq7PKMpRRJcZx4ehVbsOKnnHjys521Yp6fbtaYuUGjG9rsnUqjzva7Uk60unQFmVKRta7Pe5N7+zlKN8X6kPtp794RWzMHCv53Jzt3uBM7uWK2IsCLdvQGmZ85TNB9lC4F6uoVurtxh498afoewpamh+PK+WQOkeZwDp4d4Xw7nRvBacDxsqjyvLa3wost3rqcqsVdsU3s4+WHp7KO9rb6UafVxpznK3fzPrej/PWLKn0fkyAUUJp5jFIC+ouGm4UKABAiYU5p9BqRx6ubISlVHxSE5OQUJdkwU1IBeeQgEK6EugrPAU8k6XQj5KEBmZiNYdUjhqkr5uAdaWAhoIhEfMwsBdg1uDSVKAAhSgAAUoQAEKUEBtAY4qo7Yo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCDAwF0DVCZJAQpQgAIUoAAFKEABtQUYuKstyvQoQAEKUIACFKAABSiggQADdw1QmSQFKEABClCAAhSgAAXUFmDgrrYo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCDAwF0DVCZJAQpQgAIUoAAFKEABtQUYuKstyvQoQAEKUIACFKAABSiggQADdw1QmSQFKEABClCAAhSgAAXUFmDgrrYo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCDAwF0DVCZJAQpQgAIUoAAFKEABtQUYuKstyvQoQAEKUIACFKAABSiggQADdw1QmSQFKEABClCAAhSgAAXUFmDgrrYo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCDAwF0DVCZJAQpQgAIUoAAFKEABtQUYuKstyvQoQAEKUIACFKAABSiggQADdw1QmSQFKEABClCAAhSgAAXUFmDgrrYo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCDAwF0DVCZJAQpQgAIUoAAFKEABtQUYuKstyvQoQAEKUIACFKAABSiggQADdw1QmSQFKEABClCAAhSgAAXUFmDgrrYo06MABShAAQpQgAIUoIAGAgzcNUBlkhSgAAUoQAEKUIACFFBbgIG72qJMjwIUoAAFKEABClCAAhoIMHDXAJVJUoACFKAABShAAQpQQG0BBu5qizI9ClCAAhSgAAUoQAEKaCAQqUGaTJICFKAABSjghUAxPlj6D+SUN0OzGNfDy3EBPTB18gB8seI1fFUO2HdfOHMBqXdPxc2dY11P4DoFKEABXQgwcNfFZWYlKUABCgShgMmEpMuvwE8Lx+PRra7ly8DyTTeitKwUKN+LB6csq9qZiulLZqBjMv90uWpxnQIU0I+AQRGLfqrLmlKAAhSgQPAJnML8oW1dgvfpOK7MQQdR0LL9SxGXOkWsZeFg6QJ0Z0N78F0+logCFPCbAAN3v1EzIwpQgAIU8CRgOrUBfdumI6fqgPQlOVg/ORHTDB2xUGx762gp7mT3GE983E4BCuhEgIG7Ti40q0kBClAg2AX2r5iM1En2bjHO0maIIP6NyT2dG7hGAQpQQKcCDNx1euFZbQpQgALBJ5Avusy0cukyI0qYvgRn1k9GSvAVliWiAAUo4HcBDgfpd3JmSAEKUIAC7gVS8NDybKS67EwbMYBBu4sHVylAAX0LsMVd39eftacABSgQZAImrBgahUmOUWbSsPnMFgxlk3uQXScWhwIUCIQAW9wDoc48KUABClDArUDx/pUuQbs8ZCuG3bcCxXKVCwUoQAGdCzBw1/kNwOpTgAIUCBoB0zHMTJ0kipOKrKwMZ7GyJ2HmhmPO11yjAAUooFMBBu46vfCsNgUoQIFgE9gy9z7r0I9p85ZhwYI3kJ3l7O2+MP0+bM8PthKzPBSgAAX8K8A+7v71Zm4UoAAFKOBGoHD380ju/6DYMx1HK+egs5wctXgvJiT2xUr78RnLUfTGRCTYX/M3BShAAZ0JsMVdZxec1aUABSgQdAJl+zHVGrQDS/Y8bAvaZSET+mDeplnO4q5klxknBtcoQAE9CjBw1+NVZ50pQAEKBIlAcf5+zB+XamtVFy3qY/skVStZm4G3INNly8L0Lnh+yzGUuWzjKgUoQAG9CLCrjF6uNOtJAQpQIMgEyo6tRlyX8dVLlbYERVsm27rDlO3FqLi+yK5+hO2V63Hu9nMbBShAgTAUYOAehheVVaIABShAAQpQgAIUCD8BdpUJv2vKGlGAAhSgAAUoQAEKhKEAA/cwvKisEgUoQAEKUIACFKBA+AkwcA+/a8oaUYACFKAABShAAQqEoQAD9zC8qKwSBShAAQpQgAIUoED4Cfw/ah6tBm8gv/YAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 11, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='discrete/f.png', width='60%') " ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AeydC1xUZf7/PzMDclFQVMDwggoVauCmlZabibWVbStmmK1iahehy6J2MzWt1cy01gvrGlqJJtpFf660uVr/DU3XVre0DTIpJcULgqgoKNeZOf/nzDA3bgLODHNmPs/rNc45z3ku3+/7OQ7f85zv831UkkhgIgESIAESIAESIAESIAEScGkCapeWjsKRAAmQAAmQAAmQAAmQAAkYCNBw541AAiRAAiRAAiRAAiRAAgogQMNdAYNEEUmABEiABEiABEiABEiAhjvvARIgARIgARIgARIgARJQAAEa7goYJIpIAiRAAiRAAiRAAiRAAjTceQ+QAAmQAAmQAAmQAAmQgAII0HBXwCBRRBIgARIgARIgARIgARKg4c57gARIgARIgARIgARIgAQUQICGuwIGiSKSAAmQAAmQAAmQAAmQAA133gMkQAIkQAIkQAIkQAIkoAACNNwVMEgUkQRIgARIgARIgARIgARouPMeIAESIAESIAESIAESIAEFEKDhroBBoogkQAIkQAIkQAIkQAIkQMOd9wAJkAAJkAAJkAAJkAAJKIAADXcFDBJFJAESIAESIAESIAESIAEa7rwHSIAESIAESIAESIAESEABBGi4K2CQKCIJkAAJkAAJkAAJkAAJ0HDnPUACJEACJEACJEACJEACCiBAw10Bg0QRSYAESIAESIAESIAESICGO+8BEiABEiABEiABEiABElAAARruChgkikgCJEACJEACJEACJEACNNx5D5AACZAACZAACZAACZCAAgjQcFfAIFFEEiABEiABEiABEiABEqDhznuABEiABEiABEiABEiABBRAgIa7AgaJIpIACZAACZAACZAACZAADXfeAyRAAiRAAiRAAiRAAiSgAAI03BUwSBSRBEiABEiABEiABEiABGi48x4gARIgARIgARIgARIgAQUQoOGugEGiiCRAAiRAAiRAAiRAAiRAw533AAmQAAmQAAmQAAmQAAkogAANdwUMEkUkARIgARIgARIgARIgARruvAdIgARIgARIgARIgARIQAEEaLgrYJAoIgmQAAmQAAmQAAmQAAnQcOc9QAIkQAIkQAIkQAIkQAIKIEDDXQGDRBFJgARIgARIgARIgARIgIY77wESIAESIAESIAESIAESUAABGu4KGCSKSAIkQAIkQAIkQAIkQAI03HkPkAAJkAAJkAAJkAAJkIACCNBwV8AgUUQSIAESIAESIAESIAESoOHOe4AESIAESIAESIAESIAEFECAhrsCBokikgAJkAAJkAAJkAAJkAANd94DJEACJEACJEACJEACJKAAAjTcFTBIFJEESIAESIAESIAESIAEaLjzHiABEiABEiABEiABEiABBRCg4a6AQaKIJEACJEACJEACJEACJEDDnfcACZAACZAACZAACZAACSiAAA13BQwSRSQBEiABEiABEiABEiABGu68B0iABEiABEiABEiABEhAAQRouCtgkCgiCZAACZAACZAACZAACdBw5z1AAiRAAiRAAiRAAiRAAgog4KUAGd1XxIpi5J0uAeqMgjegLcCHowfCZ/UFvDwoyH0ZUDMSIAESIAESIAESIIEmEahjMjapFgvZhUDmvGG4e2FWI23FYd8NNNobAcRLJEACJEACJEACJOAxBOgq01pDXbwHbzRqtAMxM5PByfbWGiD2SwIkQAIkQAIkQAKuRYAz7q00HgfX/wU7Rd8xcQkYHOpfR4qyMn+MT7yjTj4zSIAESIAESIAESIAEPJOAShLJM1VvRa0rsjHBLwbpSEBW+XpE+7aiLOyaBEiABEiABEiABEhAEQToKtMKw5T7+QphtAOxy5+j0d4K/NklCZAACZAACZAACSiRAGfcnT5qeZil6omFNf3GxMbh9/ePwNC77sCg/tEI4uy700eEHZIACZAACZAACZCAEgjQcHfyKBVlzkfI3XMb6DUG8zasxkvjBoH2ewOImE0CJEACJEACJEACHkqAhrtTB74Ua4cHYrK8KrWxlJCK02mJCOPS4cYo8RoJkAAJkAAJkAAJeBQBGu5OHm5taTGKK8pRcr4ARw5+i79/uhKrM+qJ5T5lE8pXxXPm3cnjw+5IgARIgARIgARIwFUJ0HB3gZEpzT+ItD9PxtTVtgb8on1nxa6pwXaVUKvV4sqVK/W2qdFooFZzvXK9cJhJAiRAAiRAAiSgSAI6nQ56vb6O7CqVCv7+/vDyUo6LAw33OsPYehkH107HwMnLLALEpqIkMxEBlpxrPhoyZAi++eaba26HDZAACZAACZAACZCA0gncfvvtirKLlPOIofQ7ownyD5i0FPsqz2FwkhwsUqSd/8aR0kQMsKflLpodNGgQvvjiC0MX1v+09ox7bGwsXn31Vdx9993WYvG4EQIffvghvvzyS6Sn19wzjZTlJQuBqKgobNmyBX379rVk8qhRArzXGsXT4MXAwECcOHECHTp0aLAML9gSWLx4Mc6ePYt33nnH9gLPGiRQVFQE+Xft/PnzDZbx5AsNzbj36tULxcXFikJDw93FhmvQE7MxRRjuqw1ylaLaAfLJBnr79u0d0PK1NSm/qvL19TW8trq2ljyntsxL5ia/6mNqOoHy8nLDa1Nyazoz3mtNZ2VdUnY/lO8z3mvWVBo/btOmDeQPmTXOyfqqzMp0r1nn87hxArKrjNISHZpdbcS8IjF2ZqxZKm/zEQ9IgARIgARIgARIgAQ8mQANd5cbfS+E3dDVLJUjZtzNjfOABDyUQNu2bdGuXTsP1Z5qkwAJkAAJKJUADXcXHLn8X04bpYoZiO529m93QXUpEgk4nUBFRQVkdxkmEiABEiABElASARruLjdaufjHQuMOTbHxwxDmcvJRIBJQPoHq6mpUVVUpXxFqQAIkQAIk4FEEGA7SmcOtLUJ21knAvxOujwqvd3Ol3M3TETlGDgmZgKzy9Yj2ta+AcjhIOe3du9e+DduhtcuXLxsWpyopnqod1L6mJmTjU47Nz0VczcNYUlJicJXhvgVN58Z7remsrEteunQJcmQZJS6Cs9bDmceVlZWGxeN+fn7O7FbRfUmSBPl3zRUDT7gy2H79+qFHjx7Yvn27K4tpIxtn3G1wOPJEi89eCkHMwIGI6dMTfv0n4LPsIpsO8/esqjHageX7ltjdaLfpzAVPZJ9jGu3NGxhGXmgeL1PpkydPQp51Z2o6Ad5rTWdlXVI2pGi0WxO5+rGPjw9otF+dk3UJ+R6j0W5NpGnH8uSN0iZwaLg3bWztUEqLy+esmslKR1xMCEbNSsGOzB1YNWsUug5NEgXikHH4ApLtvGOqVc88JAGPJyDHcJdnp5hIgARIgARIQEkE6CrjxNEqzfkME/oIw7zePmMxL+1VJCUMR7ADo+u7sqtMvViYSQIkQAIkQAIkQAIOIBAdHW1wldm2bZsDWndMkw40ER0jsJJbDYgaia1SNYrzT6OwRI5oUS1e18su710QHhYMDoaSR5eyK4lAYWEhOnfuDHkzMiYSIAESIAESUAoB2opOHykvBIWFi4/TO2aHJEACNQQWLFiAWbNmoUuXLmRCAiRAAiRAAoohQMNdMUNFQUmABOxFICUlxV5NsR0SIAESIAEScBoBLk51Gmp2RAIk4CoE9Hq9q4hCOUiABEiABEigyQRouDcZFQuSAAm4C4GJEyfi1KlT7qIO9SABjyewP1OP/AqPx0AAHkCAhrsHDDJVJAESsCWwbt06dOvWzTaTZyRAAookkLNRi8F363CSWzMocvwodPMI0HBvHi+WJgEScAMCSttwww2QUwUScAiB0mwd+oyXDG17O6QHNkoCrkWAhrtrjQelIQEScAKB5ORkFBQUOKEndkECnk1AK9xXtFrHMNDm6zEhxrReRQVvP8f0w1bdl8DgS5fQs7hYUQoyqoyihovCkgAJ2IPA7NmzDXHc7dEW2yABVyeQk6nDqjQ9MrOATp2AwK4qjBijxriRagRYCV+ao8e7myS0D7HKFIeVlyTc8LAXhnnpsTpDgo9PzfVKCZd81EhOVMPXuopWwo50HRYvlbBT9GlKMbEqzFiowbhBKlNWPd8S9mwW/azUI32n8XJMDDB8vBqPT9YgOtiYVyRm2scKo72miMiUMGeuFsM7AJegwmPPaxBOC6cevsyyJtBZbKajr6qyznL5Y97WLj9EFJAESMDeBEJDQ+3dJNsjAdcjUCFh8aNazJC36xbG77TBKixbLbuVSMgQhnWSMHz3/csLg2qMYa3wNenWXsL4JKPriVmhaWoc8JLEloHAoanCqK65EJOgwpwpKtvNA4vFLHhHHdJFmZg4FTJWa9C/s4QPn9Jh7k7R9mAtTu32wst31jXeK/L0mNpTZ2xfGPkbMlSoypEweYaErCw9ls3QY7momyzqns8WDwVmAY0HGQuFXoZDCfc+LQx366eSWmV5SgJKJaCSRFKq8JS7+QSGDBliqLR3797mV2YNEnATAvPnz0dSUhKCg2ssFjfRi2qQgJmAmPWeNVCLhWLGO26RBh+/bJwV1xbp8WxIjXFsKKzCcckL4eaKQNEeLUKGWkyDaRleWDrSaGivHVWNycI6nrZJ5MXXNr4lrBquRVKNRZ123BuTTA0LeaZ7a7GsgT61eToM7KmHPEGfsFyDtGS1+YFgz+JqDJ1hEfBAuTdixLSjV7keowJ1NcY6sO+CNwYFGV1zvDgtaQHGIxsCZTt34sKf/4zSYi0qsg7icjsNeg0caCgT8u67aNOnj015Vzvhre1qI0J5SIAEHE5g9OjRCAwMdHg/7IAEWovA/pVGox0JarPRLsviFazG8sMSVvcx+YZLeHOzMLitjPDgO72wfWY1Riw0Sr8sTosJ1d7otFVrMNoxRY2FVuUtOqrQ9zFhzIuZdUMqsVyBlwr948S5YUpcQkEprGbEJSwZaTTaZXnfszLa5RZuHSGW44nZdlMS3g3wkn1zxBsC60l17xqLxt5G+/nzEmbM0Jm6N3y/+64G3t4qvPKKDufOWT3kTNPgpptUSBOuSXv3WmQeIXR4+GE1vvlGjzVrLPm9e6vELs4aeEIfMo8hQ1p3aaVeL0F3yzB02xWLN57KQZvjI3H++kAs2rXLZnxd+YQz7q48Og6QjTPuDoDKJkmABEjAlQiUWmaip2zSYPmDKpSXmwQUri0lOgSK2W1Tip2nQeacWgZVhXB58TO6vJjKGb9VOFDihQHWFrO5gISU/lpMrfFr3y1mwO8UM+CmZJqtl89TD3gjcYDxSlGmmOG/22j8pmWJWfpoUw3Tt2h3lGhXNvpjVDh6wAsRspFeS8YDJd4NyGVqp2XfOp2E48dt60ZEGN82nDghXIiswlCGhQF+fioUFUkosXpwCRIcOnZU4fJlCYWFlrZ8xQNIV7HmwBP6kHVv1672WxoLC0ceyXz3/OVrnHnvI/w2MxXduxvlmHndddB37YpF333nyO7t2jYNd7vidP3GaLi7/hhRQscTSE1NxdixYxEk/zVlIgE3I2BtCDdNNRUuCHeZ2v8barvMyG0t3yd8zBtZXKotFf7oP0nw7qxCdI1xW1Es4ZvtOrwhwjburBFouTC+kwcYjSdrg74x47tUzNL7iQcGs6uAkwz3pjFkKVclkC3WQ8ybp8Ojp15F1IuPot/DvzGL+mz37vAShvvyffvMea5+YL7/XV1QykcCJEAC9iIQFRUlImOYQmPYq1W2QwKuQeDkjxbXjdSvNLhVRFqpL5lniv1VNi4nprKyy0yGcJmJq3GZkfNjBzY+Y+oVoMKAGsO+OFeP9St0mGp0bDc1W+vbamY6Vo3u9c7kG6sENHKtVqM89XACpeKtUu7729Dn3t44c6YvFopoRpGRb9WhsrtDB/SQQy0pKNFwV9BgUVQSIAH7EBg2bJh9GmIrJOCCBDr1lI3rGuNd+LQPqON60nShRz4hXGgWWtxqporjOm41tZorFdFh3n1Vhxnpxgup2zV44n41Pp1QjfE1eeYqYoY+0zQNL3zjC0Tc92DZf52JBFpA4MIFCZs26XF+5Xu4v8+v8E68G/feVMsNrAXtulIV99LGlchSFhIgAZclsHnzZuF/auWA6rKSUjASaD4B6/2O8k5bZt+b3xKwcbHFaJfr75wrYsIfbLilov2y/3yN0S7CQR4VEWAShdEuzxLKri6NJwlFVy3TeAu86pkEJBGLvSDzICZN0on1AsCTH43CgI8XQ922rdsBoeHudkNKhUiABEiABDyZwKXjFmN9oTC8r2YL71mlQ2ZeXWJ5n2kxXgRtl+OxT4m1XE8SYSZzrZ8OTJfETqb3DDYZ+ioc/lgsIrWaPa/XOU241txh1XbKR6b6pkZtv0uF+02miO1eN8lvGZg8jcCpUxJS3ziNgkcfFXFMz2D9eg2eeUaDkL5d3BYFDXe3HVoqRgIk0BCB+Ph4hoNsCA7zFU+g1yCrP+079UjbX5+ha1QzX0R0GZqkxwlz1Jka9UW898lxxnqr13uJnVet2hRuOE8tqWtg54pQhzUBZRAzT40oK6O9YagqtLe6mDFVhx35VhnWhyJazjORYpHr1/XpI+HXqz2hWLfFY0UTOHGkHG+8ocNzz+nQpX05Oi9Zgi5jf4/27d3/Ac76f6KiB5HCkwAJkEBTCewSMXvLysqaWpzlSEBRBIIGqjHFSuKpYrfStfUY73l7dOgqh2EUsdMfjbKqIAzzFLHT6U6RJW++NEheFBquQVaqxSjaKeKar822rgOUiXjnppQl/NWLTSfyt9iA6ZdjlgwfEQPdlO6fZjmW80Z01dZ5A1AhZvOn/1YOT6nCyok1posIw2htq/fuaGqR3+5KoFSsiShNT0dW3BTceKMKH3+swag/RcK7Z093VbmOXjTc6yBhBgmQgLsTyMnJQWVlpburSf08lYDY7Gj6BltjeLIw3odPF7PZe/TYk6nDfLFQtOdQ46z5drGzqvXkePZaEQlGjpkep8bcmh1TZZTRiRrMi7VAnRxj6zJTbf1fSsz0Jy/WIVu4tWQLv/fpNbu4mmofzNYjV+R/JkL1hY8U7caYrsjfEu7uWY0J84Wc07WYLj5+XXVYJqbzF+3WWGbyRbz0UKtqS1frIXvwZG/WQqXSIqc+dx6r8jxUDoHdu8SOvEk65OUBuvPncV/mOxgzRuwG7Gt7nytHo5ZLyjjuLWenyJqM467IYaPQJEACJNBMAhI2Jhp91BurmCbisk8yxWUXhm72P7XCp904c54mYq1Pqom1bmpjz6xqDLUKDynP1h9N0SBCBIGvyNXBL7KuC42hrvCTnyYM8mXyA4FVik0Vmz8lijlE4ZozIaS+DZ8shadt0GDpONv5xs3iAWRM7Ug1osqUTcK9p97dXS3t8cj1CRz98Qo+f2Itzve+C/c/19fuO69GR0ejR48e2LZtm+vDqJHQ9n+AYsSmoCRAAiTQcgKHDh3ijHvL8bGmIgioMG6VN76ycm+xFjsmQeyAelbsUmoy2sXFVfHVZqNdLjtZzJKnWEWQyV5Vy2iXC6XrEdmx2lDON0KD41+pYTN5LorMTNOgZKsXli7XwGrCHlPEeYZstMtJhK1cX+6FDfPqmUEVu6VuEg8RtY12udqoN2zblPPmid1iabTLJJSZ5F1Of/jB+PB44W+puPduPeal97G70a5MOgBn3JU6ci2UmzPuLQTHam5FYP78+eK1axKCg4PdSi8qQwL1EdCKnUsPH5MgXMINqVN3NcIdeeuLmfv8s8Lw8gY6Bqts3HAg4rQXCT9lXxFNJsDaP8dKcHn31dNnhVu8yPPyA7qGqSy7pVqVMx+Kgnl5kqF8SLhoV449yaQ4AlqxDmLHhkLsXvsTbnl6GB55RA29WIuk9vd3mC5KnHHn7e2w24ENkwAJuCqBOXPmuKpolIsE7E7AK0iFaPFxWhKWRZgwtutNwlgPvopfsrz7anhzdkkV/YVHNNBfvUIw09UIVFRImD76Z4w58hKeePNV3Cj81+XkSKPd1Rg0VR66yjSVFMuRAAm4DYHCwkKxSYfYpYOJBEiABEigVQiUlUn4dMVp6PXibYl4a/LCTH8M+/4jYbQPahV5lNIpDXeljBTlJAESsBuBBQsWoKioyG7tsSESIAESIIGmEZBn19es0eODgfPRfv2foVar0K6dCpF39oC6XbumNeLBpegq48GDT9VJwFMJpKSkeKrq1JsESIAEWoVAVZUklj1UY/ZsDbp2BcZMuwHdJs1oFVmU3CkNdyWPHmUnARJoEQG9Xi9mefjCsUXwWIkESIAEmkHgrFiovCX1NG45vBL9F07Ba6+Fi52r5TUJjzajFRY1EeBfLhMJfpMACXgMgYkTJ+LUqVMeoy8VJQESIAFnE5B92BeLTbiefFKHnj9+jOsfvtWww6nRaHe2NO7TH2fc3WcsqQkJkEATCaxbt44z7k1kxWIkQAIk0BwC8gx7+zNZ+Paz0+gSfj8++kgNf7/noeJbzuZgbLAsDfcG0fACCZCAuxKgm4y7jiz1IgESaC0Cx49L+PBDPdoeP4jxVcsxeO5ruOsGk2MHw3Xaa1xMRO3VHtshARIgAZcnkJycjIKCApeX0/MErEDJqun4tX9/HE9MQbnYrIfJvgT0xfkozdyI/MThODpqFdwjKGoFKnMP4vyqWcjtn4jLpfZlxtauTuCvz36PF17QISpKhWfndUfo+vXwueH6q1dkiWYT4Ix7s5GxAgmQgNIJzJ49G507d1a6Gu4nv/Y0Lq9cBn0WxGcqin73e/SIj3A/PVtBo4rMFJy+eyqMG8nXCBA3thUksV+XUv4e5D/zGsozdlo1Gmero9UVHtqXQG6uJBaZSpBmJ2HgxRAkfvQbtGkjz6x3sW9HbM2GAGfcbXDwhARIwBMIhIaGQqPReIKq1JEEDARUbW9Ax927ETAl1kKkxHKoxCMJbeDzyDMImBlnET/2Dvg0Z9dVS00eNZGAbLC//splzJihg4+3HgFisf8dn75RY7Q3sREWazEBGu4tRseKJEACSiUwf/58bsDkioPn1RXtnpkGdUwMvKYsR/CDjpptLxXuIntQ6UGuOD6D7kfQnXcieLpjZ9l1uftRkp3vlLtLHTYIncfFI3TmTJiNmcD24CO54/Bnrvwe3w1/DDdfXyoWnWoQ2MELfkOGOK5DtlyHAF1l6iBhBgmQgLsTGD16tHjFG+juaipQP18EJi4VH8eKXrbxRRSO34fQkh/g4+vYvlytdXXXWyH/4Rc7zNs/VeTgdORgVC/ah8DoMPu331CL3t4GY10vX1f4W4SGVGzN/J9+kvDrrxIefFCNLgX/xW2fTkW7Qde1pkge3TcNd5cafi2yd2zFgYIq9Ll3NAaFedhfFJcaCwrjzgT69evnzupRt0YI6LLXIn/8alEiDh4Z58IbDtK7FOee6oMqQdbLV3TCpHgCBw/osXveP1ByQYv4VaMN+vSd5+CnasVTc7wC5rdLju+KPVyNQNGeJYgZMQaTJ4/H1yfLr1ac10mABFpIIDU1FcXFxS2szWpKJSDlZ+JkzOQa8QOg8lOqJk6UW6uFXnykRqfotShZPAEX02vk8vF3ooCiKy8+KNgb+OnTErbOysRvffdi5v8NRd++HvmYa2+sdmmPhrtdMNqhkdL9eGroDHNDnLAwo+ABCdidQFRUFHx8fOzeLhu0A4GKYlzZsxknR6lwYm123QbF9bL9n+HM9FE4OmEtZPcIff5BFM5KNISRzFX1x68TZuFiru2DWVX2ZhzrereVi0g6iuYuRsHixchfvBEVtQxTqSgH5xYbQ1PmDh+OX4ePwon5q1Ca11CsQS0qc/agYLocZtEoV/mOFCHTKJyen4i8WZvNfWvzc3Bh7XzkqhJxRe63OAdF86eLcxWOTxd9Ch3y5m9EeUNdGagUo3TzKpyYMNxQL1eE0JRlPDl/LUpr6V4X4tVzqrJ3iJCRgrFwQ/lVfHK9VThaI1elDatiXJh1L87OyDA3qk16BWdSUnBGXkuyJ8+cbzpoPtuamhX5uJAyS/AxyiLzyp0wH8W7f/b4SDJlO60j65hIN+/74P5KLB3zpaFShw7A65tuwy2fLIZ3SHDzGmJpxxKQmFyAQImUlmD43ZEjdRk+yw9ccIhcd9xxhyR/mEiABEjAdQiUS1d2Z0inp8RJR8RvoOlzbPkBs4j607ulE3Gx5muGMgmp0qXty23zzPVjpAunq831r2yY1kA5ub9YqaTEXFQq277IXPbYlCnS8ViLTHK/J9IOSPqa4rrTWdK55TOlXHO/ouyUVOlCWt3+Tr7+knQsxrqtOOnsplTpqHVdm+ME6ZKVDiYJtUe3S8fN5WKl06lpUsGiKWaZZRmPzcuQLNqbaorv8gOWurGpktbqkumwJDXB3Nap1AzpithZp2TDTHPekdjlUkVNYe2Bhvgb9cxdtM/UrOG7OWytK+qOb5eOmXSOmSIVbf9KOp+2yIa7gWMDOlm35Y7HJ++6q8VqHT2ql6Y9Wy79o/tI6dsXVra4HSVWvOmmm6QHHnhAUaJzxt2xz0VNaj1HLJSabHrF2KQaLEQCJHAtBDZv3oySEq5iuxaGdq1bcQTnXlsDRPRq0P9aFRCGtqPGok1sTc8x4js9CWdHTAVip6HDV/sQsmmRlVhZOD/jU8OMvJzp98hSRJbsMyzMNBaKQ+iFakRK1Yio/hIBNSEEK3bMwukR8tvPBHQ+Xo6eq1YhPLMaoWlTjNXEv5WTByJ/hzFyStV3W3Epc5+5H8hyrU7C+cnLoIqVTyxJl++LNsOtQhciA5fGJEGKSUDApgx02pQKW6ePdJztuhDWwW9kH/1jkSNQLTebkIru1ZkIS5yE0JdXoffRDHN0Fe3cOBwXGyzJPufNSfqctShMMv5BUs/bja6JI+EfHo6AcW8ibMM0Y1M7p+LsZ8aZdM2AZMFQQpdUi15ey/cZ8iKqq9Hr5UHm7pvL1lRRyt+B4z1HGN9YCJ17/LAKne8fjo6TXkbv8sPwr7kn5FkvpqYTKM6/Av2VK9iwQY8HRkj43dfLccs7Tze9AZZsFQI03FsFu6VTbd5nGCsvlIqbhw3LLX8YLCV4RAIkQAJuTsA3Gj0ytyLs5aUImmZr7Jo1D4gQhloiui1PNWZlGb+8Fm1H78yl6Dx8EALjX0aPr+aZq+B0qdmgVnmJbOHyobJchcpLzvSq+RaHwmUxf8RCQ4n2We+hQ7gpQIAXAiYtR/sES+XyEW+jXLiM+I6cg95bM9F1U41RWyOXOvUAIjJ/QPd9m+A3ZQr8U79Ct1XzELb0LRF93JLU0zah5w/rERo/EkHxiQiXzqL9FGsGc3Ehs6imQi7yzT76sQhJSYSPrEJNUkeMRLfdVg8vGUko2Jhjutyk77Ivt5rL6X85abOzqm90f/O16uPnzcfygQrWwdONjx8yXzPvFrA1dlCMswkjasYxAV3eS7ThB98ohCy00tlGKvuc6EtLcXHFClwSD3HWqWTNGkO+zmq9zJXPPzfkVeVYuFd8+60hr1zE0Tel6hMnDHmXN20yZUFfUWHIk/uyTiUffmjI1549a86+8sUXOJuUhHOvvIKLy5dDe+oUzr30Es7Ex+Pciy+ay2nz8w11Sz/6yJz34w9a/Kv3gyiIHQqpqgpz5qjxu9/7oWrff4z9iDqmVPbVV4a8yu+/N2Wh8scfDXmyDKYkyybLLctqneQ8+SPrxmQfAjTc7cOxha3kYeHIOMi/8xkrZ2JQYFkL22E1EiCB5hCIF3/cGA6yOcScV9anv7XRWrdf21nVOHROvt88yyyXbhM9xHK+89+oaNRP3Lb9y2kLawzEafDvVg3ZINPWfHQV1fCy2Wz3B1QWW+r73GgxahEzU8yCDzBc9BkUj67C4AtLHF4TX7wr/OIs9fwfv8/qLYCcH4zgv30C6xUYZWnbDAZ0xWcfoLKmqnrenxEYZGnHdNTmzqfR3qr9qvGrDA8YputX+25z8x3mIqroCJuY6Cqr1wH6zG9tjHpzpQYOWspWl/0pSncaG1UvmoJ2pmcpq368bri9FkOri/Y4FA8gXtddB02XLjatacRGbnK+8QHQeEndsaMxz9+yQFfdrp0hT92+vbm+SqyxkeuqrXZwVqnVhjw53zppQkKMbbaxPPJpgoLg3asXvHv3hlfPnlD5+sJLHHtHRMBL5JuSStQxyB4cjIvnqvDCCzosfEuPTt380e31FyHLpBJrBeSkEWUM+lj1oxbO7oY8oYMpqdu2NbYpZDAlcz9CVusk1zXUF7ox2YeA1bO6fRpkK00nsGfxZMwVVvuUDYcxMswL2aZf5KY3wZIkQAItILBr1y7cdttt8Lf649qCZljFEQSa+zso+4xYG3MBHSwxvdEMqx35KP3AtMByGc50XHYV7Xai7NdidAg2Gi+S2aQW1XqF13J5aaSpajFtXzt5RaGTcM3JnyzexsrpdKVY/CQ2jVpjfBsgZ6nbt5W/6kkBCEyaiUsZprLLUHJ4HvyirWfE66lWk9XmzufRPeseVJV5w6d/dE1uBSoOfoPiVVazqSUNt1H3SkvZ+onZ2iRzc/733GQ+tjnwa2uZ2be5YJ8TtZ8f2j38cJ3G2v7+93Xy/O6wPPiYLrbp0wfyxzp5CaO/dpuy8Vs7T67T9v77rasajn3F75f8MaWLS5eiw9N13Vw04sGgsN+D6LwrDUe/K8HvfjcK997rDbX6U1NV87f/PfeYj00HvgMHAvLHKhkeGKweDuRLGmHg1yd7fXlWTfGwBQRouLcAmj2qFO9PwdAZYhohLg3vjIuyR5NsgwRIoIkEcsRr7P4iCgcN9yYC84RipQWolF9/iqSakoqQ526FyuBIbsyz/FsNqVqeeq6G9w0NGMPNMmotLVsf+Q68XZzWGO7iyOxyUlOozU22s7/WdX0GjRBvHUxvD8SKzvoeDqwr2Bx7wSd6gHHGX1uMks3rcW7MVLPLkU3Rpp60mG059IVN7YTlahP48UcJaWl63HDmS4y9Q4sB0x6A2pcz37U5Ke2chntrjFjpQSQPnip6jsO+tEk2noGtIQ77JAFPI5AkfEOZSMCGgLDFTcaxVOiDtsJ4bU0Tx2YGXxa04jTKTS8ExKnuciN7fYgZaFl2w06ict1mJzG7v/FdnB0/wxDmTD0tFdfNegJ+59Pxa5/JzW5Nfv3QIrbas6iy0rn5HXtOjZB33zUrK/ubr03KRKZvPB57TPivD7sXGl9r5ytzUR4okAANd6cPWik2PjMQ6aLfeV+txCDjW1anSlFWVoaffvqpTp8dhW9el1o+fHUKMYME3IDAoUOHEBkZyVjubjCWDlHh2ElD1BZXMnUk31D4CN91kyGrO36pYdV9u8M3Frhc4xvecMH6rhShcFQISmsM5rbbj+K6+yMMBXUFzfVjqqf95rAtP2eMnmNuhiaLjEJeLCsvtFYLv3ZTkl1xDh2S0MHnClTTn0Cf257E47M1wiVGfmRypTvZJLFzv/PlRboXL9bptEKBi2b5v6DOMDo2I3fzXIwXVnvMzO2YOTzMsZ010LpstIu4pXWuPv7445g7d26dfGaQgLsR2LJlC+RZ92CxGIvJUwnUcnMRbjHmha9Zc1F8cBq6DKhVxgqVlJeJwp3eCJl0p2Nm5q3ddPqLhZHy8ksrFxzttzliRr2BtwIVwu2nRUa7FhfnjzUb7W3E+iuT0W6levMPW8w2yuYBpOLfYsJpgCW8ZPMFcY8al8TOz2369UPbmr/jOTtP4MN/BOHYGT+kLtcg4OOPESYWkDJZCCxZsgRyGODaqaCgADfccEPtbJc+b803gS4NxhHCyaEfR4+RFzxNw5Z59zt2FXwjCtxyyy04fvx4nQ+N9kag8ZJbEZgzZw6Ndrca0ZYok45KMXFpTgHGWWrT+eUX08w7nZryLN95ODPyblzeetKSZeejK9s+MbfY9tE7hatJAPxHWYWLSf8UV4rNRWwPqsssDyEiHn2765v4ald7FKVzTRZ/LAJ/Z7v+yuTuYugs0LbLRs9azNYXKqt+tFM/biBCjlW4G6vyjcrkJhf3vfgBfkl4DncM0SA9XYP2IX6Qo74w2RJ455136tg8sh10/fXX2xZUwBkNd2cNktYU+jEGm46+jYh63nVY/fTAx9vPWZKxHxLwOAKFhYXQ6XQep7ciFHbkW33rmV+xxsinozWRYLR/coolQ2wylJe4FpW1g75U5KFgQk+UiYWsHd4aXf9sezOMR5V3PX8MxDqoC2YDeh461vhUBvwx2ewrLoII48Kn2RZ5rY60//va/NChnidCKFq/OLBmUFvO8jKrEI87USGi5linqmN5ltOM7eY+jJnWT0GWYsajlrINQHsRIceSlqFwyR7Lac2RdDrb4lJz7JKVDnWKKjZDd/485Hjw8uf8waM48H85huMOfhW49/s0PPiwPzQam0crxepKwRsnUM8vRuMVeLVlBEqzMgyhHyGitqcvfhYZws/cJomQr1mr081ZK+c8hX/LP7bCl637I2/hTUaeMbPhAQlcK4EFCxZg1qxZXNNxrSDtXl+Lyh+ERWxKPtbTGcZMlbe1ZR8A69jihhLlV2wNN+sm/PytDO0MnF+9B22Tb0eZcGE8M+Y8wkqfE5v7rDbvNiqtnoyTq7ei7YYktItoi6r/7cKlpLmGRZ8q4e7YKcriY2xjMpXI4Rubli6v+ALBq+Kt5CpCkVgHZXpeaLfvOYuHcvBwhC6PQ8FUowN6dVICzt+zH50iLHIAov5rM2o6j0PwtDttBJFOZ5nbRsZBVImO/BqwBC4Pnozzu+fCL9gbFV+uwIWplig3iOmL6rwc4Ud/HO0niVj6nXqZ+9FOXYqSP6YhwOsw8jvGQCtcbsJHt4yt7/2J8BMRckxLcbUzhuI4tiPs+fvRRsity9uPgqfGm/tG1gwUprSH/013odNw2zcGlkLKO6rOy8Opdzei8F/fQX/pIoJvOYfLmwogby3gVc3NjZQ3oi2XWCWJ1PLqrNlUAqUHUxA4cGpTi9uUi11+AJnJA2zyWnoyZMgQQ9W9e/e2tAnWIwESIAG7E5C0Fag8sAUFg8dbDMuYaQjZMhcBEUGGmWapNA/n5k7GpWUmdw4R43r7YYTeEwW1MOKkinxcmJeA4oWW6z5p+9B10qAaw7gC5yf4odgyR2LWo82mw+gRHwVd9kYci7EyBM0lrA6mpKHHqknGHTyF3FWnf8L5qZNxJcPy0OGTthuhD98K7wDh7mFVVczGoGhUoIizbslUJYhZ9cnit/nyBZQtG4PyGvF9hEzdhUy2qRQXZsXhglnHOASJXV47RYv1GuJtQNHUkbi0WpYjFkGHM8TDhWm6XQtd0VGce1X4sBuuG1v133QAIQ/GwMtXtt4Fn0TBx8o+t+7bZ940VM6tHd8+Dl3KxcPN6Y3IjayP2zSElS+Fv3i2aDbbms6lvB041tO0e6q1RI0dz0TX6jcbfChprKYrXrt8WcKb9/8T99xchJiwQviJGPsmH3dXlFcpMkVHi12be/TAtm3blCIyaLg7aai0YiHTS1PTcC7UH5b91Gw7L9y3Gqbf/Zi4BAwWZcvKCtE9Tsy41/nxtq3b1DMa7k0lxXLuTECv14toC/QUdJkxrshGnl+Mxd2htmBxqej18a046WeZibYtMgXXnU7Eua4D628jVtTPTDRszFTXCIyB/6Z0hMVHm5vUi9/rU8KHvcpih9dci0HbTWnoEj/AbIxfWTUBZ5LqeRKoqdHuwAWxyNXax7yW4R4TB7V4I2sbujEO7fetRPCghgMYlO1IQcGI+uOrqxIWIXTJ82gXLBvjxlS2doLY0KlhOQMOlCBUXowrjP9CYfxbG/eqhJno9PpMdIgQRv2se3He9NAQMwWdP3sHHcLlh4MKFM9/FOfnWp5IVHHz0CVtDtpaqd8ctibZDd/F2TiTnIAr6baDokpYji6v34yiyKHQxgh//hmT0eF3d8A32PothE1Lijk59nM5/vXaF5i0Pk649olNt/TVaOPfBsVvv22zOFUxCrmgoDTcXXBQlCRSjvhh7VPzw5qaVY7EaPv/8NBwV9IdQVkdRWDChAlYuHAhunXr5qgu2K4rE9CWCvv0rHBn8UOb8DBoLPatldTCbSfnMKouVRvccVT+neAbGd5AWatqVz20NdzbHy5HcGS1QR59dbUI8xcI34gwK9eZRhoUepQf/kmEeDf5oreFT5+b4B9uZSk3Ur2xS7qifGiFOKqAjmgj3hpYJ11REXRevvAOEq5K1hfEsa4oD1UlWqgDQ+ATbJrtr1VIvFNpKVtD++eFf49wgVJ37AqfIFk2eTxL4SPGsrY8tXtWwnlxsYSVK/Xo+7d4dBh5P2JTE23ErvjuO2g6dYK8gynTtRFQouFe78/VtWFg7ZYSqLYKkVtZLXv02f5YtrRd1iMBErAlsG7dOs642yLxrDOvAGEcN2RUmlCIHUSjoi3+5aZsO3/rysRvvVdQE+Spp2Ohh1/0IPGp59o1ZmmCxQNNA21oRBjVhq+FC5/4Biqas1vOVhNcX/tiPA2z/uYOFHlQXi6hTVUJ3n+/HcLDVfjdV++gXZ+IOrr4ishwTJ5LgIa75449NScBjyVANxmPHXoqTgIuR+DiRQmblh9Hv10LcOv7MzF1aiDatJHfHdQ12l1OeArkdAJ08nQ6cnZIAiTQ2gSSk5Mhb7zBRALOJ6Ct5c/O+TPnj4Fr9KjXS/jgAz0ee0yHzkd34aY5j8E7IqLGaHcNGSmF6xHgL4brjYlBIuuAZy4qIsUiAcUSmD17Njp3lgOpMZGAkwloT6HCsn4TUrUp8KOT5WB3rUZAqxXB/ArzcXzrf1Bc/pAw3jViQ7jJrSYPO1YWAc64u9B4RSeuhxydU/4k2kQhcCEhKQoJuAGB0NBQsVlJQ166bqAgVXBBAhWoyN6Dgpem2kS+uSJipRds3oHLOflNjv3ugspRpCYQkA32rVv1eOaPhSh69ll0iQnDiy/KRrs7LKltAgAWsQsBzrjbBSMbIQESUBKB+fPnIykpSfzBvOoqOiWpRVldmUDFERSJrel1MTHwTkiwkbRi5QxcuX4Geq4a1+CiT5sKPFEcgW/3XMbSv2oQHtEGr8xug9DIdKjbtVOcHhS49QnQcG/9MaAEJEACTiYwevRoBAbW3u/dyUKwO88i4BuN7j/84Fk6U1vk50vo8PMuVE9bhlfXfYq+v5Hf9HUkGRJoMQG6yrQYHSuSAAkolUC/fv3g48OVJEodP8pNAq5O4Jtv9HjySS2OHZNQnZuLWz9fIYx2/ua4+rgpQT7OuCthlCgjCZCAXQmkpqZi7NixCAq69o1q7CoYGyMBElA0gZISCUsf2wvv8mI8Ne/3GDRIzI8OeVLROlF41yJAw921xoPSkAAJOIFAVFQUZ9ydwJldkICnEPjlFwk33KBC3uffYVTVB+iXtgBeYXRq8JTxd6aeNNydSZt9kQAJuASBYcOGuYQcFIIESEDZBI4ckfDRspO45NsVf/mLBn2Gd4fmj2ugUjFSjLJH1nWl5+Og644NJSMBEnAQgc2bN6OkpMRBrbNZEiABTyCwcqUOn8cvwQNH5+Htt43mlFeXLjTaPWHwW1FHzri3Inx2TQIkQAIkQAIkoBwCZ89KKCnWIfJGL/TqpcLg6SFo/+izUKs5w66cUVS2pDTclT1+lJ4ESKAFBOLj41tQi1VIgAQ8lcClSxI2rK/G2bRPMGleH+DGWzBihDzLPsFTkVDvViJAV5lWAs9uSYAEWo/Arl27UFZW1noCsGcSIAHFEJBDOj72mA5dvv0YU+79FeH3RCtGdgrqfgQ44+5+Y0qNSIAErkIgJycH/fv3h7+//1VK8jIJkIAnEtDpJOzZI+H24MMoQ1+sXq1BZ6/fQ9OpkyfioM4uRIAz7i40GBSFBEjAOQSSkpIYw905qNkLCSiOwK5dejw2rgL6V5NQLt7O9eunQmioika74kbSPQXmjLt7jiu1IgESaITAoUOHEBkZyVjujTDiJRLwRAKzX6nCxVINZjxzGZH6P8I/NtYTMVBnFybAGXcXHhyKRgIk4BgCW7ZsYThIx6BlqySgOAI//yzh8L4LuLBgAUbfcxF/+5sGMXcF02hX3Eh6hsCccfeMcaaWJEACVgTmzJljdcZDEiABTySQny8J33U9Dh2SsKRXCryiIzDwnhBPREGdFUSAhruCBouikgAJ2IdAYWEhOnfuDI1GY58G2QoJkICiCBz+Xzn+Nj0bv028BbNnq6HRzoDaz09ROlBYzyRAVxnPHHdqTQIeTWCBeCVeVFTk0QyoPAl4GoGKCgmff66HtqAAXi+Nw7wZZXj0UTW8vVU02j3tZlCwvpxxV/DgUXQSIIGWEUhJSWlZRdYiARJQHAFJkpCRIeHDD/WIi1NDX1yMnquXwLtXL8XpQoFJgIY77wESIAGPI6DX68UW5Xzh6HEDT4U9ksBbE79Hn0Nr8M6mv6J3b5VgIHY+ZSIBhRLgXy6FDhzFJgESaDmBiRMn4tSpUy1vgDVJgARcmkBOjoQff5QMMj6ED3H/3xJqjHaXFpvCkcBVCXDG/aqIWIAESMDdCKxbt44z7u42qNSHBASBwkIJ698+geNZxZib3t/A5MZ1S6FSyTPtTCSgfAKccVf+GFIDEiCBZhKgm0wzgbE4CSiAQG6uhAWPfIOhO5OxeGUQQkKMxjqNdgUMHkVsMgEa7k1GxYIkQALuQiA5ORkFIrIEEwmQgLIJyJFitm0pMygh1qBi7nw/3LJ7I/wjw5WtGKUngQYI0HBvAAyzSYAE3JfA7NmzERwc7L4KUjMScHMCxkgxeiy662P4vP+GQdvISBU6Dx0Addu2bq491fNkAvRx9+TRp+4k4KEEQkNDPVRzqk0C7kHgqad0CA0ow+Rbf0LPudPcQylqQQJNIMAZ9yZAYhESIAH3IjB//nxuwOReQ0ptPIDAzz9L+GHtXmjz8zF1qgZv/KUdIlfMh1dIiAdoTxVJwEiAM+68E0iABDyOwOjRoxEYGOhxelNhElAigbNnJbz3nh6av6/Bo9d/A/Wj7yI6TF54ykgxShxPynxtBDjjfm38WJsESECBBPr16wcfHx8FSk6RScCzCJzMPg/ZLaZbNxWeXTUIPT9Kg9rX17MgUFsSsCLAGXcrGDwkARLwDAKpqakYO3YsgoKCPENhakkCCiKg10v46osq3JK1DFX6jliz5kl06iTPrscoSAuKSgKOIUDD3TFc2SoJkIALE4iKiuKMuwuPD0XzXAL/+Y8eqal63No+B4NuDkHvhASovOkS47l3BDWvTYCGe20iPCcBEnB7AsOGDXN7HakgCSiJgFRdjS1PfYLPVY/i2WfVuHXgTVBpjDufKkkPykoCjiZAH3dHE2b7JEACLkdg8+bNKCkpcTm5KBAJeBqB8+clHDwo4dyLLyLS95hwi9HgttvUwmjXeBoK6ksCTSLAGfcmYWIhEiABEiABEiCBlhIo//e/DVX9fvtbw3d1tYQtq85g4/8LwVtvadDhhRcQ3KNHS5tnPRLwGAKccfeYoaaiJEACJgLx8fEMB2mCwW8ScAKB6txcyB85leYVYVNUIs4fPILVqzXo00cFbxrtThgFduEOBGi4u8MoUgcSIIFmEdi1axfKysqaVYeFSYAEro1AwRnJ0MCFPQfwm1f/iGfW3IXQUC48vTaqrO1pBOgq42kjTn1JgASQk5OD/v37w9/fnzRIgAQcRKDiwAGcnzkTVWXVKM36BaWqDmibuRGy4dF74UIH9cpmScC9CdBwb8XxLcrdj23bvsQvxy6gXMjh17EX7hkVj+HRYa0oFbsmAfcnkJSU5P5KUkMSaGUCPgMGIPeVf+BswjiE3DIS/cYORMfHJxql8qL50crDw+4VSoD/c1pj4CrysHbmZExetrNO7wvnTkXMtA3419JxCK5zlRkkQAL2IHDo0CFERkYylrs9YLINEqhFQN5A6ecDJehza3tcrvDGXTuWwud74987lbd3rdI8JQESaA4B+rg3h5Y9ympzMcuvp9loT5gyDVMSYm1azlo2HmMX77fJ4wkJkID9CGzZsoXhIO2Hky2RgJnA999WY/Xtf8Hpf31vyHvgATWCY3pA5eNj+JgL8oAESKBFBFSSSC2qyUotIpC9agJiktIRO3MD0ueOQ5ivsZnS/P2YO2IwlmWZmo3DgZKtGBBgOrfP95AhQwwN7d271z4NshUSIAESIAGPJyCbEnPn6qH69xcYFfMLbl7yJ8Zi9/i7wvUBREdHo4eIaLRt2zbXF7ZGQrrKOHOoKnKwQhjtMTO348s37zcs0DF1HxA2CEv/tRvHQoYioyaz2nSR3yRAAnYlUFhYiM6dO0PDTV7sypWNeR6B8nIJ1SdOQtOtO/r1U2H09CFo0/EBzwNBjUnASQToKuMk0HI3pUe+xGpMw5Z5tka7WYTgWzEqznzGAxIgAQcRWLBgAYqKihzUOpslAc8gsGOHHn+5Kx0l8+agbVsVHn1ULYz29p6hPLUkgVYiwBl3J4IPiE6G2CzOZqbdtvtqVJoz+qKLnd1kzE3zgAQ8nEBKSoqHE6D6JNByAsXFEmbN0kMtpv6eH1WOsD+taHljrEkCJNAsAjTcm4Xr2gs3Brwi5x9IqvGTWb7vJYRfe3dsgQRIoB4Cer1sdPCFYz1omEUCDRIoK5PQ5uIZfLvmZzz00F249175/9CUBsvzAgmQgP0J8C+X/Zm2qEVt/h5M7TPeUDd131kkDwpqUTusRAIkcHUCEydOxKlTp65ekCVIgASg1UrYtEmP5a/koejpp3Hn6LAao51wSIAEnE2gsQlgZ8viof2VYs/GhRg63rKLXF7ur6gYFIyagDMeyoVqk4DjCKxbt44z7o7Dy5bdiMC33wqDfbleRN5QYeq4SnS+fg00nTq5kYZUhQSURYCGe6uNVzF2pMzDiKnL6kiwcPxgLPw0FWe3JjpkE6bz589j69atdfqNiIiAHBqJiQTcnQDdZNx9hKnftRK4ckWCr7YEx6a+jedT/owBt2hEkzdea7OsTwKtQuDgwYM4ceJEnb5LSkrq5Ll6Bg331hqhihJcQC+kbUjD2R//gw0LV8Mcwl2WKSMJT626FVsTB9hdwoKCAqxcubJOuw899BAN9zpUmOGOBJKTk8Xiulno0qWLO6pHnUigxQTOnZPw3nt63HefGuGbF+H+p/sg0GC0t7hJViSBVieQmZmJL7/8so4cxcXFdfJcPYMbMLnMCFXg4MZ5GGjlMgMkIKt8PaLt6DPzWEyMQeMPs2weE1yGAgUhAWcQYBx3Z1BmH0oj8Omnevzjg1O4Z1w3TJiggnSxGJqOHZWmBuUlgSYTUOIGTFyc2uThdXRBXwwY9yYOb5hm1dFpnL6gtTq/9sMu5eWQP0wk4MkEQkNDufmSJ98A1L0OgewfdNCteBMLRmRi4kS1WAOiotFehxIzSKD1CdBwb/0xsJEgatxLmGecFBf5O5F1stTmOk9IgASuncD8+fO5AdO1Y2QLCidQUiKJhac6gxbX6Y7hgQmh6P6nCQrXiuKTgHsToOHucuMbhlHPmLZPjUHvLn7XLGHl//6HM8J/Xf7ce+YMRh0rwokHRhrO5WtMJOBpBEaPHo3AwEBPU5v6koCZwNaterz08CF08r5oyOsUHY72Tz0FlUZehMpEAiTgqgS4ONUVR8bHtGVqL/TueO0O7m1uugkha9caNP3bzTcjoqAtso9E4brXZ+IPN5n6ckUQlIkEHEOgX79+jmmYrZKAAgjIi0/L/rkNM7zT0OuJjwwSq7y9FSA5RSQBEuCMu8vdAxXI/k+6UaqER3C9HexqlZcXNO3bGz5VYjblcNcK3Pv+FOw6EIgNH6uhr6hwOQoUiAQcSSA1NRVKjCbgSCZs270JyNFi/t//0xuUHDpUhSeT2qDn5nSofHzcW3FqRwJuRoCGu5MHtLgoH/lFDYcf0uZ9jvGrjUJteuMR2MFut9FQUolIAeLT665ILFmi7Hk8sQAAQABJREFUweDBKpS8/z6+fO1LyD/sTCTgCQSioqLgQ4PFE4ba43WsrpawcaMeLz56FCF70gw8brxRhbb33Qe1v7/H8yEAElAaARruThyxipy16BjSFV1DOkI1fDo+yy6y7b1oP17qOcaQN23TYcSH29+T6ZvgYMgfU4qMVKHdmDEI/e4TPPvYeXz0kR56PQ14Ex9+uyeBYcOGwZ9Gi3sOLrWyITBpkg65h67gde+XcOOom22u8YQESEB5BGi4O3HMqstKLL3tXIa4mBAMnzALGz/bgc2rZkEVMhjLEIu03cexND7KUtbBR14iNF7MP97D0r/6IjtbQvJjZyFJNN4djJ3NtyKBzZs3Q4k75rUiMnatIAKFhRLkT/XFEkyfrsbsWWr0+ORD+A6w/4Z+CsJCUUnALQjQcHfiMAbExCNtWqxNjzvTF2J83AiMSdqHRRu+wtnqTEy6M9ymjDNOVGo1wiLa4c03NZj8cAnOiZ0lj/94SYTMowHvDP7sgwRIgASulYBWK2HdOj2em1QM7YKXgOLzuOUWEZO9bVuoGUXpWvGyPgm4BAHunNoKw6AtLcbZUnkTpGpUVwP+gR0RHGRvb/b6FRsyZIjhwt69e+svUJN7+bPPcOnMFTy3Ywzi49UYO1YFLy9Vo3V4kQRIgARIoHUIyJMs06bpcMMNYuFph7Vo37U92sXHt44w7JUEFEJAiTun2t+JWiGD1ZpiegUEIUx8XDm1GzkS/mKH1VUPaZCSosfzY47ijXXXi9jXNN5dedwoW9MI7Nq1C7fddhv93JuGi6VcmMCFCxI6dlThyPZDeOmlfvjNb1TQl4+D2u/a9wBxYbUpGgl4LAG6ynjs0F9dcfmHPyREhTfe0OAp1VIcW7beUOniRbrPXJ0eS7gygZycHFRWVrqyiJSNBBolILvFbNigx+uv63F+zhzceHyLwWiXK9FobxQdL5KAognQcFf08DlP+H7r30F4p1JDh88/r8OWLYw+4zz67MneBJKSkhAU5NpvveytM9tzHwK//CLh8cd1OHxYEoa7Gm1uvBEdX33VfRSkJiRAAg0SoOHeIBpesCYgL27q8OyzhqwFCzQ4tuUbPPf4JRQUcPbdmhOPlUHg0KFDnHFXxlBRSisClZXG39vPFn2PPw3/n+FtqOwmE5CQADnAABMJkID7E+D/dPcfY7treN11Kjw7zReJuY/j/9YaN5OSN/lgIgGlENiyZQvDQSplsCingcA//6nH1q0SKvbvx/jSRRgwsjfJkAAJeCABLk71wEG3h8q+t9yCPqsXIKKqQDTXER+KEGQ3iN347ryTz4L24Ms2HEtgjvAJZiIBJRA4cULCX97RQauT1xupoTrljy7rP4SKO/8qYfgoIwnYnQCtLLsj9ZwG2/Tpg3b9+xoUvn9wMb7+8+eYM0fH2O+ecwsoVtPCwkLodDrFyk/BPYOAvIv1nx//GY/mz8GKFWqxLkMFn+hoGu2eMfzUkgTqJUDDvV4szGwugbC+HfFU5HYMKf4Yyck0iJrLj+WdS2DBggXiAbPIuZ2yNxJoIoH//lePvDyj++Hr172D3zz/B6hUDMXbRHwsRgJuTYCuMm49vM5TTl4YFfLuSgw7cAA3d9cYOv7pkB46vQrR0fyD47yRYE9NIZCSktKUYixDAk4lcO6cJGbW9Sj6IQ/vbOwFtVqFru+tgNrX16lysDMSIAHXJcAZd9cdG8VJJs8Iyb7voaFGQz0oYxn+NuMXLFqkEwsBuXhVcQPqxgLr9Xo31o6qKZHAyZMSnp5Ygrv/PRVv/ekk/PyMv6M02pU4mpSZBBxHgIa749h6fMtB992FV71moH17YNIkHeTZJCYScAUCEydOxKlTp1xBFMrg4QRyc42/i+fOAUue/AEDpo9AwPC7PJwK1ScBEmiIgEoSqaGLzHc/AkOGDDEotXfvXqcop7t4EZoOHQz+muVnLyHq1g7CYJLQrRvdZ5wyAOykXgLyjLuaca/rZcNM5xAoK5Pw/vt6lGbuxuytsYZOJa0WKi96sDpnBNgLCUC48kajR48e2LZtm2JwcMZdMUOlTEFlo11O4eEqhFdk4+LSpXjp+SqsWaMHY78rc0zdQWoa7e4wisrVQd7xdOJEHbpnpmBy54/NitBoN6PgAQmQQAMEaLg3AIbZ9ifge8cdkF/wLE/YC9mfc/JkHeQYxUwk4GwCycnJYtdfeQ8CJhJwHoHLlyVI4m3P11/r8frrGtyX3B/XvZfqPAHYEwmQgOIJ0FVG8UPYPAWc7SpTn3S64mJogoKwf78eB3dfwtMvBaGiQoKvL91n6uPFPPsTkOO4d+7cGRqNMQKS/XtgiyRgISBPWPz97xKqv92HB24+hbbxYwwRYywleEQCJNAaBOgq0xrU2afiCMhGu5wGDVIj7j9PouLbbw0h0ORZKCYScAaB0NBQGu3OAM0+DG8Xn3tOj+8/P4Y7jr0Lv9/+lkY77wsSIIEWE6CrTIvRsaI9CAS/vRjlmZn44x/VWLtWj1df1eHSJbrP2IMt22iYwPz587kBU8N4eMVOBCSxO++cmRUYMUKF194KQLf0NHiFhdmpdTZDAiTgiQRouHviqLuQzt4REejw8svo2lWF997T4Ddt/oc5wnhnIgFHEhg9ejQCAwMd2QXb9mAC8uLTHe/l4uzjj2PJYgkPPqiGV0gII8Z48D1B1UnAXgRouNuLJNtpMQHTVt5eXircF5WL50uTIc9U/fvfeuTnc/a9xWBZsUEC/fr1g4+PT4PXeYEEWkJAXquzYoXO8ObwxrwtCExMRMcw/5Y0xTokQAIkUC8BGu71YmFmaxEIeOQRBD88ArqiIlx3nQpPP63Dp5/qodfTgG+tMXHHflNTU1EsFkkzkYC9CJSX6TAr7ltcuQKsW6dBz9enw09E0mIiARIgAXsSoOFuT5psyy4E2v7hD9CI18oRESq8O/M4fv7nT3jmGRrvdoHLRgwEoqKiOOPOe8EuBK5ckVBeWoWCJxMxcehRzJihQbt2KrrF2IUuGyEBEqhNgIZ7bSI8dwkCqppdLbv0DcGTpa/hkRv/i/Jy4OJFCVotZ99dYpAULMSwYcPg708XBgUPoUuIvudrLSZN0kF/7hxCnvgj+s8e5xJyUQgSIAH3JdBKeytrUVx0GqdOnkDR2SuoquHbtm0QOgR3QbeuXREU0Eqiue9YK1IztVhAGLpuHTocPAi/tiqcPSvhiSd0ePllDfr1Y9x3RQ6qCwi9efNm3HvvvVyg6gJjoUQRKislrJ30OX6s6oc/z+8F/57XQdWL0WKUOJaUmQSURsCp1nFpfjb+kb4G789Yhp1XIRUTNwXPJCTgDw/eiTDfqxTmZbcmoG7XDn5Dhxp0DAlR4U+hH+CN2Y9icGw7/OlPasZEduvRp3Ik0HoE9LLDukoFda23M/+dsxF9Cvdi8uf3oY0/JxBab4TYMwl4HgGnuMpoi7KxavpwBHaNwfgmGO3yMGRlrEbSmKHo6qfCrLV7wGVknndzNqTxjf3b4Z2gF1FdDXz3Hd1mGuLE/IYJxMfHc7a9YTy8UkOgdONGXNm61XB2+ngl3n7bGKr2podjMDRzpTDa25AVCZAACTiVgINn3LU4uHkhBo6ZW69SMTGx6NWrKwIC5Muyv2kZSk9nIWNnlk35hZOHYuHkKfjq+HIMD+f0uw0cDzwJGD8ePoMG4cVIDUpKJOgrKpCS6o2nnlKjrXCnYSKBqxHYtWsXbrvtNvq5Xw0UrxsI7PjzV8j9eA9u/qvxb1nQoGiSIQESIIFWIeBAw70IaxPvweTVNUZ4TBxmjh+Bobffij5RvRAqtr33bah3bQWKz57Gj9/twZZNS7EsXW5jNe7uuRppBy5g0oCgVoHFTl2HQJvISIMwgYEqXP6/bQjP9RKLxH4vfN/VuPVWp7xIch0YlKTZBHJyctC/f38a7s0m5/4VdBcvovrIEYOi1ceOIeuwF1Q/fIxR857CdYOE6wwMM03uD4IakgAJuCQBlSSS/SUrwqoJIUhKFy3HTMGmtFkYNSAcDdnpV+vf4Bv/wWKMnys3CKRllWBSNH88r8atvutDhgwxZO/du7e+y4rM05eU4NzMmSi4Lxlvboww+L0PGULjXZGDSaFJoJUJVB0+jJK0NBTlXUbgxVxcuqxB8O19IUe6ai82VJJ3e2YiARJwDwLR0dHo0aMHtm3bphiFWmpLN6KgFpnzxxqM9tiZm/DJm/EIbqR0Uy4FhEVj3Jz1GDEqDg/HjMFkMXvf42wmhl9rw03pnGVcnoAceSZ4xQp0FJs2pf1Og4P/KYek98XRXBWuv56uMy4/gK0g4KFDhxAp3tpw99RWgO/iXV4OjcK2765D4KDfYHjvowhs2xYB4xjm0cWHjeKRgMcQsPu0ZH7mEtw9dyfiFn2FL+1gtFuPRFB0PDLP7kaciElz99gUFFlf5LFHE1CJyA9eYtMmP7GY+fZbdSgSM2Pr/nIGf/2rDnLoNiYSsCawZcsWsT6ixDqLxySAvXv1mDn2EMI7XMSoN4yRrIiFBEiABFyJgJ0N91L8Y/oMYFoGPn55eItdYxoFFHwnPj6aAeycio8OljZalBc9k4BarHZu98gjmNr7Y8P24/IGKceP03j3zLuhfq3nzJmD4GC+squfjuflVlSIRe7iQe5f/5LwylshGLblz1BpNPAdPBg+AwZ4HhBqTAIk4LIE7O7jrq0ohdY3AI6O/VJRWgovYaA5wNfHZQfLHoK5o497Q1z0YqtVtZ8f9u/XY//mX5H8diR0OgkaDd1nGmLmKfmFhYXo3LmzuBc0nqIy9WyAwBdf6NE2413clnw3vG64kftCNMCJ2STgjgSU6ONu5xl3wMveRntxNjZu3o+KWneML432WkR4WpuAbLTLadAgNR5t9wmKlyzBRx9JyM7m7HttVp52vmDBAhSJNRFMnkvg/Hkxu/6KDvtWfI3efqfgfcMNNNo993ag5iSgGAJ2N9wb07xCxNtubsrbswLjx3yN8uZWZHkSsCIQ/MqLYgNEFe68Q4c33tBhxQqd2MCJBrwVIo86TElJQZcuXTxKZyprSyDxiUr066fCK0u6I+wvCw1RY2xL8IwESIAEXI+AEw33UqwWM6Ap2U033vP2pKBn3Gogrj1dYlzv3lGURCofH3SYPh3hvb2xZo1wjzhyCDOfu6AoHSis/Qjo9Xr7NcaWFEPg4kXJsN7l4vsfYPG8SkyYoIbP9ZGKkZ+CkgAJkIATDXfAJxaY+tGuq1OvyMPa6cPRc+hUY1kGf7g6M5ZoMgF5d9XEqe3weM7j0J46hSNHJGi1nH1vMkA3KDhx4kScEmPP5DkEdu/W4/HHdfDauRXanMPoHdPec5SnpiRAAm5DwKlrO30CBbeFIzChy1dYmTy83v3n8vasxeShk0XAR/dPpfk52PvNPvySb3wy8QkMw62xd2NAOHeGdfToe/fujevXLEH1r7/iSmBXTJmiw+zZGkREcOGqo9m7Qvvr1q0T/sxOnbdwBbU9Uga9XsKCBXrDA/qbb2rQubQbfCa97ZEsqDQJkIDyCTjVcDfhSp96N9I/mIbdny3EneE18WdKc7Fq7lNIWlaPyS4b/O6UKnKxduZTmFyfrkLP2JkbxMZV46554yp3QuYIXeQdEOXPb0Tj48apsTZhC6Keewjjx9OgcwRvV2qTRrsrjYbjZJHfpP34I9D3+Ca88sFYeHvLD+a3Oq5DtkwCJEACDibgVAul8hgwZcNX2LQoAchahqE9/TBfRIzJzlyL4YGRdYz2mRt248CmaUDGJWgdDMJpzVfkYLpfZINGuyzHzoXjETJqFYqdJhQ7uuceNRJv2Qf9qrcNGzZx4ap73xPJyckoKChwbyU9WLuqKgnLl+sM+ziE7f0Ad4X8UGO0ezAUqk4CJOAWBOwex71RKqXFKPULQoCY5y/O3oyHY8bU7xITtwgH3nseA4LlFwKlyM0pRXhUmBssUNUic9ZA3L0wS+gVi+UZCxF3e294l5zEro1LMX5uug2+aRlHsXRkhE3etZ54Uhz3lrAq/+YbeN92O44eBX49qsMDD7bKS6mWiM46zSDAOO7NgKWwor/8ImHePB369lVh1iwNrnzxBfzvvdcQVUphqlBcEiABBxNgHPdGAVcgM+09/GTY7LQCx479ivP1lI9Ly4K09eUao10uEIAItzDahSpFuzFdNtpjpiHrQiaSRw5CuNi9MSxiAMbNWY/Tu5fbEFm27F/isYXJmQT87rgDXl4qCBd4/PLOeixO/BElJVy46swxcEZfoaGh3HzJGaCd3MfJkxJmzNDhuQGZBqNd7r7tfffRaHfyOLA7EiABxxFwoqtMNY58MANT5s3H9FF+GBg3A/K8c+2U8eEa7MhxTyeR3K8/Mei86bO3EV3P+tOwO5Px1UwReseUzp+l4W5i4eTvNm1USFr1W9z57Vw8m3AO5eU03p08BA7tbv78+dyAyaGEndt4QYHx/+elS8CK3yzFjbofnCsAeyMBEiABJxFwouEuwkH2kl3b52JZhrV2CcjIugBJuoAM2fd95zKM6NMRExZ/BsO+hsUHkZKSWWfnVOsWlHFcij0rRUz6KRkYFd6w+8UdfxxrUSfrFxRwyt3Cw8lHvjdej0G7P8TMV9TCyAMuF10x+L+bxJC0WkjV1aZTfiuIwOjRoxEY6G6r3hU0AHYU9Z//1CM5WWdo8aabVAiMuA4dXnjBjj2wKRIgARJwHQJONdxrq52wKANnpfUYaZh+DsLIl9fj7IFNiBMF02fEIaR/Iha/PQ9TP/jRDXZODUBc2lEcf+uBRn31bczA2N/i+oDa1HjuTALqdu3Q945O6N4d0J45g7RBC/DLj8ZNxC5/+ilK1q51pjjsy04E+vXrBx+xKReTcgnIC8jnzNHh73/X4+1Jlhn2gIQE7oKq3GGl5CRAAlch0EqGu5hlP3wB618eWSfkYfCAeGytPo0NsstI1mrMWCim53v5NGrsXkVHl7kcFB6B8KCGZ9vrCNo1AN51MpnRGgRUKhXaR0fgltgO+GTSJ1i/njtvtsY42KvP1NRUFBe7p0uevRi5ejtffimhRw8VFl43H0EFFsPd1eWmfCRAAiRwLQScarhXyvsMJaTitDzLHhXUsNxeYRj3ZiaOf7W84TJueuXIN9vNmi2fPgI1Ue7NeTxoPQKy8T7gzSfw1JtROP71L/hlbz6qjx9H1ZEjho/+ypXWE449N4tAVFQUZ9ybRcw1Csuz7OnpxofmwYNVePIJwKujiFQ2aZJrCEgpSIAESMDBBJox/XvtklTuBBZlTURYE5sKH56Mo5u+ReQYN4rj3pju2hysShJvGOQUm4oJAxp5uDGWatG/x44dw7RpIj5+rXTXXXfhoYceqpXLU2sC2hMnoN78ARLFI2/JwSMozfsZ+f89hi692qH9c8/BJybGujiPXZTAsGHDXFQyitUQATlijBzmMSZGhercXHQSm6cBKnSo57esoTaYTwIk4JkENm7ciP/+9791lJf38+jRo0edfFfOcKLhHoBnSi5AG9C8OeSI+17H9q/KRFBI9085ny6FWL4qUiy+Sn8CjjHbITYi8UZISEgdoO2EPzdT4wTa3HgjQlYbR8lP/BBUHT6Mf21V4crvX8OzfZz6AqtxQXm1UQKbN2/GvSK2NxeoNorJZS7m5kp44QUdnnxSjTuy3hL/72IMux67jIAUhARIwKUJyL/19dk9Xl5ONIPtRMjOGzCVYlX/QKwcvxs/vHynnUSsp5niPRjecSjGZpUgMdo9THpt3mcY2DPOEC4y9cAFJDpotp0bMNVzP7Uwq1QY7rJ7jCZ2BJZ+dJ3Ym0DCihUa+PvL26ozuTIBGu6uPDoW2SorJeHSpMLWrXrcfLMKXb3PoDQ9HR1efJELUC2YeEQCJNBCAtyAScyL/2HpPGTNGIrEtQdbiPEq1SpyMGvYULHj6kzc38c9jHYInV6qMdpnit1SHWW0X4UsLzeTQJvoaPgMGIB2kd1EdAsNHnlEjZ9n/KWZrbB4axCIj4/nbHtrgG9Gn/IOqLNmGf3Zfz+4COHhKqjbt0fQyy/TaG8GRxYlARJwLwJ2f7cfNnwmMv5/e/cCF1Wd/4//NQPIxURRUNNKzcuKl/GbrmtZuqLdL9Kabm3imvUV6bJIbWVkUEFqWJvitoW2rbpedlPzL+6vr20pmnaxb6t9xUwqSSxBBQUF5SLDnP/nzDDDAMPAwFzOmfM6j4fOmXP9fJ6f4Zz3fOZzPp8kA1bNGYNZbu5/vfrEPjw5Lhry4KObj6XCSXfoKiqlMqycG43lIsWxmfuxeKrcbpOTGgSCReAeMmaMLam3365Hn64XUfGPf2DRojpcusRBm2w4CpvZs2cPKisrFZYqJscqsHmzyTwC6oO/06HsT39C3c8/mVfpO3e2bsJXClCAApoUcHvgLp7xx9Rl25EhntFbP38KQic/jw8PF8HYAV5jxQlsXzEPof0nYrkI2tN2FGD6QNfaynfg9B7c1Yic9PuQsB4wJO/APxPHefBcPLQ3BHqmpUIXFoZu3SDa49bh6FEG795wd/UceXl5YjCtGld34/ZeEJAHVNqzR0JWVgBGBByCJL5gBdt9QfZCEngKClCAAooVcHMbd7t8yk1a6mvHzUsNcchYMBNTbxyD/n2jEOLseQBjtehj+QyO5x3Czq2bsWC5iGzrp8xdBUic3M/6VtWvh9fMg2GOeNAxfgPKVz7olQdw2cbdex+Zzz834a8v/YiUlQMxYADbvXtPnmdSo8APP0gYPFgnen4wYXR0JQK7XAGj6PEhsHdvNWaHaaYABVQgoMY27s7C546RhwzF4kPFGJ0+FzNSRReHueuxYKb4V3/UmNg4DB4QiR6hoeYlVVVVqDx7FmcKc5G9W1SrN51ikrB//RKM6+MPNe3AiQ/TLUF7bBaKnQTt+9JH4cWuq5GTOLqpCN8rXGD8eD36XvECiv9vsQjcr8WFCxK6dmUAr4RiO3LkCAYNGsS+3BVQGCaThDVrJPPD3Wlpegz58i+QrrwXEIE7g3YFFBCTQAEKKErAc4G7OZtRmJ6yDcV3bccLc2Kxyi4e3529Xjxg2pbJgLQNq/DMg+P8ZjCiki9Xov8dqXKjdhRum9ds9FizivjV4fD/vIaJqblYfXRwW6C4jQIFrlz0IrrmyINqPY7ExDrMnx+A0aMZvPu6qLZu3YqEhARERUX5OimaPr/8HMhzz5kgN11PSdGj8qOPUFdcjMCrrtK0CzNPAQpQoCUBzzWVaXZGI/K//B+8++ZyLFnfhpA9Jg6Zj8Xjd3dPQJR/VLKbRSoOb0S4YaZNJ0YM2NP0BwZ5DJ/c3PpvOTEZKM551nFwbztK22fYVKbtVu7asu7CBQSI3jC++UbCSy/VQX6IVe6PmhMFtC7wzjsm0bsPRI9MOsgjE1/+/nt0GjJE6yzMPwUo4CUBNTaV8WLg3lAKxooSnCj4ET8c/xmlpRdxuVMn4PJldLqiO3pffRUGXjsY/aL8pKvHhmyjTATtk0TQbvfDg91ax7NJm49h2XT39TTDwN2xszeWSpKEU8+/hMy6F3D3PQGYMIHBuzfcHZ3jzJkziIyMREBAgKPVXOZBgdpaCR98IOHee/U4fdqE0Ox3EP7ww9CJgeE4UYACFPCmgBoDdw83lXHMH9glCgNHyv+01ItKBbJTXAvagTjMus19Qbvj0uBSbwnINYohnYOQMjQbZ/rcZz6t/CDer37FAN5bZWA9z6JFi0Qf4c+jNx98tJJ45fXkSQkvv1xn+9LaeedG1Bw/zqDdK/o8CQUo4A8CXq5xr0ZRfiHQvS/6RPhR+xcVfRJY4+77wqr+6iuEjB0LuQb+scdMGDECor21XtT+su2770uHKfCUgDyg0oIFdXj4YT3uucfyZbV6/36EXH+9p07J41KAAhRwKqDGGnfvVvVVHMIdoieHO9455BTSfqWx5CCWzrsXo0RtpVxjOWpWOvblV9hvwnkKqEpADtrlSe6fOmPOYZw6BfHgqgnV1ezz3VsFaTJZRuT01vm0fB651xh5+vRTCW+8EYCY6vdtHAzabRScoQAFKNAmAe8G7qIN4wCRrAFdg2A0luFEfh7y8vJRVFbdQmKLsKTnGCxYlS3ahccgK3sz7ipMxcRB4VhzuKyFfbiYAuoQ0ImuUC8teRkvzikQTQd0+OQTBu7eKrnZs2fj5MmT3jqdZs9TUiLhz3+2fEmaNUuHiH/9GZe/+06zHsw4BShAgY4KeDdwr6o1pzc7YQyCgrqj/6BoREcPQt/uoZj85BoUNRleteLgFohOE81TXFYm5k2djsUfHUOa6HVljuE55DXZvn5TvlBAFQI6vR6RK1ag5uuv8cADeowda2kq8957rA32dAGuXbsWV7HLQY8y/+c/JtEErA6jRlk+10FBOgSJX1y7v/CCR8/Lg1OAAhTwZwGvBu7VJ/8PYigmh9Pu5XPQd0w6TtgF4z98lWPb9qbx/S3zgQORtDpLzK/Cok15tvWcoYAaBYKuvhqd77nHnPSICNF8xmjEoUOWtsAVFayB91SZ6sWXJk6eE8jJMeHVV02i+9MA/Mq0x3aiznfeaZvnDAUoQAEKuC7gxbuXEZ9ve69JCg2Ii09CcnI8RCW66Lw8FS+8e9i2TVBwQ5eQNbUNEX0Xw81IElutz9iMItvWnKGAOgV0wcHmhEsVFTj7xz/iFdHX+6BBOsTH1+HiRQbvnijVxMRE0RXhaU8cWtPHrKqyfF5//BH4618D0HdrGi4fPappE2aeAhSggDsFvBe4G09gZ+puc9oN8ZnYf6wQtdIhrFu5DIsXr8ShqgKsjhfB+Fu7YWm9LkYO3bXecV4De2JUrFglAv3P81tqH+94Vy6lgFIF9GIkmk7DhqFq507MnavHo4/q8fXXDNw9UV4LFy7kqKluhs3Pl/DKK5ZmXvIAY9266RB47bXo+thjbj4TD0cBClBAuwLeC9yrLuBb4RyTtgMHViZi3MA+aNSJfEg/PPBEpgjGt+F7c6cxtRAVkPVTLMYNFu0IbFMoug8w19HjxyLbRra1nKGAWgW6zpuHTtHR5uRPGFeLMWMs7YOXLasTD3QziHdXufbq1YuDL7kLUxxn504T/vjHOkybpkfN//2f7cjhs2aZewOzLeAMBShAAQp0SMB7gbsYFK9cJPX+GZMaB+x2ya84f0G8C4d1/DxLAwLLBtZllndVKD1rGX/0w69/tjsCZymgfoGgAXLfS4BRjO6JL/eY58vEz1Dz55vESMMM3s0gHfwvPT0dJSUlHTwKd5cFDh6UsGaNCcuXB6D//5eCy99/TxgKUIACFPCQgPcCd0uHMuIiX+AwKyWHt+D+iali3XFccrBF/e4Na+or2sMblnCOAn4lEHjllSjPykJtfj7S0gJw002Wdu+XLjF472hBT5s2DeGiaRKn9gucP2/5HMqfx1WrAnBN5CUEiM/sFTNmtP+g3JMCFKAABZwKeC9w7zIA94t26atmRmNW+hrsO3gY+aIf9y9ztiB91mT0NMzAbnNSc7Fq45dirhSHsq1pH4beDc+pioXF+L5+nVyLz4kC/iigE+MeRL39NoxFlkewf/c7PV54IQDyg38crKljJT58+HAE1z8U3LEjaXPvb76R8Nxzlvbs1191AmFhYoC8kBB0e/xxNo3R5keCuaYABbwk4L3AHRF4MFXuxlE8gJo6BxPHGETPGdG4fsoMpK63hOzyupi4OKxPuB66Uf2xXF5gnpZg8cocWFuz5298E0vq18SM6F0/xxcK+J9AQPfuCLnxRnPGpNpaGIZUYehQ4PJliAcB61BTw9r39pR6lvglo0xuf8TJZYFt20xISanDowk6lKalofb4cfMxdIGNnlpy+bjcgQIUoAAFWhfwYuAOdBk9D0ez01pMlSEpGx+tW4eCHRniIVX7zQxYlTAF4aNmIT39SQyaaQ3pY3DjyD72G3KeAn4nIA/UJE91586hRNRoBpoui2YeYjAb8eDHo4/WoaiIwburhT5UfPthjburaoDcPOb//T8T3n47ANFX/Ah9ly4InTTJ9QNxDwpQgAIUaJeAThJTu/bswE7VRQfxz3fXYduBSgzoVYmzGIIZDz+IqeMG2o5advhDvPmPf6OqdwySE6eieIsI2GdYA3bLZoZk0UPN4ttbfNjVdjDO2ARurK+9/eyzz2zLOKMegYvvv4+A3r0RWl+O27ebsHq1Cf/4RwBCQiw90KgnN0ypWgSKiyX07KnD4cMSBvU4i9A+UTCVl0PuwpQTBShAAbUKjBw5Etdccw0++OAD1WTBJ4F7e3XytqcjOlZ+gFVMcVkoXDcPrG+3cLT1fwbubZVS7nZyzXtAjx6oO38eAd264dtvJYiKT3TuDHTvzuC9LSW3ZcsW3HrrrXxAtQ1Y8ki+crOsTe/pcf611xB2110IHjGiDXtyEwpQgALKFlBj4O7VpjIdLb6hU1NQW16K4tJySAzaO8rJ/VUqIAft8mQsKIBcAz9smA59+4ruVsWT2osW1aG21us/oqlUksluTeBf/zLhJTGSr/xQdPUXX0AymdBJPNjLiQIUoAAFfCOgqsBdJgrsEoGoiEZdzPhGjmelgI8F5ADqkvh5r/bECej1OvTvr4Pc8O0PfzDh3DkG786KZ/r06axtdwYk1p06JWHLFhP+8kYtRo0Sz1T074/uycnsNaYVN66mAAUo4EkB1QXunsTgsSmgJgFzd5FvvgmpqsqcbLk2VK4Z/fWvdZg3r05NWfF6Wvfs2YPKykqvn1cNJ7x4UYLcpv1yjQmvD1uBXl0sI2sEyj/rcKIABShAAZ8KMHD3KT9PToGOCejDwtBJ7h9STDUHD5p7npH7e3/6acufNnucceybl5cnutKscbxSw0sLCiTEx9eJHneAHgezEVBzEQGRkRoWYdYpQAEKKEuAgbuyyoOpoUC7BQJ69ULJo49CEgHp9ddb/rR/+EHCu+9aBspp94H9cMeEhARERET4Yc7an6X//V8TkpLqMHeuHl276tApOhrdU+s7A2j/YbknBShAAQq4UYCBuxsxeSgK+FIg6Oqr0fWJJ1ArD61aP40fr4PcK8iLL/KhVauJ/HrkyBHWuNuBmEwSlr5qRMaodxATY7ktyIE7JwpQgAIUUJYAA3dllQdTQ4EOCYROnIhA8RChPNX+/LMYpEmHN97QiyHpgddeY827GUb8t3XrVtELj+iGR+OTHLDn5UkwGoHl41cjUndG4yLMPgUoQAFlCzBwV3b5MHUUcFlAHxpq3qc2Px8XsrIQGKjDggUB+OUvLX28nznDHmdSUlIQFRXlsq0/7XDpkoQ//tEkfnkAOnXSoceNBvR46SV/yiLzQgEKUMDvBBi4+12RMkMUsAiE3nQTLouHMI1nLLWot95q+XPfutWEffu0Xft+RpjU1Wm35x2515hHE4yYcOl9c1eP8icm9IYb+KdDAQpQgAIKF2DgrvACYvIo0F4BXWAgIl9/HTq95c9cunzZfKgZM/T4y19M+Mc/tBu8L1q0CCUlJe2lVf1+S5aY8HhABiZHF6o+L8wABShAAS0JMHDXUmkzr5oTkIP3gPomIZU7d6L2p58QGanD228HICfHhD17tBm8r1ixAr1799bc5+G77yzNpObN02PEjOvQ7cknNWfADFOAAhRQswADdzWXHtNOARcEOo0YgbOJiZBqa0VXiDr8+c8BuGQZWwfV1dpq924Sg1Vpbfr73004/Nfd5mwPHapD57vu0hoB80sBClBA9QIM3FVfhMwABdomEHTNNeielgbT+fPmHUJCdLjrLssl4OWXTdDSQ6uzZ8/GyZMn2wan8q3knmNefbUOQW88g0mDT6g8N0w+BShAAW0LMHDXdvkz9xoTCDYYoO/Rw5zrmq+/tuV+8mQdHn+8Dt9/r42a97Vr1+Kqq66y5d+fZurOnkVd/ZczOV/bt0vmX1Zu+8NIRMbP8aesMi8UoAAFNCfAwF1zRc4Ma13A+rCq8dQplL7yipnjllv0ePppPZ59tg4VFf4fvOvrH9j1x8/CxU2bUPXxxygrk1CTmwsxoC7S0wPQ/ZGH/DG7zBMFKEABTQkwcNdUcTOzFGgQCLv9dkhi5B1TVZV54fXX6/HKKwGQB16V+/j25ylRtPU/ffq032bx7FkTdkxZAOOJE7jhBl7m/bagmTEKUEBzAoGayzEzTAEKmAXkmnd5wB1rN5EmMZLoiBHh5gdV5a7fP/7YhHvv9c+gb+HChaJ3nUi/+STIffXXHDhgzs+ZT7/BZ1/qcd0oCZIo47qyMgRERPhNXpkRClCAAloW8M+7spZLlHmngIsCuk6dzHtcfP991HzzDeSHVuXm3++/b8Lf/uafva/0Eu1HAgICXJRS7uZVX3yBC2++iUv/exBHdhdh7MBz6HdDf9R++y2kykrlJpwpowAFKEABlwRY4+4SFzemgP8KhN1yC0qeeAJXbtsmglqdGKQpQLR5N0GnM2HOHP/6jp+eno6EhARE1fdxr7ZSlZs4QXRpaf3SdVnUtut/99+omvgbDDW+hatH9cQVM2aoLVtMLwUoQAEKtCLgX3fjVjLL1RSgQMsCgaKaPXL5ckj1fZyHh+uwfLne1tOM3K2gv0zTpk1DeHi4KrNz4Z13cOo3v4Hp4kVb+j/95csoHvUb9OkD8U9nW84ZClCAAhTwLwEG7v5VnswNBTokENS/P6y9zsjdRQZ3krBokeUycewY/GagpuHDhyM4OLhDVt7YWf4SJTeDqSspsZ0uaMAA9Pr73xHQvbt52bp1JmzebEJ0NBAUpEPozTcj+Fe/sm3PGQpQgAIU8B8BBu7+U5bMCQXcKlBbUIBz4iFOvd5Sg/vzzxKefNLkF91FZmVlie4Sy9zq5YmDnXv2WcjdO+rsvmSEicDc+rDpP/9pwiefmMyj4MpBuzx1GjIEQf36eSI5PCYFKEABCvhYgIG7jwvAenpjWT62b9yOE9XWJXylgG8FrhDNMeQaeOs0ZYoeo0fr8Ic/1Km+5n3o0KGKq3G/fPQoShcvxmXxQKl16v7ii4hatgz6Js16JMnSbKmoSEJmZgAiIixBu3U/vlKAAhSggH8KMHD3dblWnMCWpfMQ1H0QYmcux+laXyeI56dAg0DXefNsb4xFRZg7V4877tDjo4/U3d590qRJCAsLs+XNFzNSba25q0bruas++QSdRBOeoF/8wroI+i5dbPPWGaNRwsaNFv/ERD06d2bQbrXhKwUoQAF/F2Dg7qsSri7C9hXzoAvvjxkLVtWnIhxBvkoPz0uBVgQqNmxA9Vdf4f779aK/d0uwWFCgzgB+y5YtKBf91vtqurh1K06JB2TrxOi11qmr6OXmithY6Jx0U1ldLeHdd02iLbtlr8BABu1WP75SgAIU0IIAA3cflHJ13hroQvsiNicMSXExPkgBT0kB1wW6/P73KF9l+ZJ57bWWgPGpp+rwww/qDN5dF2jfHuYHTD/7zNxHvvUIgddcg17r1qHTsGHWRa2+yr36PPOMSYxqC/z2t7x0twrGDShAAQr4oQCv/j4o1MC+t+JYYSmkbcuw7J3XEeuDNPCUFHBVIFAMWtQjI8O2m9zO+umn9aKv9zocPaqu4H369Oke7Q7S2qWmjGUeGEnUsFsfKJWXhfzylwjo1k2ebdMkW1eL518GDwaeesp/Bo5qU+a5EQUoQAEK2AQYuNsovDcT2KUPBvZpGIK8eStW76WFZ6KAKwLWLgjlfao//xw3jKnF88/r8cILda4cxufb7tmzB5UeGFG09vhxlL7yCio//NCWx/D4eET+6U8I7NvXtsyVmQsXJMgtaoqLgcREBu2u2HFbClCAAv4mwMDd30qU+aGAlwTqTp9GqRiBdOxYPVJTLQHlqVPqqHnPy8tDTU1Nh6XkB0yNJ0/ajlNz+DCCR42CPAqtddKHhFhnXX4tLZVEsF4nHqQF+vdne3aXAbkDBShAAT8TYODuZwXK7FDAWwJX3HcfQsaPN59u1ChLULlnj4Tjx5UfvCeIB0EjIhp+9WqPWdXeveYRTC//8INt9yumTkXne+6Bzvr0qG2N6zNlZZK56025F59u3Ri0uy7IPShAAQr4nwADd/8rU+aIAl4T6HznnbZzyf2Py22wr73WiP37TbblSpw5cuSISzXu5gdMRaBemZNjy05A797ovXEjwmJibMvcNVNZKWH8eCPuukuPBx7gZdpdrjwOBShAAbUL8I6g9hJk+imgEIGK9esxvPJTHDkSiIwME778UrnB+1bxsGhr3UFKdQ3t9i/961+Q/9m3U5dHKG06MJK7ikJuXbNyZQAefJCXaHeZ8jgUoAAF/EEg0B8ywTy4JvCtqBm96667mu107733igF25jZbzgUUaItAt6efxvkVKzDspYlYuzYAX30l4exZCZGRymvmkZKS0mKWjGfOoHzlSgRERqLrY4+Zt5N/WZD7WPf0JPfT/uGHEn7xCx0mTmTQ7mlvHp8CFNCGwDIxAvXOnTubZfann37CNaJ7XjVNDNzVVFpuSmvPnj3x0EMPNTvaEFGDyIkC7RWQe5yJeO458+7h4SLwHF+LC5eCUFsriQGDlBW8nxHBeaQIzAPEYEeSeEi19scf0Sk62px2488/I1h01xg6ebKNwh1t1m0Ha2FGbtM+f36duXlMdLSyvFpIMhdTgAIUUIXATTfdhKuuuqpZWr/55ptmy5S+gIG70kvIA+mTA5YZM2Z44Mg8pNYF7HtQqXjtVZy+/Un89+JQvPxyAKwPsCrBaNGiRaIby+fRvawMZ8UvBV3i4myBu9zHurcnucvHpKQ63Hab3jwyrbfPz/NRgAIU8GeBsWPHih7QxjbLYlpaWrNlSl/AwF3pJcT0UUClAsHXXYc+H2UiLW2h6C6yDunpARg50nc1yfIgRlWffII60Sn6CtGkR56MOh16v/ce9Fdc4TPly5clfPqpPCpqAEaM8J2PzwB4YgpQgAIUaLMAG1G2mYobUoACrgjI3SJ2Fs9SGAw6LFkSgD/9qQ7Hjnm3q0i5n3XrdDk3F5U7diDoF7+AyWR5cFYeDdaXQbuctkBRfSL3HsOg3VpSfKUABShAgZYEGLi3JMPlFKBAhwXkWnd5kttsv/XQpxg0yDs1yqaKCpx78UWce+EFWx46jRyJyIwMhIwejdmzZ+Ok3cBJto28OCO3/Zebx7z5pnJ73/EiB09FAQpQgAJtEGBTmTYgcRMKUKDjApdEF4w/5ddin2mK6OZQh86d3RfEm6qrcVmMWhpS34bRdOGCeXCo0F//2pZwnb6hnmLt2rXQ2723beSlGZNJEk2ITOjRA2JkVMuos146NU9DAQpQgAIqFmi4k6k4E0w6BSigfIEeixfjSlOBGAUUeOyxOlRUuKfZTN25czgtRnGt/uILG0Kg6D2g8223wf5hWdtKMePLoF1Ox+uvm3D5MsQDsrwE25cL5ylAAQpQwLkA7xrOfbywNsgL5+ApKOB7Abktefgjj4gejfS46SY9Uv5YDrnfclcnefTSsjfesO2mCw1F702b0C0x0bastZlEse3p06db28wj641GudtHvRikKkB0R+m+Xx08klgelAIUoAAFFCXAwN3XxVFRglz7NDCOt9fgvJ8JWJurzJ2rx9ziP6KsoAxyby+Vu3ejRjw86miSm8FYp7rz51ElBtGwNomRl+vDwqDv3Nm6SZteFy5ciKioqDZt686N8vMl7NsniRp/dx6Vx6IABShAAa0I8Pbho5I2GqtRVpSHjctW2AXu2Vi5NgdFZRUwGn2UMJ6WAl4SGPDEAwj9aD10oktGuceX2uPHG51ZEj2/nBMjnBbbDRYWINrZyE1uQidMaLStq296id5k5MGXvDl9/LEJKSl1+K//0iluQCpvOvBcFKAABSjQfgEG7u23a/+e1QcxPSgU3ftGY+aS7EbHWZUwBX27h4sb+ywcrGi0im8o4FcCYTffjJC7poqHM+vwxecm8wimlbt2NeRRBO6hEyei5+rVDcvcNJeeno6SkhI3Ha31wxw8KOHtt03m5jEREWwe07oYt6AABShAAUcC7FXGkYqnl4WMxjbRPIATBbQsUPXZZzj/+ut4RnSL+NNn+Sj84CRC+/ZEp2HD0GPpUnQaPBhht9ziEaJp06YhPDzcI8duetAzZyR8+KEJy5cH4OqrGbQ39eF7ClCAAhRouwAD97ZbcUsKUMCNAiG/+hV6rlljPqL02ltYt6MXprz6G4z9ld7jgyINHz7cjTlxfqhevXSi9xjvNstxniKupQAFKEABtQqwqYxaS47ppoDKBXRBQQjo2tX8LzwqDH9Y2B0DDN1gCguHzsPtz7OyslBWVuZRwZoayTxa7N69HGDJo9A8OAUoQAENCTBw11BhM6sUUKxAYCACOgUiOBgQ4yhBDno9OQ0dOlScS5zMQ1NdnSRq2U3o1AmYOJGXWQ8x87AUoAAFNCfAO4rmipwZpoDyBLo9/jg63323GJxJh8JCCY884r4BmhzldtKkSQgT3Uh6alq61CSODzzxBC+xnjLmcSlAAQpoUYB3FS2WOvNMAQUL3HOPHjffLAZoSjFBrrn2xLRlyxaUl5d74tD4/ntJ1LLr8PLLenNXlx45CQ9KAQpQgAKaFGDgrsliZ6YpoGyBhx7So29f4O9/90zg7sncDxmiw403igds9exBxpPOPDYFKEABLQowcNdiqTPPFFCBwDPPBGDOHM9coqZPn+727iDlJj7TpxuRl6e+Lxsq+DgwiRSgAAUoIAQ8c1ckLQUoQAE3CJSXS9i8WYyges69wfCePXtQWVnphhRaDlFVJT+MWoeHH9Zj6FDWtLsNlgeiAAUoQIFGAgzcG3HwDQUooCSB8HAdrroKePTROpw/777gPS8vT/RcU+O2rC5ebMJ11+lw5528pLoNlQeiAAUoQIFmAhyAqRkJF1CAAkoSuOEGvXjgE0hNNWHZMj0CAjpeo52QkOC2LJ4+LWHWLD3ktu2cKEABClCAAp4UYPWQJ3V5bApQwC0Cs2frMXKkDtu2uafW/ciRI26pca+tlcx9zw8e7JZs8iAUoAAFKEABpwIM3J3ycCUFKKAUgblz9bjvPvdcsrZu3drh7iCLiiQ88EAdSkrAbh+V8iFhOihAAQr4uYB77oJ+jsTsUYACyhAoK5OwapUJFy50rOY9JSUFUVFR7c6UySQhPd3EJjLtFuSOFKAABSjQHgEG7u1R4z4UoIBPBCIidOjZE3juORPk4Lm905kzZ8TgTnXt3R1r1kjo2hW4915eQtuNyB0pQAEKUMBlAd51XCbjDhSggC8F5GBZDprl4Lm906JFi0QTF9HGpR1TZaWEceN0WLSIl8928HEXClCAAhTogADvPB3A464UoIBvBF54QY9vv5WQn9++4H3FihXo3bt3uxIfEABER8Mtvdu0KwHciQIUoAAFNCvA7iA1W/TMOAXUK3DFFTq8/rqIoNs5mUwm6PWu11ssXlyHzp2B+fPbf+52Jpm7UYACFKAABThyKj8DFKCAegW++sqEzz4zuZyB2bNn4+TJky7tl5NjwnffSWIwKNcDfpdOxI0pQAEKUIACLQiwxr0FGC6mAAWULzBqlA5z59aJPtmByZPbHlCvXbvWpRr34mIJK1aY8Kc/BaBTJw60pPxPBlNIAQpQwD8F2n6n88/8M1cUoICKBeQgOjU1wBxUy8F1WydXm8nIlfN//nMABg5k0N5WY25HAQpQgALuF2Dg7n5THpECFPCigBxMz5qlR1ZW25vMJCYm4vTp021O5ejROlx9NYP2NoNxQwpQgAIU8IgAA3ePsPKgFKCANwXkEVXlmve2TgsXLmzTAEwXL0p4+GEjfv657bX5bU0Dt6MABShAAQq4KsDA3VUxbk8BCihSQA6y5S4iJan1ILtXr16iO8fWA/2VK00YM4a17YoscCaKAhSggAYFGLhrsNCZZQr4o4DcReSmTSb8/e+tB+7p6emtDsAk9yDz+ecS5szhZdIfPy/MEwUoQAE1CvCOpMZSY5opQAGHAk88ocfWrSbRft158D5t2jSEh4c7PIZ14d69El56KQBhYWzbbjXhKwUoQAEK+FaAgbtv/Xl2ClDAjQKRkTo88IBe9ADj/EHV4cOHIzg42OmZ587VY+RIBu1OkbiSAhSgAAW8KsDA3avcPBkFKOBpgd/9To/p0/UoK2u51j0rK0usL3OYlJoaCWvXmpzu73BHLqQABShAAQp4WIADMHkYmIenAAW8L3Dddc5ryocOHdpijfubb5oQEgJERLBew/slxzNSgAIUoIAzAd6ZnOlwHQUooFqBN96ow+bNjpvMTJo0SbRdD2uWNz6Q2oyECyhAAQpQQEECDNwVVBhMCgUo4D6B3/9ej/XrHT+oumXLFpSXlzc6mdyN5LJlJjz6qJ4PpDaS4RsKUIACFFCKAAN3pZQE00EBCrhVQH5Q9c47dfjgg5bbutufUKfT4c039bj5Zl4W7V04TwEKUIACyhHgHUo5ZcGUUIACbha480495OYvTafp06c77A4yMNB52/imx+F7ClCAAhSggDcFGLh7U5vnogAFvCpw9dU6LF3afITUPXv2oLKy0pYWk0nCb35jxKlTzYN820acoQAFKEABCvhYgIG7jwuAp6cABTwrIHcLefZs44A8Ly8PNTU1thMfPCjhyit15n+2hZyhAAUoQAEKKEyAgbvCCoTJoQAF3CtQVQXEx9dBfvjUOiUkJIjuHiOsb7Frl4QpU9hMxgbCGQpQgAIUUKQAA3dFFgsTRQEKuEugTx8devXS4eDBhiMeOXLEVuNeWyvh0CEG7g06nKMABShAAaUKcAAmH5ZMRVEevvrPN/ip9KI5Fd2vMeCXY0ejTxcfJoqnpoAfCsi16bt2mTBmjKW9+9atWyHXukdFRSEoSIeNG3kp9MNiZ5YoQAEK+J0A71a+KNLqE1iZPAcJy3dbzm6IgSF3N3Lr05K84QDSHhwNFo4vCofn9EeB226TH1KVUFcnISBAh5SUFFs2L16URPAOMZIqm8rYUDhDAQpQgAKKFGBTGa8Xywmkj+tvC9oz9xZAOpSDQ1IV9mbGmVOzZOYYzFlp97u+19PIE1LAvwS6dNEhPT3AHLTLOTtz5owI4utEzzIS7r+/Dkajf+WXuaEABShAAf8UYODu5XLdt3QOUuur1uM3H0PihH71KQjBhMTV2BxvML9fnzAGa/IqvJw6no4C/itQUiLhhx8sD6guWrQIJSUl2LdPwujROnTuzNp2/y155owCFKCA/wgwcPdiWRqLtuOJBfXNYxCHJ+4e2OTsgbj7iSdty+Y8thpltnecoQAFOiIQFgYkJdWhqkrCihUr0Lt3b/Ym0xFQ7ksBClCAAl4XYODuRfLcLX+ztWM3JM1AdEjzk4dET0CSdfHu+diRX219x1cKUKADAnKt+nXX6cy17CaTCRUVEi5dAm66ibXtHWDlrhSgAAUo4EUBBu5ewy7BznezbWd7ZNYExw+fBg7ErMxY23abdn5rm+cMBSjQMQFL7zISZs+ejQsXCvGXvwQgMJCBe8dUuTcFKEABCnhLgIG7l6SNJ77ABmu3Ma2cMyi4oT/I7Pc+ZXOZVry4mgJtFZg4Ue7THcjKWiMGZOprfji1rftyOwpQgAIUoICvBRi4e6kEqs6dsjWTkU8Z2TW0xTPXwu6h1N05+N7ubYs7cQUFKNCqgNwV5FNPBeDiRT3+8Ic6hDhortbqQbgBBShAAQpQwEcCDNy9BC/3E90wxWFo35Yjhh5XDmvYVMw12rXRGr6hAAVcFZB7l3nggX+K3mQuQq9nMxlX/bg9BShAAQr4ToCBu5fsS0uK7c4kqtBr7d42me01YEiTJe59u3//fgwePBhDhgxBREQErr32WvP8bbfdhsOHD5tP9u6772L3bksPONu2bcOmTZvMyz/77DO89dZb5vnvvvtO9I2dbp4/d+4cEhMTzbcG3HcAACSUSURBVPPyfw899BBqay2ZfPrpp1FUVGRel5GRwXPQyvxZ8NXnKjIS+O67u3H69HpzOvjZ5d85r1cAr+28R/nz/fy5555DeHh4s9jn2LFj5vuAqv6TOHlFoDR3syQeOZU7kRb/YqUD5S2ftjw3q3671rdt+SiO14wfP16Kjo6Wvv76a/O/f//739JXX31le18l+sqTp7Nnz0oVotsNeTp//rxUVlZmnr8ohpkU/V+b56urq6VTp06Z541Go/Tzzz+b5+X/CgoKbPOFhYWSCOLN70+fPi3xHLSSPwz8XFn+RPj3IUm8lvC6y/sHr4mWK6IkeeKaeOLECemDDz6wxTrW2GfQoEHSnXfeaT21Kl51cipV9U1DpYkt+3Ipul+/oD71sThQvg2jG55BbZSrisMrEW5IaNO2jXZsw5sbb7zRvJVcu8KJAloVkGuWEhISEBUVpVUC5psCFKCA5gVGjhyJa665BiKoV40Fm8p4qagCw7ranamFiL1+iyAE223rtFVNo+34hgIUaJvAtGnTzD+btm1rbkUBClCAAhRQhgADd2+VQ22N3ZlycbLUaPe+8Wzhd4fsFgxD75Y7oLHbjrMUoEBbBYYPH47g4MZfkNu6L7ejAAUoQAEK+EqAgbuX5LsMuA4xtnPlouBcy308Vp47a9sS8aPRN7DhLecoQIGOC2RlZUE8t9HxA/EIFKAABShAAS8KMHD3FnbECNzfMCCqOGtL0Xg1vjvYMFJT/C3Xtbilt5LO81DA3wSGDh3KGnd/K1TmhwIUoIAGBBi4e62QI3BzXJLtbPPX7YbjxjKl+HG/NXCPQdyUgbZ9OEMBCrhHYNKkSQgLC3PPwXgUClCAAhSggJcEGLh7CVo+zcC7H0ac9XzL/4YDDlrLGE98jgX1cbsh+QVMiLDuwFcKUMBdAlu2bEF5ebm7DsfjUIACFKAABbwiwMDdK8z1JwkZiVd2pNW/yUby8pwmZzfif5ZbBjSCaBG/7MnJTdbzLQUoQAEKUIACFKCAVgUYuHu55PvdnoLcDZYmM7tTp2Dy8xuRJ0YVPZF/GBvTpyN2uaW6PWPXekxmF9NeLh2eTisC06dPZ3eQWils5pMCFKCAHwkwcPdBYY58cBkK96+G/Kzq7iUzEd23L/oPMmBmajYMcWnYW1COZyf38UHKeEoKaENgz549qKys1EZmmUsKUIACFPAbgZa6NvGbDCo1I33GPYRt0gMoOlGIcvGUapDoOya8ey9ERYQoNclMFwX8RiAvLw+jRo3iA6p+U6LMCAUoQAFtCDBw92k5h6BPv4Fg3bpPC4En16BAQkKCBnPNLFOAAhSggNoF2FRG7SXI9FOAAi4LHDlyBDU19qMZu3wI7kABClCAAhTwugADd6+T84QUoICvBbZu3cruIH1dCDw/BShAAQq4LMCmMi6TcQcKUEDtAikpKWrPAtNPAQpQgAIaFGCNuwYLnVmmgNYFzpw5g7q6Oq0zMP8UoAAFKKAyAQbuKiswJpcCFOi4wKJFi1BSUtLxA/EIFKAABShAAS8KsKmMF7F5KgpQQBkCK1asUEZCmAoKUIACFKCACwKscXcBi5tSgAL+IWAymfwjI8wFBShAAQpoSoCBu6aKm5mlAAVkgdmzZ+PkyZPEoAAFKEABCqhKgE1lVFVcTCwFKOAOgbVr10KvZ72FOyx5DApQgAIU8J4A71zes+aZKEABhQgwaFdIQTAZFKAABSjgkgADd5e4uDEFKOAPAomJiTh9+rQ/ZIV5oAAFKEABDQmwqYyGCptZpQAFLAILFy5EZGQkOShAAQpQgAKqEmDgrqriYmIpQAF3CPTq1csdh+ExKEABClCAAl4VYFMZr3LzZBSggBIE0tPTOQCTEgqCaaAABShAAZcEGLi7xMWNKUABfxCYNm0awsPD/SErzAMFKEABCmhIgE1lNFTYzCoFKGARGD58OCkoQAEKUIACqhNgjbvqiowJpgAFOiqQlZWFsrKyjh6G+1OAAhSgAAW8KsDA3avcPBkFKKAEgaFDhyI4OFgJSWEaKEABClCAAm0WYFOZNlNxQwpQwF8EJk2a5C9ZYT4oQAEKUEBDAqxx11BhM6sUoIBFYMuWLSgvLycHBShAAQpQQFUCDNxVVVxMLAUoQAEKUIACFKCAVgXYVEarJc98U0DDAtOnT9dw7pl1ClCAAhRQqwBr3NVackw3BSjQboE9e/agsrKy3ftzRwpQgAIUoIAvBBi4+0Kd56QABXwqkJeXh5qaGp+mgSenAAUoQAEKuCrApjKuinF7ClBA9QIJCQmqzwMzQAEKUIAC2hNgjbv2ypw5poDmBY4cOcIad81/CghAAQpQQH0CDNzVV2ZMMQUo0EGBrVu3sjvIDhpydwpQgAIU8L4Am8p435xnpAAFfCyQkpLi4xTw9BSgAAUoQAHXBVjj7roZ96AABVQucObMGdTV1ak8F0w+BShAAQpoTYCBu9ZKnPmlAAWwaNEilJSUUIICFKAABSigKgE2lVFVcTGxFKCAOwRWrFjhjsPwGBSgAAUoQAGvCrDG3avcPBkFKKAEAZPJpIRkMA0UoAAFKEABlwQYuLvExY0pQAF/EJg9ezZOnjzpD1lhHihAAQpQQEMCbCqjocJmVilAAYvA2rVrodez3oKfBwpQgAIUUJcA71wKKS9jWT62b9yOE9UKSRCTQQE/FmDQ7seFy6xRgAIU8GMBBu6+LtyKE9iydB6Cug9C7MzlOF3r6wTx/BTwf4HExEScPn3a/zPKHFKAAhSggF8JsKmMr4qzugjbV72M2Pmr7FIQjiC7d5ylAAU8I7Bw4UJERkZ65uA8KgUoQAEKUMBDAqxx9xCss8NW562BLrQvYnPCkBQX42xTrqMABTwg0KtXLwQEBHjgyDwkBShAAQpQwHMCDNw9Z9vikQP73opjhaWQti3DsndeR2yLW2prRXV1NdhNn2tlbjQaUVNT49pO3BqpqakoLi6mhAsC/Ky5gGW3aWVlpd07zrZFoLa2FpcvX27LptzGToCfNTuMNs7KMYckSW3cWhmbMXD3QTkEdumDgX0ibGfuYpvT9syUKVOwa9cubSO4mPv169dj1qxZLu7Fzf/617+iqKiIEC4I8LPmApbdpt26dcP58+ftlnC2NYHXXnsNzz77bGubcb2dgDwSdFRUlN0SzrZFQH7W6fjx423ZVDHbMHBXTFEwIRSggLcEOnXqBPkfJwpQgAIUoICaBBi4q6m0mFYKUMAtAhUVFbhw4YJbjsWDUIACFKAABbwlwMDdW9I8DwUooBiBoKAg1rgrpjSYEApQgAIUaKsAA/e2SnE7ClDAbwRCQkIQGhrqN/lhRihAAQpQQBsCDNy1Uc7MJQUoYCdw6dIlXLx40W4JZylAAQpQgALKF+AATMovI7en8PPPP4dOp3P7cd1xwFtvvdUdh9HcMZRankouiHHjxik5eYpNGz9rrhdNRERDL2Ku763dPTIzM7Wb+XbmnH+frsMNGTLE9Z18uAcDdx/i++LUH3/8Mc6ePevw1IGBgWz361CGCylAAQpQgAIUUKuAPC6APBaFo6lnz56OFit2GQP3DhdNGfZt3ISvK4BgB8eqqemC2PgH0S/EwUofLAoLC8M111zjgzPzlBSgAAUoQAEKUIACHRFg4N4RPXnfiu/x4swE7G7xODEYN0c5gXuLyeQKClCAAhSgAAUoQAFFCzBw72jxhEYiJsaAc+ccHyg3dzCCHK/iUgpQgAIUoAAFKEABCrRZgIF7m6la2DBwIFJyDiGlhdVcTAEKUIACFKAABShAAXcIsDtIdyjyGBSgAAUoQAEKUIACFPCwAAN3DwO3fng2pGndiFtQgAIUoAAFKEABCjBw9/VnoKIEufZpYBxvr8F5ClCAAhSgAAUoQIF6AQbuPvooGI3VKCvKw8ZlK+wC92ysXJuDorIK0d+ojxLG01KAAhSgAAUoQAEKKFJAJ4lJkSnz50RVH8S9oWOQ7TSPcThQvg6juzjdiCspQAEKUIACFKAABTQiwMBdIwXNbFKAAhSgAAUoQAEKqFuATWXUXX5MPQUoQAEKUIACFKCARgQYuGukoJlNClCAAhSgAAUoQAF1CzBwV3f5MfUUoAAFKEABClCAAhoRYOCukYJmNilAAQpQgAIUoAAF1C3AwF3d5cfUU4ACFKAABShAAQpoRICBu0YKmtmkAAUoQAEKUIACFFC3AAN3dZcfU08BClCAAhSgAAUooBEBBu4aKWhmkwIUoAAFKEABClBA3QIM3NVdfkw9BShAAQpQgAIUoIBGBAI1kk9mU+UCxpLD2PTBAaC7AdOmjkaIyvPjieRXFOXhs8/34/uicvPhg8P7YGzMFIzuF+GJ06numLLPV//5Bj+VXjSnvfs1Bvxy7Gj06aK6rHgvwcYK5H3xGfZ/+z3Ka+TTBqPPiLGYMnE0Inj3cKEcjDj84TYcOH0Z0bdOw7g+vIK1Ba8k/yA+2bkTH3/6OVatzzbvsvpoOR4ayj9aq19FST6++uRLfFN0tn5ROIaMux43jhsKKskkRuTv24YjncZj6rg+Vjanr4q/V0icKKB4gWIpMwaS+EuTYMiUShWfXi8nsOqYtDopxuIjGzX5F5O8QSr2cpIUdbqqAinL3scQIxnsjJI3HJBqFZVgZSSmYO9qKcbOqfHnKlbacEDTnyqXCql4b4bt7zJjP69greEVHsiWkqzXfPkzaIiTMjdkS7nHCqVy/rFa+MR1bUNyrO1zhZhYKTbG0PAecVJ2rrY/awX7N0vx9Z+jmIz9rX3sJEkl9wq0nhNuQQHfChzItL84ZUnlvk2Oss5edVRKajG4sgviY7M0+oWnQEozNDhk7i2oL78qaW9mnO0mF5d1QFnl6uPUHNucZLNpHLA3WMrLMxmEtl5S5fulWLu/0cwD2g6mnIKJwKlRJYQhXtqRW+h0F02urLW/rsVLewsa7orlBXulJNs1zyBlF2jvm478xS/eZmC5ZsVmtnaNtzcV1zYF3ysYuGvyr149mS7PXd04gIhh4N5QerXSrmRrDUuMlJm9XyooLpYKjx2QNqQ1BKXWwCsp+1jDrhqZ25vR8EtE/Oam+a+VNsdb/SCJn+A1otJKNgt32H6RiInPlPYfLZCKiwul3F0bpDi7ANTyuUqWjmkvLmgF0H51ubQ6rsmXHQbu9kC2+aqCXY0/X/Grtf1LoU2m+Yx9ZdZmR3+Adn/DiNsgVTU/hJ8uqZI21P+9JSUnNfrFsLXAXU33Cgbufvrx9YtsidrkeLtAwdy8gYF7Q9EW77IEWIYkydEvooV7MzX9pae2MNsWgEL8bJzr4O5VZf/FMIbNsOQP1640y5eZpA25DZ8161xtoZQZ2zQQ5RceK0/T16Mb4hv/Dcq/UjBwb8okSeJa1qhZlviFkA2xmjNZlpRKWbZmRMmS9TfExluXShnWe6e4Z2rnN55aUXF1TCqtr0yw/4LjLHBX272CvcqIaiNOShQwYnvy/Vglkpa2YQPEz17IVWIyfZim/E/eM5ts3v4aRjp4/rTPhETsSha3Q+t0rhgV1nkNvOZu+ZvtM2NImoFoB88DhkRPgGhqZJl2z8eO/GrrO22+GvPxXqr4S4vPxmsPjmxuENgHiW/tgPhztE0XzmvpU2XLdqszxhPbcf9McQWLTcOGTFEFwakFgRIsvXkKdtvWxmL/unmIsr3nTGOBQASHW5fsx09l1vnGr+ft3mrnOfJA9Bk40PbgfFBw2x7PVdu9goG73Yebs8oRKPpwCWKXiwAiaQeSfzsalYzamxROBfa9JYICEWDd26/ly/L4393fsF/u9zitmRirBDvftfRCIQM8MmsCHCoFDsQsUYVsnTbt/NY6q8nX6qM7zV+WNz9/p2MvWaXPjXiygQwHfjitSSvnmT6BJVNjzV8cs99KxrjwSueba3ht3sYXsMDu+p6cnYlxbYu3NKpmRE25Neu78eKbOdY3Da8Vx/FzwzvOORVQ372CgbvTAuVKnwiU5CDujlRx6njkLrkdgcZKTdUUt828C2JXH0PBq04CLHGgWvuDxdyEwRq5IRpPfIENdsGAPUPTeftamez3PkULFVhNd/PL9yGDf4tjRwudfhlsmvHJYwc3XaT59/uWzoH5h4sNRzG1TyAqzV1pap6lOUDFl3hO/lXCOsVkInlqP+s7vjoUiMDgmIZfUnenTsG8NQfttjTiwyVPY339kszXf8tuIe10ms6q8V7BwL1pKfK9jwVKsOJ+y8+mWQdex8j65g0aiTddso/oNxD9XOlMu28XBLl0BvVuXHXulK2ZjJyLyK6hLWam1v5r4e4cfK+ZXyUckIREYODQPi3XttfvYh+Hhoc5OI6GF5V9uQITF4iGH7Gr8fqDQzUs0XrW8//1NzT8LgbExERi95p03Dt5FHQ6nfnfqMmzsGLLl/Z/pa0f2M+3mJzwMhpCd2DVnDG4N307yoxl+DB9Ou5YYml4FL/6ABJHO2hH6ec+rmRPjfcKBu6ulDC39bjA4ZVPYb58z8vcj3mjGa53FPyHz3fYDpH55B2aGbgqqNE3lDgM7euggXu9TI8rh9mM5JlGuzZawzdmgYofsMMabcVkIZaD4TR8MCoOIvH6+eK9aKe9+iHWdDbIOJgTzf02WWvbLU9N7E6didg5qcje3fBzWe7u9Zg/43qEj3oeh7X8pdpeMGoC3t+fZb8E2amx6B7UHXekij9OQxw2HyjGyodGN9qGb5oLqPFewcC9eTlyiY8EqvM2wpAgfuAzZOCtxHE+SoUfndaYh5UJ9RGWCLBmaajmpbSk2K4gxd2+UZshu1VitteAIY0X8J1Tgfx/rbTVkmYu+S1Yn2flqsDGx8aYmyik7XoL4whjhXH8Wv0DttVfnqxdD8RlZKO4SpJ7u0NV6TFsSLN7mCJ3CQw3rUCJ46NpbmnEuHko3r+60YPiVgTDzHhMH83He60ezl7VeK9g4O6sRLnOewKiN4vk6JnifAbs2PEU+njvzH57prxNy8wPGoofoLFr/SOaCrBCo6JFnWfbplrYN/xo2z6a3ar6MJbWt0mOSduFREanto9C/pZUzJTrHZLFA/WTeQWzwTiZsf9NVf48rXt2KqLqfxwLiRiIB1O2YEeyXR9GufOxeh9Ddytp1LhYPGLHY12eu2AiRj25UdPP61gtWntV472CgXtrpcr1XhAQD9OkTsNycaakzVtxu3iYq9HUpLbU2Ggl3zgSsHVFJ1ZmHXgfk5uaOtrJn5ZV/mirFfanbPk2L+LvNG2+5ctg3Gq8nzLZt8lR0Nnlv7dpM8xXMGxNEw/UKyhtaknK/feOdZDUQNyevBpi4C/btGHHAfAeIDgqDuP5Ud0xX7QqMsQlIyPJvtW7+A1j+Ux0n7eRzwbYPjktzKjwXsHrSwtlycUdF6jI34eNH3wNBAc3P1hNDbpcF4sHJ/RDUc4S8TBNLgxJou/o6QObbxtq1+o4PBgtP2bYfFf1LSnDvo2b8LVo3eFADTU1ojeZ+AfRr+Um20B1Hp7pb+mKLjn7mHhWQHu/2QeGdbUrevt6PbvF9bNBTaSbfE9svoNGl+Rveab+obdkHBPtt7X3qWqh4I3Wrh8N2HzsNQx0cFe1u4IhOMi/r2AtKLW6uKa2hXC8iwEzxEAe61dZ2r3n7v9eBKO3a/vzJ5pBPhluMFd2AcnYum4x5Dvn1Jh0RMfKPbLVT6vEMwNX9UYOv2RbRZq9qvFe4eAS0yxfXECBdgn88P6LSJB7V2hhism4SQTu3fGvVywXmtzlf8PjlZtR2ajLY9FlRcV+W9dWyF6GubN2mY9YUXE10v+52NbzTAunUdfiiu/x4swEu8FImiY/BuPmOAvcy7BybrT5gi4/4Lt4qoMvQk0P6Y/va+2bv+TiZKkRo7s4vtwVfnfITmAYejOusvOwzFYcXoNB5hrlOOwvFUGCY8pm+2lhQUVutrnrR7md9vqljyO78QUMEJew3FXrbRRvpczFp/J3yYoKXP3bV7FYqz3PiG/IbXvWNBADRsvtQawPrAZr/heNg289Vx+0y7+oJpuDdvkDNnRqCkpzo3GfYYbtHrI79Ul8+MiB5r9kyztwEs8/qe9ewcsvP7geE+g6VP7p7hwMDtrgITcXg3vW10OFW5OQjVXWTgasi5q9ipvjeusFPBbJcvWos9rnZvsrfEFopOgSzYBz5xynMzd3sJNeT4zISb8P5ud7RTvbf2r4Ad8uA64zd5dm+dqYi4JzIkTo57iOuPLc2Qbs+NHoy6tig4c8V5SDWMMcMROD7IJ3+NBlY51G77Jbv4AhN3u9LQSNmWxXO9roSBp4ExqGXm3NZpOfH1uom2/r0dS9nXgebN387Po8xOPXhsa/KEaMnI6PCnbg1v531Afvufj3fwpxO/vHd1juarxX8BblsCi50B0CA8W3f0lKaeVQFbhyWBziuoQhTNRMOZwqz2DVeuuFyoC4+OtFJVYlzlQOQZj9b9AOd1bZQjGSZ0rOIbSm5ihXh9c8jimpIlSN34BPF9/uV99nHOXX6bKIEbhfPJ262/qxabGOrhrfHbR+ERR0t1zX4pZOz+evK0U72nl9LeMqrM59H1OdttHyVwTn+QrtMQJJsXE420tcw1rY9Mz+Vciu/5gZxLbXi20rxXXt6j4t7dHCgfxpcWB/3CD+RlfV/43mfHq8xT7HG13mxXgUmv5RrOoCjls/B7E3OKxoCOx3O14XI0KPqQ/wDxXINUH9rHvx1V5AjfcK0e0SJwooW6A2V4oDJPG3JolBTaQqZafWJ6kr2JFW75MlFTtJwd40gxSTecDJFv6z6tjmJIuJ/LlJypZqHWatUMow1H+2ECPtLXW4kTYX1hZIafU2mfudfKpKd0kGYXegXJtMbcn10dVxts9iVi6vYFaz4r0ZNhfRDXCL164DmbG27eI2HLXurs3X8gOS+L5j8YjJbNGsdG+yzSw2SxvX/KYfiNyshr+7WCf3PbXdK9irjP03L84rU6DK7nHB8hpUKTOVPktVyZcr0f8O8ZN7bCYKt82Dw957jdU4vD0dE8U47L+/dbDP0urNEw+8++GG3ijE8xMHHDSoNZ74HAusNaHJL2BChDdTqORzFWHF9P7mttsZuwpFt48OP1WoLjmM9PumIDfuvzGs8S/2Ss6c19Nm34y2ppZXMGsBRE2Ig/jibJlyF2CrwxGWSrDzXetPZ7F44p6h1t21+dqlB4ZZc777XXxRZH3T+LWqrOFzNv6/BjReyXeNBNR2r2Dg3qj4+EaRAo1+JwWbMtgVUsXhjeh5fYJlSfZ8xI2Shwpv/G+UvEz0ZGGQexuIycBdWhnpMmQkXtmRVq+VjeTlOXZy8qwR/7M8vX5ZDJY9ye4NLRhlWDOrL6zNaBe8EodR8vDzdp8t+TMlLwvtaYDcOisj/hZtN82q/xTxxVWBPkjcutm2U0Lc22gahxZ9mGX7ch234VWM0/wXxH6YniV+gzZPuUh5bYuDh3yL8G6K3D2pPCXhvlHarJGorbGrrQluEkhYcCz/q+1e0fSnBb6ngOIEqg40NJWJyZL4i7ylhEpzN4gmCtZmHm17Tdp8THHF6+kE5W5oaDITk7xBOlpYKBUcy5XEqIy2n5JFrbKnk6GS45dKG+INNhdxV2vDfJJ0zHE7JJXk2fPJtP/JPvMA22M1FW90LYtJlnbkHpMKxd9pbnZDU5qYtB1sJmmDK5VWx9v9bcZlSAcKiqXyqnKp+NheKTnWus4gbT6qtTtmrVRVXiod3btaEt1jNFy/DPHSrqOFUlVVyxcrtdwr5KGFOVFA2QL2gXssA3dLYZVLq20XZ7uLk/2Fqtl8nGbbIRfuX93QLtTOxRCXJu0t0NqNreU/96rc1Q03OjsnZwF8nEbbz7as2HyNfeCexcC9OZBYUlt8QMqIj3Hw+YuRMrM13q7dsZh0dEeWFGt7RqfxfSA2KUs6WtpykOrwkH6w0P5vraXrlrM2/2q4V+jkcrL8VsD/KUABCvizQDWKThSiXPQlFyQaXIV374WoCH/qS9Sfy45504pAdVkRCk7KvaCILraDwtF/UD+0MASDVkhayacRZUWFOHNOtGkPqkWt6Nuod99+iCJaK27OViv7XsHA3VnZcR0FKEABClCAAhSgAAUUIsCHUxVSEEwGBShAAQpQgAIUoAAFnAkwcHemw3UUoAAFKEABClCAAhRQiAADd4UUBJNBAQpQgAIUoAAFKEABZwIM3J3pcB0FKEABClCAAhSgAAUUIsDAXSEFwWRQgAIUoAAFKEABClDAmQADd2c6XEcBClCAAhSgAAUoQAGFCDBwV0hBMBkUoAAFKEABClCAAhRwJsDA3ZkO11GAAhSgAAUoQAEKUEAhAgzcFVIQTAYFKEABClCAAhSgAAWcCTBwd6bDdRSgAAUoQAEKUIACFFCIAAN3hRQEk0EBClCAAhSgAAUoQAFnAgzcnelwHQUoQAEKUIACFKAABRQiwMBdIQXBZFCAAhSgAAUoQAEKUMCZAAN3ZzpcRwEKUIACFKAABShAAYUIMHBXSEEwGRSgAAUoQAEKUIACFHAmwMDdmQ7XUYACFKAABShAAQpQQCECDNwVUhBMBgUoQAEKUIACFKAABZwJMHB3psN1FKAABShAAQpQgAIUUIgAA3eFFASTQQEKUIACFKAABShAAWcCDNyd6XAdBShAAQpQgAIUoAAFFCLAwF0hBcFkUIACFKAABShAAQpQwJkAA3dnOlxHAQpQgAIUoAAFKEABhQgwcFdIQTAZFKAABShAAQpQgAIUcCbAwN2ZDtdRgAIUoAAFKEABClBAIQIM3BVSEEwGBShAAQpQgAIUoAAFnAkwcHemw3UUoAAFKEABClCAAhRQiAADd4UUBJNBAQpQgAIUoAAFKEABZwIM3J3pcB0FKEABClCAAhSgAAUUIsDAXSEFwWRQgAIUoAAFKEABClDAmQADd2c6XEcBClCAAhSgAAUoQAGFCDBwV0hBMBkUoAAFKEABClCAAhRwJsDA3ZkO11GAAhSgAAUoQAEKUEAhAgzcFVIQTAYFKEABClCAAhSgAAWcCTBwd6bDdRSgAAUoQAEKUIACFFCIAAN3hRQEk0EBClCAAhSgAAUoQAFnAgzcnelwHQUoQAEKUIACFKAABRQiwMBdIQXBZFCAAhSgAAUoQAEKUMCZAAN3ZzpcRwEKUIACFKAABShAAYUIMHBXSEEwGRSgAAUoQAEKUIACFHAmwMDdmQ7XUYACFKAABShAAQpQQCECDNwVUhBMBgUoQAEKUIACFKAABZwJMHB3psN1FKAABShAAQpQgAIUUIgAA3eFFASTQQEKUIACFKAABShAAWcCDNyd6XAdBShAAQpQgAIUoAAFFCLAwF0hBcFkUIACFKAABShAAQpQwJlAoLOVXEcBClCAAhRon0AFPlz5NnJruqJrsP0RanABI5A4bzy+WrMWX9cA1tUXii/A8GAibh8YYr8D5ylAAQpQoF6AgTs/ChSgAAUo4H4BoxERV16FU8tnYsFu+8PHYfWOm1BVXQXUHMT8hFX1Kw1IzkpB/+68LdlrcZ4CFKCAvYBOEpP9As5TgAIUoAAF3CdQhKWT+9oF78kokBajnzhB9eGVCDUkiLkkHK1ahqGsaHcfO49EAQr4pQADd78sVmaKAhSggHIEjEXbMaZvLHLrkxSblYtt88LxpK4/lotlm49VYTqbxyinwJgSClBAsQIM3BVbNEwYBShAAf8ROLxmHgxzrM1iGvIVJ4L4dfNGNizgHAUoQAEKtCjAwL1FGq6gAAUoQAH3CZSIJjM97ZrMiCPHZqF42zxEue8kPBIFKEABvxZgd5B+XbzMHAUoQAGlCEThqdXZMNglJ+aO8Qza7Tw4SwEKUKA1Ada4tybE9RSgAAUo4CYBI9ZMDsIcWy8zMdhVnIPJrHJ3ky8PQwEK+LsAa9z9vYSZPwpQgAIKEag4vN4uaJcTtRtT5q5BhTzLiQIUoAAFWhVg4N4qETegAAUoQIEOCxjzkWqYIw5jQFJSXMPhsucgdXt+w3vOUYACFKBAiwIM3Fuk4QoKUIACFHCXQM6SueauH2MyVmHZsnXITmpo7b48di72lbjrTDwOBShAAf8VYBt3/y1b5owCFKCAIgTKvlyB7tfPF2lJxrHaxRgoD45acRCzwsdgvTWFcatRvu4hdLG+5ysFKEABCjQTYI17MxIuoAAFKEABtwlUH0aiOWgHsg48Ywna5YN3GY2MHWkNp1nPJjMNGJyjAAUo4FiAgbtjFy6lAAUoQIEOClSUHMbSBwyWWnVRo/7b0RGNjtjnxrsQb7dkeewgrMjJR7XdMs5SgAIUoECDAJvKNFhwjgIUoAAF3CRQnb8RoYNmNj5aTBbKc+ZZmsNUH8S9oWOQ3XgLyzv77Ryt5zIKUIACGhVg4K7Rgme2KUABClCAAhSgAAXUJcCmMuoqL6aWAhSgAAUoQAEKUECjAgzcNVrwzDYFKEABClCAAhSggLoEGLirq7yYWgpQgAIUoAAFKEABjQowcNdowTPbFKAABShAAQpQgALqEvj/ASMNqLbquun4AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 12, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='discrete/g.png', width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">
\n", "**Figure f and g**: The functions $f$ and $g$ are known only at discrete points. The\n", "function can be approximated at other values by linear interpolation,\n", "where straight line segments are used to join successive points.\n", "
\n", "\n", "> Depending on the function, or number of location of the points chosen,\n", "the approximation may be more or less accurate. In\n", "Figure [f and g](#lab1:fig:discrete-f), it is not clear which function is\n", "approximated more accurately. In the graph of $f(x)$, the error seems to\n", "be fairly small throughout. However, for the function $g(x)$, the error\n", "is large near $x=0$, and then very small elsewhere. This problem of\n", "*accuracy* of discrete approximations will come up again and again in\n", "this course." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Demo: Interpolation\n", "[lab1:demo:discrete]: <#Demo:-Interpolation> \"Interpolation Demo\"\n", "Here is an interactive example demonstrating the use of interpolation (linear and cubic) in approximating functions. \n", "\n", "The next cell imports a module containing two python functions that interpolate the two algebraic functions, f and g ([Figure f and g](#lab1:fig:discrete-f)). You need to run this cells ([how to](#Running-Code-Cells)) to load them." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "from numlabs.lab1 import interpolate as ip" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once you have loaded the module, you can call the interpolation routines as ip.interpol_f(pn) and ip.interpol_g(pn). pn is the number of points used the interpolation. Watch what changing pn does to the solutions." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd3hU1dbA4d9KQi/Si5SAiEpRkS5FKV7BLnZFQAVRlHsFQRH4REGxe7GCoGIBVCwIygUsVBFUQpMiSEuoIUEMJARImfX9cU7IJCSBSGYmk1nv8+RJZu+Zc9ZMkjV79jnrbFFVjDHGhJawQAdgjDHG/yz5G2NMCLLkb4wxIciSvzHGhCBL/sYYE4Is+RtjTAiy5B9ERKSjiGwOdBwAIvK0iEzNoz9aRK7wZ0z/RF5x+ur1FpFOIrK7ALYTFK9xXkTkQxF51k/7yvNvNtRY8i+EcvunVtWfVPX8QMRUmInIXSISJSJJIrJPROaKSIcz3e4/fb3dJJPqxpMkIn+IyM1nGk9BE5H6IuIRkfH5eIzfEqiI3CMi6e5reFhE1orItf7Ydyiw5G9OSUQiAh1DbkTkUeA14DmgOlAXGA/cEMi4gOmqWlZVywKDgKkiUj3AMWXXG/gbuENESgQ6mFwsd1/DCji/189EpEKAYyoSLPkHkezTBe4nhKEi8ruIHBKR6SJS0qv/WhFZIyIJIrJMRC7y6ntCRLaJSKKIbBSRHl5994jIzyIyTkQOAk/nElJJd5+JIrJKRC7OJe4sH+1zeB5ni8hXIhIvIjtE5D+n+XqcBYwBHlbVGap6RFVTVfVbVX3sdPbtauW+Bn+LyAcZr2EOcdYRkRlunH+JyFunE6eqfgckAg1yeR65/i7c/vvdTw8Z/c1z2MYF7mt3x+nE5OoN/B+QClyXbXtNROQHETkoIvtFZISIdAdGALe7o/G17n2zfFLN/ulARL4QkVj3b3SJiDTJR4wAqKoHmAKUARp6bbut+7ed4H4y6OTVV19EFruv2w9Alfzutyiz5B/8bgO6A/WBi4B7ANwEMRl4AKgMTAS+8RrhbQM6AmcBo3FGpjW9ttsG2A5UA8bmsu8bgC+ASsAnwEwRKZaf4EUkDPgWWAvUAroCg0Sk22k8/FKgJPB1fvaZg55AN5zkfB5OQsweZzgwG4gB6rmxfnaqDYvjGqA4sDGXu+X6uxCRW3HefHsD5YHrgb+y7aM58D3wb1U9ZUzuYzoCtd3n8Lm7/Yy+csCPwDzgbOBcYL6qzsP5hJXxqSbHN/sczMVJ2NWAVcC003ycd7zhwL04b1Qxblst4H/Aszh/g0OBr0SkqvuwT4CVOEn/GaBPfvdblFnyD35vqOpeVT2Ik0Sbue33AxNV9VdVTVfVj4DjQFsAVf3CfZxHVacDW4DWXtvdq6pvqmqaqh7NZd8rVfVLVU0F/ouTiNvmM/5WQFVVHaOqKaq6HXgXOJ0RbGXggKqm5XOf2b2lqrvc13AscGcO92mNkwgfcz9hHFPVpXls8zYRSQCOAN8Az6lqQk53PMXvoh/wkqquUMdWVY3xenhHd/t9VHV2Pp5zH2Cuqv6NkySvEpFqbt+1QKyqvuo+z0RV/TUf287+/Ca72ziO80Z2sfup7XS0dV/HY8ArwN2qGuf23Q3MUdU57mv3AxAFXC0idXH+tp5U1eOqugTn/8O4LPkHv1ivn5OBsu7PkcAQ9+NwgvsPVAcngSEivb2mhBKApmT9WLzrNPZ94j7ux/LdGdvPh0jg7GxxjsCZvz+Vv4AqcubHJLyfaww5P4c6QEw+3mg+V9UKqloa5xNFbxF5IKc7nuJ3UQfnk0FuHgSWqerC04wLESkF3Io7AlfV5cBO4K7T3OdpE5FwEXnBndY6DES7Xac7BfOLqlYAKuK8yXX06osEbs32t9MBqInzO/xbVY943d/7TTPkWfIvunYBY90ElPFVWlU/FZFInNH1QKCy+8+1HhCvx5/O5V7rZPzgTt/UBvbmcL8jQGmv2zWyxbkjW5zlVPXq09j/cpwR4Y153CevfWeo4/VzXXJ+DruAuv/kjUZVo3GmPq7L3ncav4td5HKswPWgG9e4fITUA2cKabw7Fx+LM42VMfWT1z5z+rvI6zW+C2d68Aqcaa16brv339opqWoS8BDQS0Qu8YpzSra/nTKq+gKwD6goImW8NlM3P/ss6iz5F17FRKSk11d+k867wIMi0saddy4jIte487llcP6J4wFE5F6c0WZ+tRCRm9zYBuFMK/2Sw/3W4HwUryQiNdz7ZvgNOCwiw0SklDtSbCoirdzYOolIjm9EqnoIGAW8LSI3ikhpESkmIleJyEunse8MD4tIbRGphPOpY3oO9/kNJ6G84L6WJUWk/SleH9znUBvnuMyGHLpP9bt4DxgqIi3c3+O57htGhkR325eJyAte+/xQRD7MJaQ+OMeDLsSZJmwGtAeaiciFOMc2aojIIBEpISLlRKSN+9j9QD33zT7DGpwzhoqJSEvgFq++cjh/F3/hvEE8l0tMp6Sqf+G8HqPcpqnAdSLSzf27Ken+vdR2p8aigNEiUlycU39PevMNZZb8C685wFGvr6fz82BVjcKZ938L53S+rbgHg1V1I/Aqzsh5P04S+PkfxDgLuN3dfi/gJnf+P7spOAd0o3EOTJ5IrqqajvNP2QzYARzA+QfPmBOu48aZ2/P8L/AozkHaeJzR4EBg5qn27eUTt2+7+3VS0ZFXnOfiTJHsdp97bjLOiEkCVuC8vqNz2G6evwtV/QLnOMQnOIl+Js7BTe9tJAD/wpm3f8ZtrkMOv1P3IGlX4DVVjfX6WolzgLePqia627sOZ1pxC9DZ3cQX7ve/RGSV+/OTOJ8U/naf4ydeu/wYZ7plD84B75wGB/nxGs6b+UWqugvnU8UIMn/3j5GZ1+7COXHhIPCUG4txiS3mYgozEXkP+MI9XdKcBhEpjvOGd1Eub8bGWPI3xphQZNM+xhgTgiz5G2NMCLLkb4wxIajQXrAruypVqmi9evUCHYYxxgSVlStXHlDVqtnbgyb516tXj6ioqECHYYwxQUVEcqxstmkfY4wJQZb8jTEmBFnyN8aYEGTJ3xhjQpAlf2OMCUEFkvxFZLKIxInIeq+2SuIsA7fF/V7Rq2+4iGwVkc1yeis2GWNMSJk2DerVg7Aw5/u0fK9/lreCGvl/iHNZWW9P4Cz91hCY795GRBrjrNLUxH3MeHeJNmOMMTiJvn9/iIkBVed7//4F+wZQIMnfXSLtYLbmG4CP3J8/InPBjRuAz9yl1XbgXGq4NcYYYwAYORKSk+F8pnE5V1CGvSQnO+0FxZdz/tVVdR+A+z1jfdBaZF02b7fbdhIR6S8iUSISFR8f78NQjTGm8Ni50/leieGsZv5J7QUhEAd8c1q+LbeVmiapaktVbVm16knVycYYUyTVrQtn8zO/sYtLaMURd1npugW4EKUvk/9+EakJ4H6Pc9t3k3XN1NzWfTXGmJDUpw+cy38QYDNvA1C6NIwdW3D78GXy/wZnrVDc77O82u9w1watDzTEWR/VGGNCXmIifDU5hlWsol14PfZLKyIjYdIk6Nmz4PZTIBd2E5FPgU5AFRHZjbNe5gvA5yLSF2fN01sBVHWDiHyOs55nGvCwuz6qMcaEvEcegSq7H2ID8NqU57jkTt/sJ2iWcWzZsqXaVT2NMUXZjBlw283JVJfyXFChPPMPZj+JMv9EZKWqtszebhW+xhhTCOzb55zLf22VoezVdIY88ohP9xc01/M3xpiiShX69oWkRA/b5QMalyhB94I8qT8HNvI3xpgAmzAB5s6FJ654hnXHjzGsd2/CInw7Nrc5f2OMCaBNm+CSS6BTJziy7Cxijhxh6+HDFCtdukC2b3P+xhhTyKSkwN13Q5kyMPDyCfx0+DBDb7yxwBJ/XmzO3xhjAmTMGFi5Er76Ct4Z8DRVROj7zjt+2beN/I0xJgCWLYPnn4d77oGG+hWz4+L4T+fOlK5SxS/7t5G/Mcb4WWIi9OrlXKvn9ddhwEVDKAM8PGmS32Kw5G+MMX42aBBER8PixbDv57l8FhPD0NatqdSggd9isORvjDF+NGMGTJ4MI0ZAhw7Qp8FASgBDJk/2axw252+MMX6SUcXbvDk89RRsW7CAadu3M6BFC6o1aeLXWCz5G2OMH2RU8R45AlOnQvHi8PyAAUQAQ997z+/x2LSPMcb4QUYV75tvQqNGEL10KR/9+ScDLrqIms2a+T0eG/kbY4yPbd4MQ4dC9+7w8MNO2/P3308Y8HgARv1gyd8YY3wqNdVZhKV0aedArwhsX7SIyZs2cf+FF1K7VauAxGXTPsYY40OjR2dW8das6bSN6dePCGDkxx8HLC6fJn8ROR+Y7tV0DjAKqADcD8S77SNUdY4vYzHGGH/zruK96SanbdOcOUzZto3BLVoEZK4/g9+u6iki4cAeoA1wL5Ckqq+c7uPtqp7GmGCSmAjNmoHHA2vXQvnyTvudkZF8u3MnOzZupGqjRj6PI7erevpz2qcrsE1VY0TEj7s1xhj/867izUj8v3/5JZ/t3MmIdu38kvjz4s8DvncAn3rdHigiv4vIZBGpmNMDRKS/iESJSFR8fHxOdzHGmEJn5kzn4O4TTzhVvBlG/fvflAeGBHCuP4Nfkr+IFAeuB75wmyYADYBmwD7g1Zwep6qTVLWlqrasWrWqP0I1xpgzsm8f9OuXWcWb4ecJE5gVG8uwf/3Lr9fwyY2/Rv5XAatUdT+Aqu5X1XRV9QDvAq39FIcxxvhMTlW8AOrxMGzYMGqGhfHI1KmBDdLlrzn/O/Ga8hGRmqq6z73ZA1jvpziMMcZnslfxZvj2ySf5OTGRiT17UqZatcAF6MXnZ/uISGlgF3COqh5y26bgTPkoEA084PVmkCM728cYU5ht3uysxXvZZc4bQMZ5LWnHjnFxhQqkeTxsOHyYiJIl/RpXwM72UdVkoHK2tl6+3q8xxvhLaqqzFm+pUplVvBk+evBBNh4/zlePPeb3xJ8Xq/A1xpgzNGYMREU5Vbxnn53ZnhQby5NTptC2bFl6vPBC4ALMgSV/Y4w5A8uWwXPPZa3izfDSbbexz+Phq1dfRcIK16XU/Fbhe6Zszt8YU9jkVsULsOvXXzm/bVtuqFuXT2NiAhZjYajwNcaYIiWnKt4Mw++4AwVe+OSTQIR2SoXrc4gxxgSJjCreYcOyVvEC/PbBB0yLjubRdu2IbN8+MAGegk37GGNMPsXGwoUXQt26sHx5ZjEXgCctjQ4VK7I9OZktu3ZRzvsIcADYtI8xxhQAVbjvPkhKylrFm2HKgAEsT0pi8r33Bjzx58WSvzHG5MM77+RcxQuQEBPD4++/T9uyZekzaVJgAjxNlvyNMeY0bd4MQ4ZAt26Za/F6e/rGG4lXZe477xAWUbjTqx3wNcaY05BXFS/Auq++4q01a3igcWOa9+wZmCDzoXC/NRljTCGRUcX75ZdZq3jBOcg7sG9fzhLh2ZkzAxNgPlnyN8aYU/Cu4r355pP7P7z/fpYcOsSkXr2o3LCh3+P7J+xUT2OMyUNeVbwAcRs2cMGFF9KkXDkW//VXoZvrt1M9jTHmH8irihdgyHXXkaTKxClTCl3iz4sd8DXGmFzkVcUL8ONLLzF1xw6GdehA4+uv93+AZ8CmfYwxJgd5VfECJB84wEU1ayIirIuLo2SFCoEJ9BQCNu0jItFAIpAOpKlqSxGpBEwH6uGs5HWbqv7t61iMMeZ0nKqKF2DklVeyLS2NhePGFdrEnxd/Tft0VtVmXu8+TwDzVbUhMN+9bYwxhUJGFe/LL59cxQvw84QJvL56NQ81bUqnQYP8H2AB8McavtFAS1U94NW2GeikqvtEpCawSFXPz2s7Nu1jjPGH3NbizXD04EGa1ajBcY+HdTt3Furr90Du0z7+GPkr8L2IrBSR/m5b9YwF293vOS5nLyL9RSRKRKLi4+P9EKoxJpSdqooX4OmrruLP1FTeffbZQp/48+KP85Laq+peEakG/CAim073gao6CZgEzsjfVwEaYwzkXcULsHT8eF757Tf6nX8+/3oiuGerfT7yV9W97vc44GugNbDfne7B/R7n6ziMMSYvGVW8ffrkXMV7ePduej/yCJEREfx3wQL/B1jAfJr8RaSMiJTL+Bm4ElgPfAP0ce/WB5jlyziMMSYviYnQq5dzWucbb+R8n8FduhCTlsaUN94I6umeDL6e9qkOfC3OxFkE8ImqzhORFcDnItIX2Anc6uM4jDEmV4MH513FO3P4cCZv2cKIdu1oP2CA3+PzBSvyMsaEtJkzoUcPGD7cmfbJbk9UFBe3bk1kyZIsj4ujeNmy/g/yDATybB9jjCmUYmPh/vuheXN4+umT+9NTUuh5xRUcVWXal18GXeLPS/BchcgYYwrQ6VTxPtutG4sPHeLDfv244Oqr/R+kD1nyN8aEpIwq3jfeyLmKd/HrrzNm0SJ6nXMOfd591/8B+pjN+RtjQo53Fe+cORCWbQJ8//r1NL/4YsqEh7Nq507K1qgRmEALgF3P3xhjOLmKN3viTzt2jDs6duSgx8OcTz8N6sSfF0v+xpiQ8swzeVfxjrjsMhYlJPDR/fdz8W23+T9AP7GzfYwxIWPZMhg7Nvcq3q8ee4yXV6xgQJMm9J40yf8B+pHN+RtjQsKp1uLdMGsWbW+8kSZlyrB4715K5FTtFYRszt8YE9IGD4YdO3Ku4j2weTPX3XIL5cLC+HLhwiKT+PNiyd8YU+TNnAnvv+9U8XbsmLUvJSmJW9q0YW9aGksmT6Z2q1aBCdLPLPkbY4q0vKp41eNhYKtWLD50iKkDBtD63nsDEmMg2AFfY0yRpQp9++ZexfvSNdfw7qZNDL/0UnqOHx+YIAPERv7GmCLrnXecIq6cqng/efhhnpg3jzvq1uXZJUsCE2AA2cjfGFMkbd4MQ4bAlVfCww9n7Vv02mvcM348l591Fh+uW0dYROiNgy35G2OKHO8q3g8+yFrFu/bzz7lx8GAalijB16tXh8SZPTnx9UpedURkoYj8ISIbROQRt/1pEdkjImvcr6J1uTxjTEBlVPFOnJi1ivfP777jyjvuoHx4OHMXLqRi/fqBCzLAfP1ZJw0Yoqqr3OUcV4rID27fOFV9xcf7N8aEmOXLM6t4b7kls33n8uVccc01KPDDt99S99JLAxZjYeDT5K+q+4B97s+JIvIHUMuX+zTGhK7c1uLdt2YN/7r8cg6np7Pos884/6qrAhdkIeG3OX8RqQdcAvzqNg0Ukd9FZLKIVMzlMf1FJEpEouLj4/0UqTEmWA0eDNu3w8cfZ1bx7luzhs5t2rAnNZX/jR9Ps9tvD2yQhYRfkr+IlAW+Agap6mFgAtAAaIbzyeDVnB6nqpNUtaWqtqxatao/QjXGBKmMKt5hwzKrePetWUOn1q3ZnZLCvLffLjKLrxcEnyd/ESmGk/inqeoMAFXdr6rpquoB3gVa+zoOY0zRlVHFe8klMHq007Z7xQo6tW7N3tRU5r39Nh0eeiiwQRYyvj7bR4D3gT9U9b9e7TW97tYDWO/LOIwxRZd3Fe+0aU4V75YffqD9pZcSm5rKvPHjLfHnwNdn+7QHegHrRGSN2zYCuFNEmgEKRAMP+DgOY0wRNXFi1ireNdOn0+3OO/EAC6dOpXnPnoEOsVDy9dk+SwHJoWuOL/drjAkNmzfDo49mVvEueu01bhw8mPLh4Xz/zTdccLWVEOUm9GqajTFFQvYq3mkPPUjfiRM5t3hx5i1aFPLn8Z+KJX9jTFDKqOL9fLqH9+6+gqcWLqRLxYp8tXo1FSIjAx1eoWfJ3xgTdDKqeO+5LY4vh7bk81276NOgAZPWrKF42bKBDi8o2IXdjDFBJSnJqeJtXnUJq76J5Itdu3ihe3c++PNPS/z5YMnfGFPoTZsG9eo5V+esWRMqbHuWHXGd2Hn8OHOeeYZhc+ciYZbO8sOmfYwxhdq0adC/PyQnQzjJtEjqwmJ+pXFESWbNnc25XbsGOsSgZMnfGFOojRzpJP5aLKUSV7OYRDrSiH3VlnJu10qBDi9oWfI3xhQ6SUnw00+wYAHExHjowH2s5SMOA235Dz/xOrI30FEGN0v+xpiAO34cfvnFSfbz58Ovv0JaGtSKWEUrrmIpcTSjAnHM5hfaA85lm80/Z8nfGON36emwalVmsl+6FI4edQ7otmgBQx9No/hvvXht0WesAzqH3chCzxdkpKzSpZ1TPc0/Z8nfGONzqrBxY2ayX7QIDh1y+po0ca7I2aULXH45RH83nYf69WN5UhJdK1bknS++4NfYrmwfCTt3OiP+sWPBLtlzZiz5G2N8YseOzGS/YAHs3++0168Pt97qJPsuXaB6dac9bsMGHr/0Ft7btInKInz8wAPcPX48EhbGuViyL2iW/E3QmzbNOSPERoWBFRsLCxdmJvsdO5z2GjWga9fMZJ99zfQjcXG80asXL3z/PcnAoObNGTVjhl2iwccs+Zug5n0OOEBMjHMb7A3A1xISYPHizGS/YYPTXqECdOrkLKnYtatzmWXJ4dq+xxISmNS3L2O//po4Va6rXp2XP/jA1tf1E0v+xm88aWnsXb2aHb/+yt4tW9gTHU3svn38lZDAwaQk/k5OJik1leS0NJLT00lVJR1IUyUMCBMhAigRFkbJ8HBKhYfjOVqcplqSCEoTQTmESniSq/DBA3WodaA+tRqfz9kXX0yZatUC/OyDX3Iy/PxzZrJfuRI8Hueqmh07Opdc6NrVWU0rPDz37RzevZuJDzzAuHnz2Ofx0LlCBWa9/DJt+/Xz35MxlvxNwVOPh+2LFrFq9mzWr1zJ+q1b+ePAAbanpHA8231LAJXDwqhcvDgVS5SgepkylC5enNIlSlAsIoKI8HDCw8NRVdLT0zmems7hxDQOH0nhyLEUkvU4R0ggmQMcJo3DGRs+AvMHZe7nLKBGeAnOLl2O2pWrck69ulxw0fmc06wZ57RrR+WGDe3yANmkpsJvv2Um++XLISUFIiKgbVv4v/9zkn2bNlCixKm3F710KROGDGHSihUkqHJFpUpMHTGCLkOG+P7JmJMELPmLSHfgdSAceE9VXwhULObMHEtI4JcPP2TxrFksW7eOqIMHOagKOBePOrdYMRpVrszVtWrRoGFD6jdpQu0mTajVrBkVIiPzTLoZo82MA4dZRptdYdNvzvRDhnCSqchW6pb9ky6tthK/K5qEAzEkJu0hKe0A+xITWJv4Fwej/4BF3514XHmgXrHS1DurCg3qRNK0eVMu7NiG87t2pXzt2j565QoXjwfWrs1M9kuWwJEjzpTNJZfAf/7jJPsOHeB0r5+WnpLCDy+9xDtvv823sbEI0KNWLR4fO5ZWffr49PmYvIm6/6R+3alIOPAn8C9gN7ACuFNVN+b2mJYtW2pUVJSfIjR5UY+HzfPmMWfiROb89BNL//6b4zhLtl1YsiStIyNp3bo1Lbp1o9FVV1Gq0umX4J9qtNmlS9bRZvY5f3DOAZ806eQ5/6NHIToatm+HrWtj2fnLcuI3R5EQu4HEpO0c9uwlnkPsIQ2P1+OqE0b9EuWJrFSLBg0uoGnb1rS9+QrqtW4W1J8WVOHPPzNf64UL4eBBp++CCzJf68svh8qV87Fdj4cNs2Yx9cUXmbJiBXs9HqqK0L9dOx549VXqtGnjmydkciQiK1W15UntAUr+lwJPq2o39/ZwAFV9PrfHWPIPLPV4WPvFF3zxxht8uWIFf6amAtC4RAm6NWlCp+7d6divHxWzn8pxChmjzYyRffbRZkYCymu0WRBn+6jC3387Z6hsWX+YLQsXsWftzxzY9TsHD20lLm0fuziSOa2E+2khrAy1ypxNreoNqdekFU26dKL59R2oXTeCwvi+sGtXZrJfsAD27HHa69RxXueuXaFzZ6hVK3/b9aSlsWb6dL5+5x2+/O03NqWkEA5cXb069/TuzbWjRtnllgOksCX/W4DuqtrPvd0LaKOqA7Pdrz/QH6Bu3botYmJi/B5rqNu7ahVTRo7kwwUL2JSSQhjQuWJFbrrySq4eOJB6HTrka3u+Gm36mscDe3Z7WPvD72z4YT7R635l795N7E3cxc70w8R5fVYoCdSlJDUiqlG53DlUrXURtS5qR8POnTnvkmrUrw8VK+Z8BkxBi493XuOMN9etW532KlUyX+suXaBBg/zHs2/NGhZPnsz38+Yxd9s2Yj0ewoBOFStyS7du3DRyJNWbNi3w52Typ7Al/1uBbtmSf2tV/Xduj7GRv/940tL44cUXeeuNN5gT56S1DuXL0+u66+gxciRVGzXK1/Z27cpa7FNQo83CJHbTDpZ9/j3rlixj65YNxMTvJPrY3+zWNLz/w2oSTg3KUz6sBuXLNuCs6hdS9fwWRF7anobNalC/vnPd+lKl8t5fbp92Dh92Pj1lvN6//+7cv1w55w01I9k3bUq+PpmkJCWxbuZMVsyZw29RUSyNjmaL++mvoghX1q7N1d270/2RR6jWpEm+XjvjW4Ut+du0TyGUfOAAkwcM4I1Zs9iSmko1Efpdein3jhmTr2umx8c75fvz5xf8aDPYHD14kC0LFrB2wc+sX7mOrTE7iP57P9EpyRwk6/9eZYTqlKY8FSgTUYNy5epQoXp9qtU/nzpNz6fhpY25oHk1liyBBx/MepwjIsJ509ixw7luTokS0L595mvdsqVzn7ykp6QQt3EjO379lW2rV7Nt0yY2bd/O+rg4Nh8/TlpGnCJcWrUqnVq35vJbb6XZbbcRUbJkgb5upuAUtuQfgXPAtyuwB+eA712quiG3x1jy952/d+xgfP/+vD5/PvGqtClThv/06cPNzz9PifLlT/l479HmggXOHD6c+WizqDu4bRtblyxh+5o1/LF2E9uid7L7r3j2HE1kd3oKx3J4TFngLMIpR3FKU4rilCKCMoRRhjBKERlZkuo1SlKlSgTFizunyaanp5OWmkpaWhrJyckcOXKEI0ePkpCUxMEjR/jr6FFijx0j1uMh3WtfAtSLiKBp5co0PeccmrVpQ6sePajXoUNQH+gONYUq+QOIyNXAazinek5W1Tyv0WfJv+Al7t3L671788r8+RwCrq5alSdGjaLjwIF5PirLZXcAABPNSURBVO7YMecsnIyR/YoV/3y0aXKmHg9/79jB7tWr2bl+I9s37mTnjt3s3x/H9l2HSCGRoyRzlFSSSeMIHo7CidF5XkoBZUSoEBFBpeLFqVSqFDUqVKBW9erUPPts6jVuTIPWranXrh0lK1Tw8TM1vlbokn9+WfIvOKnJyUzo1Ytnv/6aeFWur1GD0a+9RrPbb8/x/mlpEBWVObL/+WfnDSA8HFq1ykz27dqBffr3vXr1nMtYZBcZCVs3HeNYQgLpKSmkp6biSUsjvHhxIkqUILx4cUpWqECYvSOHlNySv/0VhJi5Y8YweOxYNqek0KViRZ57+WXa9O2b5T4eD6xfn3nQcPFiSEx0+i66CAYMcJL9ZZfBacwKmQI2dmzOtQ1jx0JEyZKUrVEjcMGZoGHJP0REL13KwJtv5n9xcTQsVoxvn3ySa55+GgkLQxW2bctM9gsXOgdtAc49F+66y0n2nTtD1aqBfR4ms4bBrmRqzoQl/yIu7dgxxt18M0/NmUM48Mq11/LvTz/lwOGyTPsk8/TLnTud+599NnTvnnn5XVsqr3Dq2dOSvTkzlvyLGO/zv9tW/oojh3vxe8pRrq1Wg1sHz+TXXW24uBVs2uTcv1IlZ0Q/bJgzd3/eeUX/9EtjjCX/IiXjOjdHk1PoyI38cmAu5RGuLD+U2XEvMnt4GGXKOHP1ffs6yf7ii+30S2NCkSX/ImTkSCif/CvnciVLOEwbzmYLP7L4eCNGj3aSfatWULx4oCM1xgSaJf8ipFrMKLbyLNtR2vEAyxgPhCEpMGpUoKMzxhQmlvyLgLRjx3iiQwdWsJLzKcVRZrGMf53ot4O2xpjsLPkHuQObN3Nb27YsTEigc3hTlqX/xHEyqzIzzv82xhhvdqgviK3+9FNaNmnCsoQE7j3vfhbrOoaNqkBkpHPGTmRkzouaGGOMJf8gNWvECNrfdRfpwLh/f8QHf05i+HAYPdpZrcrjcb5b4jfG5MSmfYLQ6zfdxOCvv6ZVmTK8/+0vdLq1KS1awFNPBToyY0ywsOQfRDxpaTzaqhWvr1lDj5o1mbL2d27pXYXkZJg6FYoVC3SExphgYdM+QSI1OZm7zz2X19esYXDz5nwRHc2Hn1dh3jx45RVnCURjjDldlvyDQPKBA/SoX59PY2J4oXt3/rtyJVu2F2foULjqKucqm8YYkx+W/Au5w7t3071BA+bExTGpVy+GzZ1LSopzILdMGXj/fbsWjzEm/3yW/EXkZRHZJCK/i8jXIlLBba8nIkdFZI379Y6vYgh2h3fvpnujRiw/fJjPBg3i/o8/BpwzelatgnffhZo1AxykMSYo+XLk/wPQVFUvwlmvd7hX3zZVbeZ+PejDGIJWRuJfkZTE9Mce47Zx4wBnFa0XXoB774UePQIcpDEmaPks+avq96qasaToL0BtX+2rqEncu5dubuL//PHHuemllwBnofRevZxl/F5/PbAxGmOCm7/m/O8D5nrdri8iq0VksYh0zO1BItJfRKJEJCo+Y2mpIu7owYNc17jxicTf48UXT/QNGuSs3TplCpQrF8AgjTFB74zO8xeRH4GcFgwdqaqz3PuMBNKAaW7fPqCuqv4lIi2AmSLSRFUPZ9+Iqk4CJoGzgPuZxBoMUpOTua1RI5YcOsTUhx7KkvhnzIAPPnAu29yuXQCDNMYUCWeU/FX1irz6RaQPcC3QVVXVfcxx4Lj780oR2QacB0SdSSzBzpOWRp/GjZkdF8eEO+/krrffPtG3b5+zSItV8RpjCoovz/bpDgwDrlfVZK/2qiIS7v58DtAQ2O6rOILFkNat+TQmhue7dePBTz450a4K992HVfEaYwqULy/v8BZQAvhBnBPRf3HP7LkMGCMiaUA68KCqHvRhHIXeuBtv5LXVq3mkWTOemDcvS9/48TBvHrz9tlXxGmMKjrizMYVey5YtNSqq6M0MffHoo9w+bhw31arF9O3bCfdaY3HTJrjkEmeB9f/9z4q5jDH5JyIrVbVl9nar8A2gZRMn0mvcOC4tV44pv/+eJfGnpMDdd1sVrzHGN+yqngGyc/lyegwYQO2ICL5ZuZJSlSpl6R8zBlaudM7ysSpeY0xBs+QfAEmxsVzfpQvHVFn09ddUbtgwS//PP8Pzz1sVrzHGdyz5+5knLY0+LVqw7tgxZo8eTaNrr83Sn1HFGxlpVbzGGN+x5O9nz3Xvzoy9e/nvDTdw1ahRJ/VnVPEuWWJVvMYY37EDvn703dixjJo/n5716jFoxoyT+jOqeIcPh/btAxCgMSZk2KmefhK9dCktLruMWiVKsDwmhjLVqmXp37cPLrzQuWjb8uVWzGWMKRh2qmcAHUtI4JZu3UhXZcbs2SclflXo29eqeI0x/mNz/n4wpGNHViYnM2vECM7t2vWk/gkTYO5ceOstq+I1xviHjfx9bMbjjzN+/XqGtGjB9WPHntS/aRMMGQLdu8NDDwUgQGNMSLLk70PRS5fS95VXaFWmDM8tWnRSv3cV7+TJVsVrjPEfm/bxkdTkZO666io8qnw2ezbFy5Y96T5WxWuMCRRL/j4ypls3liclMX3QIM7p1Omk/mXLrIrXGBM4Nu3jA8smTuS5pUu559xzTyy87i0x0ap4jTGBZSP/ApYUG0uvgQOpGxHB6wsX5nifQYMgOtqqeI0xgePLlbyeFpE9IrLG/braq2+4iGwVkc0i0s1XMQTCo507syMtjY/HjaN87don9c+Y4RzcfeIJq+I1xgSOr0f+41T1Fe8GEWkM3AE0Ac4GfhSR81Q13cex+NzsUaN4d9MmhrVpQ8eBA0/qt7V4jTGFRSDm/G8APlPV46q6A9gKtA5AHAXq7x076D92LBeWLMno778/qT97Fa/Xui3GGON3vk7+A0XkdxGZLCIV3bZawC6v++x2204iIv1FJEpEouLj430c6pl59MorifN4+PC99yhRvvxJ/RlVvC+/bFW8xpjAO6PkLyI/isj6HL5uACYADYBmwD7g1YyH5bCpHK8up6qTVLWlqrasWrXqmYTqU3PHjOHDrVsZ1q4dzXv2PKl/82YYOtSqeI0xhccZzfmr6hWncz8ReReY7d7cDdTx6q4N7D2TOALp0M6d9B8zhsYlSjBq7tyT+lNToWdPKF3aqniNMYWHL8/28a5Z7QGsd3/+BrhDREqISH2gIfCbr+LwtSeuuoq96elMfvvtHKd7Ro92qngnTbIqXmNM4eHLs31eEpFmOFM60cADAKq6QUQ+BzYCacDDwXqmz/JJk3hn40YGXXIJbfr2Panfu4r3ppsCEKAxxuTCFnP5h1KTk2leqRKH0tLYuHs3ZWvUyNKfmAjNmjln+axda8VcxpjAyG0xF6vw/Ydevekm1h8/zqwRI05K/GBVvMaYws2u7fMPbF+0iNHffUePmjVzvEb/zJlWxWuMKdws+eeTejz8+7bbiADemDXrpP59+6BfP2je3Kp4jTGFl0375NPsp55iTnw8r1x7LbVbtcrSl1HFe+SIVfEaYwo3S/75cCwhgUdeeIFGxYvzn+nTT+r3Xou3UaMABGiMMafJkn8+vHzzzexIS+PHl16iWOnSWfqsitcYE0xszv80RS9dynMLFnBr7dp0feyxLH2pqc5avFbFa4wJFjbyP02P3XEHYcArn39+Ut+YMRAVBV99ZVW8xpjgYCP/0/DTW2/x5Z49DOvcmbqXXpqlb9kyeO45uOceq+I1xgQPq/A9BU9aGq3POov9x4+zOTaW0lWqnOjzruJdswZyuLSPMcYElFX4/kNTH3qIlcnJTHnwwSyJH7JW8VriN8YEE5v2ycORuDiGv/8+rcqU4a4338zSZ1W8xphgZiP/PLxy++3s9Xj4/OWXCYvIfKliY+H++62K1xgTvGzkn4v969fz8qJF3FyrFu0HDDjRrgr33QdJSVbFa4wJXjbyz8Uzd93FMeC599/P0v7OO04V75tvWhWvMSZ42cg/B1vnz2fiunXc37gx53XrdqJ982YYMsSp4n344QAGaIwxZ8hnI38RmQ6c796sACSoajMRqQf8AWx2+35R1Qd9Fcc/8X/33ktxYNS0aSfarIrXGFOU+Cz5q+rtGT+LyKvAIa/ubarazFf7PhMrp05l+q5d/F+HDtRslhmiVfEaY4oSn8/5i4gAtwFdfL2vgjBi0CAqi/DYp5+eaLMqXmNMUeOPOf+OwH5V3eLVVl9EVovIYhHpmNsDRaS/iESJSFR8fLzPA13y5pt8/9dfDL/mGsrXrg04Vby9ekHduvD66z4PwRhj/OKMLu8gIj8CJy9gCyNVdZZ7nwnAVlV91b1dAiirqn+JSAtgJtBEVQ/ntS9fX95BPR4ur1iRrUlJbN2//0Q1b79+8MEHsHgxdOjgs90bY4xP+OTyDqp6xSl2GgHcBLTwesxx4Lj780oR2QacB/j/wj1efnzpJX46fJi3br31ROKfORPefx9GjLDEb4wpWnx6YTcR6Q4MV9XLvdqqAgdVNV1EzgF+Ai5U1YN5bcuXI3/1eGhbvjyxx47x58GDlChfnthYuPBCZ7pn+XIr5jLGBKdAXdjtDuDTbG2XAWNEJA1IBx48VeL3tf89/TS/HTnCu717U6J8eaviNcYUeSF/SWf1eGhRtiyHU1P549AhipUuzYQJzlKMb74JAwcW+C6NMcZv7JLOufjf00+z+uhRPujbl2KlS5+o4u3Wzap4jTFFV0iP/DPm+uOPH2fzoUNQrDTt2sH27bBuHZx9doHuzhhj/M5G/jn4/vnnT8z1FytdmiefzKzitcRvjCnKQnbkrx4P7c86iz1Hj7IlIYGo38vSsSP07u2c12+MMUWBjfyzWfDqqyxPSmL8HXdwXMtaFa8xJqSEbPJ/ZuxYzg4L476JE3l4sLMW7+LFthavMSY0hOT1/JdPmsTiQ4d47PrrmbugPO+/D8OGWRWvMSZ0hOSc/401a/LT/v2sWLOXNl1rWBWvMabIym3OP+RG/hu/+YZZsbEM7HgZ/x5ew6p4jTEhKeSS/0uPPkppoHLnicyZAy+/bGvxGmNCT0gl/53LlzNt2zZ6NWrGEy+db1W8xpiQFVLJ/9UBAwDY4hlPqVK2Fq8xJnSFzKmeB7dt4721a+le8Rxmb76UL7+0Kl5jTOgKmZH/xIceIhn48+8X6dMHbr450BEZY0zghETyT0lK4s0ff6RVWCVS6t3CG28EOiJjjAmskEj+nw4ezD6PB49nKFOmWBWvMcacUfIXkVtFZIOIeESkZba+4SKyVUQ2i0g3r/YWIrLO7XtDxHeHXKdNg8i6Hsa+N5WGlKTmNcOsitcYYzjzkf96nAXal3g3ikhjnCUcmwDdgfEiEu52TwD6Aw3dr+5nGEOOpk2D/v2hyq4X2cIxqtGT+QvCmDbNF3szxpjgckbJX1X/UNXNOXTdAHymqsdVdQewFWgtIjWB8qq6XJ3rSnwM3HgmMeRm5EhITgZ4lWqE8Rv/5ehRp90YY0Kdr+b8awG7vG7vdttquT9nb8+RiPQXkSgRiYqPj89XADt3AqRRlnpcwA2kUt6r3RhjQtspz/MXkR+BGjl0jVTVWbk9LIc2zaM9R6o6CZgEzoXdThFqFnXrQkxMBEuIOqndGGNC3SmTv6pe8Q+2uxuo43W7NrDXba+dQ3uBGzvWmfN3pn4cpUs77cYYE+p8Ne3zDXCHiJQQkfo4B3Z/U9V9QKKItHXP8ukN5Pbp4Yz07AmTJkFkpHMJh8hI53bPnr7YmzHGBJczuryDiPQA3gSqAv8TkTWq2k1VN4jI58BGIA14WFXT3YcNAD4ESgFz3S+f6NnTkr0xxuQkJBdzMcaYUGGLuRhjjDnBkr8xxoQgS/7GGBOCLPkbY0wICpoDviISD8QEOo58qgIcCHQQfmbPOTTYcw4ekapaNXtj0CT/YCQiUTkdZS/K7DmHBnvOwc+mfYwxJgRZ8jfGmBBkyd+3JgU6gACw5xwa7DkHOZvzN8aYEGQjf2OMCUGW/I0xJgRZ8vcTERkqIioiVQIdi6+JyMsisklEfheRr0WkQqBj8hUR6S4im0Vkq4g8Eeh4fE1E6ojIQhH5Q0Q2iMgjgY7JH0QkXERWi8jsQMdSUCz5+4GI1AH+BYTKIpI/AE1V9SLgT2B4gOPxCREJB94GrgIaA3eKSOPARuVzacAQVW0EtAUeDoHnDPAI8EeggyhIlvz9YxzwOHksWVmUqOr3qprm3vyFrKu3FSWtga2qul1VU4DPgBsCHJNPqeo+VV3l/pyIkxBzXYe7KBCR2sA1wHuBjqUgWfL3MRG5HtijqmsDHUuA3IcPF+wJsFrALq/buyniidCbiNQDLgF+DWwkPvcazuDNE+hACtIZreRlHHktcg+MAK70b0S+l9dzVtVZ7n1G4kwTTPNnbH4kObSFxKc7ESkLfAUMUtXDgY7HV0TkWiBOVVeKSKdAx1OQLPkXgNwWuReRC4H6wFpnyWJqA6tEpLWqxvoxxAKX23POICJ9gGuBrlp0i0l2A3W8btcG9gYoFr8RkWI4iX+aqs4IdDw+1h64XkSuBkoC5UVkqqreHeC4zpgVefmRiEQDLVU1GK8MeNpEpDvwX+ByVY0PdDy+IiIROAe0uwJ7gBXAXaq6IaCB+ZA4o5iPgIOqOijQ8fiTO/IfqqrXBjqWgmBz/sYX3gLKAT+IyBoReSfQAfmCe1B7IPAdzoHPz4ty4ne1B3oBXdzf7Rp3VGyCjI38jTEmBNnI3xhjQpAlf2OMCUGW/I0xJgRZ8jfGmBBkyd8YY0KQJX9jjAlBlvyNMSYE/T/SmZgvq6xQOQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "(array([-5., -3., -1., 1., 3., 5.]),\n", " array([-100., -12., 4., -4., 12., 100.]))" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ip.interpol_f(6)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gUVRfH8e9JIQm9hd4UURBEmohSRXqRDgKKYuGl2AVEUMCKXURFAbuEJkWkCREFQUAMClIFpHekmxBIds/7xywYIIGElEk5n+fZJ5uduzO/3WzOzt69c0dUFWOMMRmfn9sBjDHGpAwr6MYYk0lYQTfGmEzCCroxxmQSVtCNMSaTsIJujDGZhBV0l4lIXRH5y+0cACIyXETGX2b5DhFplJaZrsblcqbW8y0iDURkTwqsJ0M8x5cjIl+IyMtptK3LvmazGivoaSShf1RVXaKqN7iRKT0TkW4iEiEi/4rIfhGZJyJ1krveq32+fYUjxpfnXxHZKCIdkpsnpYnINSLiFZHRSbhPmhVFEblfRDy+5/CkiKwRkVZpse2swAp6FiUiAW5nSIiIPAWMBF4FCgOlgNFAGzdzAZNVNaeq5gSeAMaLSGGXM12sB3AMuFtEgtwOk4DlvucwL87fdZKI5HU5U6ZgBd1lF39U9+3J9xeRP0XkhIhMFpHgOMtbichqETkuIstEpHKcZYNE5G8ROSUiG0SkXZxl94vILyLyrogcBYYnECnYt81TIvK7iNycQO4LPlbH8ziKicg0ETksIttF5LFEPh95gBeBfqo6XVUjVTVGVWep6oDEbNvnFt9zcExEPj/3HMaTs6SITPflPCIiHyQmp6rOB04BZRN4HAn+LXzLH/bt5Z9bXi2edZT3PXd3JyaTTw/gOSAGaH3R+iqKSLiIHBWRgyIyWESaAYOBLr695jW+thd8orx4L15EvhGRA77X6M8iUjEJGQFQVS/wNZADKBdn3bV8r+3jvj34BnGWXSMii33PWzhQMKnbzcysoKdPnYFmwDVAZeB+AN8//WfA/4ACwBjguzh7Yn8DdYE8wAs4e5BF46z3VmAbUAh4JYFttwG+AfIDE4BvRSQwKeFFxA+YBawBigN3Ak+ISNNE3P02IBiYkZRtxqM70BSn4F6PU+QuzukPzAZ2AmV8WSddacXiaAlkAzYk0CzBv4WIdMJ5Q+0B5AbuAo5ctI1qwALgUVW9YibffeoCJXyPYYpv/eeW5QJ+AL4HigHXAQtV9XucT0LnPn3E+wYej3k4RbgQ8DsQlsj7xc3rD/TEefPZ6butODAHeBnnNdgfmCYiob67TQBW4RTyl4D7krrdzMwKevo0SlX3qepRnMJYxXf7w8AYVf1VVT2q+iVwBqgFoKrf+O7nVdXJwBagZpz17lPV91U1VlVPJ7DtVao6VVVjgHdwimutJOa/BQhV1RdV9ayqbgPGAYnZ0ywA/KOqsUnc5sU+UNXdvufwFaBrPG1q4hS3Ab5PAtGquvQy6+wsIseBSOA74FVVPR5fwyv8LR4C3lDV39SxVVV3xrl7Xd/671PV2Ul4zPcB81T1GE7hay4ihXzLWgEHVPVt3+M8paq/JmHdFz++z3zrOIPz5nSz79NVYtTyPY/RwFvAPap6yLfsHmCuqs71PXfhQATQQkRK4by2nlfVM6r6M87/h/Gxgp4+HYhzPQrI6bteGnja91H0uO+foiROUUJEesTpjjkOVOLCj6S7E7Ht8218H4n3nFt/EpQGil2UczBOf/iVHAEKSvL7+OM+1p3E/xhKAjuT8OYxRVXzqmp2nD3/HiLyv/gaXuFvURJnDz4hvYFlqvpTInMhIiFAJ3x7yqq6HNgFdEvkNhNNRPxF5DVfl9JJYIdvUWK7P1aoal4gH84bV904y0oDnS567dQBiuL8DY+pamSc9nHfCLM8K+gZy27gFV9ROXfJrqoTRaQ0zl7wI0AB3z/MOkDi3D8xU2uWPHfF13VSAtgXT7tIIHuc34tclHP7RTlzqWqLRGx/Oc6eW9vLtLncts8pGed6KeJ/DLuBUlfz5qGqO3C6HVpfvCwRf4vdJND37tPbl+vdJERqh9N9M9rXt30ApwvpXLfL5bYZ3+vics9xN5yuuUY4XUplfLfHfa1dkar+C/QF7hWRqnFyfn3RayeHqr4G7AfyiUiOOKsplZRtZnZW0NNWoIgEx7kktZCMA3qLyK2+ftwcItLS1z+aA+cf8zCAiPTE2StMquoi0t6X7QmcLp0V8bRbjfMxOL+IFPG1PWclcFJEnhGREN8eXSURucWXrYGIxPvmoqongKHAhyLSVkSyi0igiDQXkTcSse1z+olICRHJj/PpYHI8bVbiFInXfM9lsIjUvsLzg+8xlMD5nmN9PIuv9Lf4BOgvItV9f8frfG8C55zyrbueiLwWZ5tfiMgXCUS6D+f7lZtwuuiqALWBKiJyE853BUVE5AkRCRKRXCJyq+++B4Eyvjfwc1bjjJQJFJEaQMc4y3LhvC6O4BT9VxPIdEWqegTn+Rjqu2k80FpEmvpeN8G+10sJX7dUBPCCiGQTZxjrJW+oWZkV9LQ1Fzgd5zI8KXdW1QicfvQPcIambcX3hamqbgDextnDPYjzj/3LVWScCXTxrf9eoL2vP/1iX+N86bkD58u78wVTVT04/2hVgO3APzj/tOf6WEv6cib0ON8BnsL5IvMwzl7bI8C3V9p2HBN8y7b5Lpcc6BIn53U43RN7fI89IedGgvwL/Ibz/L4Qz3ov+7dQ1W9w+vUn4BTvb3G+AIy7juNAY5x+8Jd8N5cknr+p74vEO4GRqnogzmUVzpeg96nqKd/6WuN06W0B7vCt4hvfzyMi8rvv+vM4e/THfI9xQpxNfoXT1bEX50vh+N7wk2Ikzht0ZVXdjbP3P5j//vYD+K9WdcP5cv8oMMyXxfiIneDCpDUR+QT4xjf0zySCiGTDeROrnMAbrDFW0I0xJrOwLhdjjMkkrKAbY0wmYQXdGGMyCdcmaCpYsKCWKVPGrc0bY0yGtGrVqn9UNTS+Za4V9DJlyhAREeHW5o0xJkMSkQSPjr1il4tvYP9KcWY9Wy8il4y79R0cMUpEtoozS+AlM8cZY4xJXYnZQz8DNFTVf8WZdW+piMxT1bgHEzTHmXmtHM6g/498P40xxqSRK+6h+2aD+9f3a6DvcvHg9TbAV762K4C8cuG0rcYYY1JZoka5+OZUWA0cAsLjmXazOBfObrfHd9vF6+klzmnFIg4fPny1mY0xxsQjUQXdN/d2FZyZ92qKyMWTPsU3y9olh6Cq6lhVraGqNUJD4/2S1hhjzFVK0jh034RBi3BmgotrDxdOV5rQlKvJEhYGZcqAn5/zMyzJ50gxxhj3pHYNS8wol1DxncDVN4l+I2DTRc2+w5nsX0SkFnBCVfenZNCwMOjVC3buBFXnZ69eVtSNMRlDWtSwxOyhFwV+EpE/caYMDVfV2SLSW0R6+9rMxZmidCvOnN19Uy6iY8gQiIqCvPxGI24lGwuIijrLkCEpvSVjjEl5gwd7iYr6nYY04RrGAk5NS8kadsVhi6r6J1A1nts/jnNdgX4pF+tSu3Y5P8sznp9YiYemQHZ27mzIhAldadu2LdmzZ7/sOowxJi3FxsaycOFCxo8fz65d84HD/AjU5xTb6QX8V9tSQoaZy6WU70RTK3iP5nzFJALpRgBBfqvo3r07hQsX5oEHHmD16tXuBjXGZHm7du1i4MCBlCpVimbNmjFn9mwa48eXwKMMZDHLzrctlYIn0cswBf2VV+DcDvhs7uVdfuZdgtir0Xz70ig6derElClTqFq1Kk2aNOGHH37A5no3xqSltWvX0qNHD8qWLcs777zDLbfcwqRRH/FrTGFmcYyF/uN5n9c5NzAwe3antqUYVXXlUr16dU2q8eNVS5dWFXF+vtl7q/4l12u0BOmBD6bo0aNH9dVXX9XChQsroPXr19eVK1cmeTvGGJMU27dv127duimgOXLk0Mcff1x37Nih/y6O0CPZCutR8uqMJxZdUsPGj0/6toAITaCuZqiCHp+I+f/ocv/aqqD7B7yl6vXq6dOn9YMPPtDQ0FAFtEuXLrpr164U2Z4xxpxz4sQJffrppzVbtmwaHBysgwYN0iNHjjjLJszWKL/sup3SOvO1DSm2zUxd0FVV10Wc1pnBnVRBD3R+RDU2VlWdJ/v555/XkJAQzZEjh44cOVJjfcuMMSY5ZsyYocWLF1cR0Z49e+ru3bvPLzv22scai59GSHX9/ov9KbrdTF/QVVW3bvbo2NxPq4IertNWNTLy/LLt27dr8+bNFdAaNWro2rVrU3Tbxpis48CBA9quXTsF9KabbtIVK1b8t9Dr1aN9nlUF/d6/hS6ecyrFt58lCrqq6p49qq8Ufk89iB69oZbqoUPnl3m9Xp00aZIWKlRIg4KCdNSoUer1elM8gzEm85o9e7aGhoZqUFCQvvbaa3r27Nn/Fp45o8da3aMK+kXQw/rrLzGpkiHLFHRV1cOHVQeUnaZRBOuJIuVU//77guUHDx7Uli1bKqDNmjXTAwcOpEoOY0zmcfr0ae3Xr58CWrlyZV23bt2FDU6c0OO33KkK+lrOl3Ttn6m3s5ilCrqq6okTqv2qLNV/yK+RuQqp/vbbBcu9Xq+OHj1ag4ODtVixYrp8+fJUy2KMydh27Nih1atXV0CfeuopjY6OvrDB3r166trKepYAfbrgF7p1a+rmyXIFXVU1Kkr1f/U36nZK65lsOVTnzr2kzerVq/Xaa6/VwMBA/fDDD60LxhhzgQULFmiBAgU0d+7cOnPmzEsbbNigkaGl9CQ59aFS83XPntTPlCULuqrq2bOqvdvs01VU1VjxV+9nn1/S5ujRo+e7YB566KEL+8SMMVmS1+vVd999V/38/LRSpUq6efPmSxstXarROfLpfgpr9wqr9PDhtMmWZQu6qjOC8fGeJ3QBjVRBPS+/onrRnrjH49EhQ4YooHfeeaceO3YsTbIZY9KfmJgY7dOnjwLavn17/ffffy9tNGOGxgQG6yau1y41t+mJE2mXL0sXdFWnfg/uf0a/prsqaGzvvufHqsf1xRdfaGBgoJYvX163bduWZvmMMenDiRMntGnTpgroM888ox6P59JGH32kHvHT5dyq3Zoc1qiotM2Y5Qv6OSNe8ejrDHCKetsOqqdPX9Jm0aJFmi9fPi1SpIiuWbMmzTMaY9xx8OBBrVatmgYEBOi4ceMubeD1qvf5oaqgs2ip93f6V93oobWCHsfo0apP8o4qaEzteqrxdK+sX79eixcvrnnz5tUlS5a4kNIYk5Z27Nih119/vYaEhOicOXMubRATo96HHlYF/YQHtG+vmPg+5KeJyxX0DDPbYkrp0weqj3+S7jIBXbac2Nr1YN+FZ8u78cYb+eWXXyhUqBCNGzdm3rx5LqU1xqS2jRs3Urt2bQ4dOkR4eDgtWrS4sMHp03jbd0Q+GccrDGbLwE/44OMA/P3dyXs5Wa6gA3TvDnfP7ErbgDmc3bSN2Ftvh82bL2hTunRplixZQoUKFWjTpg2zZs1yKa0xJrWsW7eOBg0aEBsby+LFi6ldu/aFDY4dw9OoCcz6jkcZhf+IV3jtdUHEnbxXkiULOkDr1tB/fmOaBS3ixL4oPLfVht9+u6BNoUKFWLhwIVWqVKF9+/bMmDHDpbTGmJS2Zs0a7rjjDvz9/Vm0aBGVK1e+sMG+fXjq1MO7/Fe6MokbRz/KoEHuZE2sLFvQAe64A95aVINmuX5h74mceOvfAeHhF7TJly8f4eHh1KhRg06dOjF16lSX0hpjUsrq1atp2LAhwcHBLF68mPLly1/YYPNmPLVuJ3rTDlrKPO4a35k+fdzJmhRZuqAD1KwJny8tx10FlrHhbFm8LVrClCkXtMmTJw8LFiygVq1adO3a1bpfjMnA1q9fT+PGjcmRIweLFy+mXLlyFzZYtQrP7XU4vi+KRv6LePTbO+ne3Z2sSZXlCzpApUowfXlRuhdfzHJvLfTuu+Gjjy5okytXLubOnUvVqlXp2LEjCxYscCmtMeZqbdmyhUaNGhEYGMiPP/7Itddee2GDH3/EW78B+09kp1HQUkYsqE7r1u5kvRpW0H2uvRbmLc/Lo9fPZ460gr594aWXQP87L2nu3Ln5/vvvqVChAm3btmXx4sUuJjbGJMWOHTto2LAhHo+HhQsXct11113YYPp0vM2as/lMaZrl/IWxi66nQQNXol41K+hxFCsG4UtDeLnqdL6WHjB0KDzxBHi959vkz5+f8PBwypQpQ+vWrfn9999dTGyMSYyDBw/SuHFjIiMjCQ8Pp0KFChc2+OQTtFMnIrQ67Qv8zOSlxbnlFneyJocV9IsUKAALfgzgs7qf8y5PwqhR0KMHxMScbxMaGsqCBQvIly8fzZo1Y8uWLS4mNsZczsmTJ2nevDl79+5lzpw53HzzzRc2eOMNePhhwqUJPYuHM3tZfipWdCdrcllBj0fu3DD3ez9+bPk2g3kFwsKgfXs4ffp8mxIlSrBgwQJUlSZNmrDvooOTjDHui46Opk2bNqxdu5Zp06Zx2223/bdQFZ55Bp55hil+dzPw+pmEL8vBxd3qGUpCh5CeuwAlgZ+AjcB64PF42jQATgCrfZehV1qvW4f+J8XZs6pdu6r2ZrR6EPXWq6d6/PgFbX777TfNmTOn3nTTTXr8omXGGPd4PB7t2LGjAjp+/PgLF8bGqj70kCroaOmjNavH6j//uJMzqUjOXC5AUaCa73ouYDNwo15a0GdfaV2awQq6qvN3791btQsTNdYvQL3Vql1wrlJV1fnz52tAQIA2atRIz5w541JSY0xcTz75pAL61ltvXbjgzBnVTp1UQV9miDao703T6W+TK1kF/ZI7wEyg8UW3ZdqCrupMvztokGpz5ugZ/2D13lBedffuC9p8/vnnCmiPHj3szEfGuGzkyJEK6KOPPnrh/2NkpGqzZqqgT/GWtm6taT79bXKlWEEHygC7gNwX3d4AOAKsAeYBFRO4fy8gAogoVapUmj0BKWXECNW6LNbIgFzqKVVa9aKzmAwfPlwBHTp0qDsBjTE6ffp0FRFt166dxsadEvH4cfXWqaMeRB9knHbrpq5Mf5tcKVLQgZzAKqB9PMtyAzl911sAW660voy0hx7XRx+pVidCjwUWVE/hIqpr155f5vV6tWfPnvH32RljUl1ERISGhITorbfeqpGRkf8tOHRIvdWqaaxfgHZisvburRrfuSsygmQXdCAQmA88lcj2O4CCl2uTUQu6qmpYmGpFvw16MLCYevLlV1258vyyM2fOaIMGDTRbtmy6dOlSF1Mak7Xs2bNHixUrpqVLl9YDBw7EXaDe8hX0jH+wNmOuDhp0yVkoM5TLFfQrDlsUEQE+BTaq6jsJtCnia4eI1MQZDnnkSuvOqLp1gxHfVqCeLGXvv3nw3tEQfEeNZsuWjWnTplG6dGnatWvH9u3bXU5rTOYXGRlJ69atOXXqFLNnz6Zw4cLOgm3b8Napy+mte2js+Z76I5ozYgTpdvrbZEuo0ut/e9t1AAX+5L9hiS2A3kBvX5tHcIY0rgFWALdfab0ZeQ/9nJ9+Ui2XfY9uDqygnqBg1Xnzzi/766+/NF++fFqxYkU9efKkeyGNyeQ8Ho+2b99e/fz8Ljzb0MaN6ilaTE8E5NNbWKkffeRexpSEnYIu9axcqVou7yH9M6CqegICVadNO7/shx9+UH9/f23Tpk38J5s1xiTbsGHDFNB33nnnvxv/+EM9BUP1n4DCWsX/T50wwb18Kc0Keipbt071hsLH9NeA29Tr76/69dfnl40aNUoBfe6551xMaEzmNHXqVAX0/vvv/2944ooV6smTV/cFlNBK2f7SWbPczZjSrKCngb//Vq1U5pQu8r9DvSKqY8eqqjPy5cEHH1RAJ02a5HJKYzKP1atXa/bs2bVWrVoaHR3t3Lh4sXpy5NQdAdfqjdm3608/uRoxVVhBTyN796pWqxCl8/yaO0/tyJGqqhodHa21a9fWkJAQXb16tcspjcn4/vnnHy1TpowWL15c9+3b59w4f756gkN0s395rZh3T9zBZ5nK5Qq6Tc6VgooVgwVLQnip6gxm0M6Zeve11wgKCmLq1Knky5ePdu3acfToUbejGpNhxcbGcvfdd7Nv3z6mT59O0aJFYdYsvK1asyGmHO0LLM6w098mlxX0FFagAHz/UxAf1ptMGN3g2Wdh+HCKFC7MtGnT2LNnD127dsXj8bgd1ZgMaciQIfzwww+MHj2amjVrwrRpeNu15w9PZXqU+ImZywtl2Olvky2hXffUvmTGLpe4oqJU27SK1c+43+l+8R3NMHbsWAV00KBBbkc0JsOZMmWKAtq7d2/nhgkT1OPnr8vkdr21/HHdu9fdfGkB60N3x9mzqt27evQj/qcK6n3iSVWvVx9++GEFdMaMGW5HNCbDWL9+vebIkUNvu+02Z1bTL79Uj/jpIupr/WonM8z0t8llBd1FHo9qn95eHcljqqCefo/o6agorVGjhubOnVs3XzTBlzHmUidPntTy5ctroUKFdM+ePaqffKJeEV1AI21WL1Kz0rF7lyvo1oeeyvz84MPRwsFBI3mLp/H78AMCH3+SqVOmEBAQQIcOHYiMjHQ7pjHplqry4IMPsnnzZiZNmkSx72bBQw/xvTbl4xazmDE/O7lyuZ0yfbCCngZE4NURgmfEm4xgEP7jxlB8+MtMDAtj3bp19O7d2/m4ZIy5xHvvvcc333zDiBEjaLB2HdK3D7NoxeS7v2XSt8EEB7udMP2wgp6Gnhkk5P/oVV7ieQK++owG4yfzwrBhjB8/nnHjxrkdz5h0Z9myZQwYMIC2bdvytH8g8vhjzKAtC3pN47OwIAID3U6YvlhBT2P/6y1cN+FFXvAbTrawL3h6/d80bdKExx57jD/++MPteMakG//88w9dunShVKlSfFK1Bv79n2IqHVg1cAqjPs6Gn1WvS9hT4oKuXaH6zGEMD3iJ7N98zdjA3BQsWJBOnTpx4sQJt+MZ4zqv18s999zD4cOHmdi8NQWGPccUOrH9lYm8/Hpg5p3+NpmsoLukVStoEP4cw7O9Sqk5U/nimors3LmTBx54wPrTTZY3YsQI5s+fz1tNW1Lzw/eYTGeOfziBAYOtj+VyrKC7qEEDaPXLs7wc8gqNli5geLnKTJ8+nffff9/taMa4ZvHixQwdOpTON1Wl33fTmSKd0a/D6NU3wO1o6Z64tTdYo0YNjYiIcGXb6c2GDfBdrVd55tQQmocW58fjh1i2bBk1atRwO5oxaerQoUNUqVKFnGdj+f3IYb7360z2GWG0uMuK+TkiskpV4y0OtoeeDtx4I3RZM5i3873ChMN7KeSfjc6dO3P8+HG3oxmTZs71mx87fJipRw4zP6AzoQusmCeFFfR04pproPv6wYwv9BLfREeye8cOHrT+dJOFjBgxgvDwcEbFxrItWydKLwmj/p1WzJPCCno6UrQodN/wHGuLD2eEKtNnzGD0hx+6HcuYVLdkyRKGPv88XYGiQe25fmUYNWpZMU8qK+jpTIEC0HXjMAqUfp4WwJOPPU6xor/j5wdlykBYmNsJjUkZYWHOa1rkCC3r38W1qnQKaUnFPydx4802muVqWEFPh3Llgq4bX6BJ6OOEqhfPgTtRPcXOndCrlxV1k/GFhTmv5Z07lZI05Iwepy912f/qdK653or51bKCnk4FhwjvBL9La7rwD8epTk1AiYqCIUPcTmdM8gwZAlFRUIPu7OZPelKBQYTzxshsbkfL0Kygp2O79whjmEhjbmUVm+hEK0DZtcvtZMYkz65d0JRXWMNEbiOUz1nFWYLstZ1MVtDTsVKlAIT5LKUcxZjLXB7hMd/txmRc9+YZz988R16C+IPfOUsIgL22k8kKejr2yiuQPTtAAFtYjhDEUj5g3A0vuR3NmKt2auIsYo73YBtwiplEUwJwXuuvvOJutozuigVdREqKyE8islFE1ovI4/G0EREZJSJbReRPEamWOnGzlu7dYexYKF0aREoRnH8Sq4HZC4by78sj3Y5nTJJ5vg9nSrd2TESpf/sgCpduiojzGh871nnNm2RI6FRG5y5AUaCa73ouYDNw40VtWgDzAAFqAb9eab1Z5RR0Ka1zx0cU0O9AY0aPdTuOMYn388+61j9IQ/DTG8rerrGxsW4nypBIzinoVHW/qv7uu34K2AgUv6hZG+Ar3/ZWAHlFpGjy327Mxb4a/xalS93MPQRyoG8v9Ovxbkcy5spWruRU4xZ09gBBefhh0WT8/f3dTpXpJKkPXUTKAFWBXy9aVBzYHef3PVxa9BGRXiISISIRhw8fTlpSA0BQUBDfz5/E6cBAWpOX2Pvugxkz3I5lTMLWriWmUTOeOOPPRs4QNvFzSpQo4XaqTCnRBV1EcgLTgCdU9eTFi+O5yyWTkKjqWFWtoao1QkNDk5bUnFe+fHlGj36f1RznUS2Bt/PdsGCB27GMudTmzcQ2bMykU358xgkefrgf7dq1cTtVppWogi4igTjFPExVp8fTZA9QMs7vJYB9yY9nEvLggz3p0KELY9hLmKcU3jZtYelSt2MZ859du/A2bMSWozE8IMoNN9zEe++96XaqTC0xo1wE+BTYqKrvJNDsO6CHb7RLLeCEqu5PwZzmIiLCp5+OoWTJkjwoZ/gztjjeFi3h99/djmYMHDyI3tmIfw+coJZej3+200ybNpGQkBC3k2VqidlDrw3cCzQUkdW+SwsR6S0ivX1t5gLbgK3AOKBv6sQ1ceXJk4fJkyfglX3U9d7IwTN50KZNYdMmt6OZrOz4cWjalLM79nKT5x5O6gree+9dKlas6HayTM/OWJQJvPrqqwwZMoRCvMbmkHfJXSAQWbrUGdxrTFqKjIQmTfD8+hu3e94mwu8p2ra9i6lTpyJ2ZucUYWcsyuSeeeYZGjRowLHAl7j19FjOHPkXGjeGgwfdjmaykrNnoUMHdMUKOng/Y132URQrVoRx48ZZMU8jVtAzAX9/f8aPH0+uXEEcyDOchqdnELtrLzRrBidOuB3PZAUeD9x7L8yfz2NBY1mUO5zo6G2EhYWRP39+t9NlGVbQM4nixYvz2YoyB5EAACAASURBVGefceLEH2wNnUVnv2nounVw111w+rTb8Uxmpgr9+sGUKbxe8E2+8A/mxImveP7556lXr57b6bIUK+iZSJs2bejXrx+HD7/DomB4It9X6JIl0KULxMS4Hc9kVkOHwpgxTCr9DM8db4fX24c6derw3HPPuZ0sy7GCnsm8+eabVKpUCbiPj0/cwciyH8CsWc7pYeyE0yaljRoFL7/MLxUepOvOFylZshvZsvkTFhZGQICdEzStWUHPZEJCQpg0aRKnT5/khhvu46mtvfmu6jD44gsYNMjteCYzmTgRHn+cbTe3pf7Gj6lZcyjbt69k3LhxlLKJzV1hBT0TqlixIiNHjmTt2gXceec7tPljGGtu7w1vvAHvJHRsmDFJsGAB3Hcfx26qx01rJ1Lj1p9YufJ1evXqRceOHd1Ol2XZOPRMSlXp2LEj3333HXXrLmPJomrsuv1uiv4yFcaPt4mnzdWLiIAGDThToizX719M9mJnOXbsZvLnz0dERATZnbOymFRi49CzIBFh3LhxFC1alJ07u3LjTZHctGY8kbc0gPvvt8m8zNXZuhVatMBTIJSGZ78nMjAPRYv25PjxY0yaNMmKucusoGdi+fPnJywsjB07tlO2bF8CcmTj9kPfEnvDjdChA6xa5XZEk5EcPAhNm6KqPFB8Pr/tKUrXriP56ae5vP3221SuXNnthFmeFfRMrm7dugwbNowZM8L43/++YvPBPHTKMQ8tUABatIC//3Y7oskITp1yXi8HDvBW/dl8tfx6Bg9exZgxz9C2bVv69rXpm9KFhE5llNoXOwVd2omNjdX69etrjhw59K23NimoPtthk3rz51ctV0710CG3I5r07OxZ1aZNVf39dVbv2Qqqjz56QsuWLaslS5bUI0eOuJ0wSyE5p6AzGZ+/vzMuODg4mPHj72bQoGhGTLuBSd1mwe7d0Lo1REW5HdOkR6rOMQzz57P+sTG0HdeSli2VI0f6sn37dju0P52xgp5FFC9enC+++ILVq1fz778D6dAB7hl9OxFPTYCVK6FrV2c+DmPiGj4cvviCf/oNo87nD1KhArRq9SUTJoQxbNgw6tat63ZCE1dCu+6pfbEuF3c88cQTCuiECdO1alXVXLlU9w35QBVU+/ZV9XrdjmjSi08+UQWN7tZTy13n1dBQ1fDwDZo9e3a94447NDY21u2EWRKX6XKxgp7FnDlzRmvUqKF58+bV5ct3aJEiqtdcoxrZt7/zcnjrLbcjmvRg/nxVf3/1NG6iTe44q4GBqj/8EKWVKlXS0NBQ3bt3r9sJs6zLFXTrcslismXLxqRJk/B4PDz1VFemTYth/35o/ufreDp0gv79YepUt2MaN61ZAx07QsWK9C/1DQt+CmTsWPjmmydZt24dX331FcWKFXM7pYmHFfQsqGzZsowbN47ly5czc+ZzfPYZ/LzUjz7Zv0Jr14Z77oFly9yOadywdy+0bAm5c/NFpzm8+2luBgyAkJDJjBkzhgEDBtCsWTO3U5qEJLTrntoX63Jx3//+9z8FdM6cOfr8806Pywcv/OMMZSxYUHXrVrcjmrR06pRqlSqquXLpso/XqL+/aqtWqps2bdFcuXJprVq19OzZs26nzPKwPnQTn6ioKK1cubIWKFBAd+7crR06qIqo/jhms2r+/Ko33KB69KjbMU1aiI1VbdlS1d9fd437XvPkUa1USfXQodNatWpVzZcvn+7cudPtlEatD90kICQkhClTpnDmzBm6dbubTz+NpWpVaNO/HNve+Ra2b4f27Z1zRZrM7cknYc4cIl//gDvfaEq2bM40+sOHP80ff/zBl19+aVPiZgQJVfrUvtgeevoxYcIEBXTgwIG6e7dq0aKqZcqonhg93vkQd//9NpwxM3v/fVXQ2Cef1oYNVbNlU12yRHXy5MkK6NNPP+12QhMH1uViruRcf/qsWbP0119Vg4NV69RRjRkyzHmZvP66ywlNqpg3T9XPT7133aV9esUqqH7xheqmTZs0Z86cetttt+mZM2fcTmnisIJuruj06f/6Srdv364TJzqvjp73e9V7991O5/r06W7HNClp7VrnyLIqVfTjt04pqA4YoBoZGamVKlXSAgUK6K5du9xOaS6SrIIOfAYcAtYlsLwBcAJY7bsMvdI61Qp6urR161bNkyeP3nLLLRodHX1+5MvIEVGqt96qGhKiGhHhdkyTEg4edPrVihbVxWG71d9ftXVr57vRnj17qojo999/73ZKE4/kFvR6QLUrFPTZV1rPxRcr6OnT9OnTFdC+ffuqx6PasaOzc77gq/2qpUqpFi+uum+f2zFNckRHO/1pwcG6fcpKzZNH9aabVE+eVP3kk08U0Oeff97tlCYBye5yAcpYQc86+vfvr4B+/fXXGhmpWq2aas6cqlumrlbNnl21Zk3VqCi3Y5qr4fWq9uypCnrq08l63XWqoaGq27erRkREaFBQkDZu3NjmaUnH0qKgHwHWAPOAiolZpxX09CsmJkbr16+vISEhumbNmgtGvhz/fLrzsune3Ua+ZERvv60KGjtk6PkRLUuXqh45ckTLlCmjJUuW1MOHD7ud0lxGahf03EBO3/UWwJbLrKcXEAFElCpVKo0evrka+/fv16JFi+p1112nx44d05Ur44x8Gf6y89IZMcLtmCYp5s51RrR06KB9/uc5P6LF4/Fo8+bNNTAwUH/99Ve3U5orSNWCHk/bHUDBK7WzPfT0b8mSJRoQEKCtW7dWj8cT/8iX2bPdjmkSY9Mm1Tx5VG++WT96618F1YEDnUVDhw5VQEePHu1uRpMoqb2HXgQQ3/WawK5zv1/uYgU9Yxg1apQC+sILL6iq6tChzqvm3VciVatWVc2dW3XDBpdTmss6ftyZxqFgQV381Q718/tvRMvMmTMV0Pvvv1+91oWWISR3lMtEYD8QA+wBHgR6A719yx8B1vv60FcAt19pnWoFPcPwer3ao0eP8wcdxR35Ev7pTtVChZzJvI4dczuqiU9srGqLFqoBAbrjq8UXjGjZuHGj5sqVS2vUqKGnT592O6lJJDuwyCRLVFSUVqtWTXPnzq1//fWXRkaqVq/ujHz5+8slqoGBqs2bO8XDpC/PPqsK+u9bH50f0bJjh+qJEye0fPnyGhoaagcPZTCXK+g2OZe5opCQEGbMmEG2bNm46667iIk5wcyZkCsX3DmsDqdeGQXz5sGwYW5HNXFNnQojRuB98GHumtubXbtgxgwoWdLLPffcw5YtW5gyZQolS5Z0O6lJKQlV+tS+2B56xrNo0SINCAjQFi1aaGxs7H8jX2p7NbbnQ84HvmnT3I5pVFXXrVPNkUO9tWppv4eiFVS//NJZNHjwYAX0gw8+cDejuSpYl4tJKR999NH5mRlVVSdNcl5FD90brd5bb1XNkcMpJsY9x46pXnedapEi+ulLexVUn3nGWXRuZs2HH37YvgTNoKygmxTVp0+f80eSqv438uWj5/aoFi6sev31zsgKk/Y8Huc0QwEB+us7S9XPT/Wuu5ybIyIiNDg4WOvUqWMzKGZgVtBNijp79qw2aNBAs2XLpkuXLlWPR7VTJ2fky9JXF6v6+6u2bWtHkrrhxRdVQfc/98EFI1p2796tRYsW1dKlS+vBgwfdTmmSwQq6SXFHjhzRcuXKacGCBfXvv/++YOTL3gHvOC+t115zO2bWMm+eqohGd7pHryvr1UKFnBEtp06d0ipVqmiuXLl07dq1bqc0yXS5gm6jXMxVyZ8/P7Nnz8bj8dC6desLRr7UnvIE0W26wODBsHCh21Gzhh07oFs3tNJNtD04hl27hRkzoEQJD/fccw9//vknkydPplKlSm4nNanICrq5atdffz3Tpk1j8+bNdOzYkdDQs8ycCQcOCq0PfoL3hvLQtSvs3et21MwtOho6dkS9Xp6vOJ3vf87OuHFw++0wYMAAZs6cyciRI2nevLnbSU1qS2jXPbUv1uWSeXz++ecKaI8ePdTr9Z4f+fJs2w3qzZFDtXZt1bNn3Y6ZefXpowo666FvLxjRMnLkSAX00UcftREtmQjWh25S2/Dhwy84McKwYc6r67tuvhm9+vd3N2BmFRamCrqt4wD181Nt08YZ0TJ16lQVEW3Xrp3NbZ7JWEE3qc7r9eoDDzyggI4dO/aCkS/bWvRzXmozZrgdM3PZsEE1Rw6NrF5XC+Q+q5Urq546pbp06VINDg7W2267TaPsRCSZzuUK+rlZEtNcjRo1NCIiwpVtm9QRExPDXXfdxYIFC5g6dSpNm7ajXj3YvukMu6+pS/bdm+GPP+Caa9yOmvFFRUHNmngPHqJOjtX8fboYK1fCyZNrqVevHqGhoSxbtoyCBQu6ndSkMBFZpao14ltmX4qaFBMYGMjUqVOpWbMmXbt2ZeXKRcycCUG5g2hydDJeBbp0gbNn3Y6a8T36KLphAwOLhbFqfzFmzACvdztNmzYle/bshIeHWzHPgqygmxSVI0cO5syZQ9myZbnrrrs4ePB3Zs6EVUev4blin8Fvv8GgQW7HzNi+/ho++4y5VYbw9p+N+eQTKFv2IE2aNCE6OpoFCxZQunRpt1MaF1hBNykuf/78LFiwgHz58vn2GNfz5ZcwYlN7wss/Cu++CzNnuh0zY9q0Cfr0YW/ZerT5YxiDBkHLlkdp0qQJe/fuZc6cOVSsWNHtlMYlVtBNqihevDgLFy4kMDCQRo0aUbXqFoYNg1ab3uRA8erQsyfs3u12zIwlOhq6dOGsfwi1tk2gVZsABg48QdOmTfnrr7/47rvvuO2229xOaVxkBd2kmuuuu46FCxfi8Xho2LAh9967nbadg6i3dyKxp2Oge3fweNyOmXEMHAh//km3mC8pULk4H3/8L61atWDNmjVMmzaNRo0auZ3QuMwKuklVFSpUIDw8nMjISO688w6GDt1Gnhrl6KOjYckSeOUVtyNmDLNmwfvv83meJ1iSqwUTJpyic+cW/Prrr0ycOJGWLVu6ndCkBwmNZ0zti41Dz1pWrVql+fLl0xIlSuiSJVu0WDHVqdnvVa+fn+qSJW7HS9/27lVvgQK6OWcVzRkYreHhJ/T2229Xf39/nTRpktvpTBrDJucybqtWrRo//fQTp0+fpkuX+rz33l/08X7InmzXol27wfHjbkdMn7xetEcPzp44Tat/J/HmqNMMGdKYlStXMnnyZLp06eJ2QpOOWEE3aebmm2/mp59+IiYmhn796vH08K20j56Ad+8+tG9ft+OlT+++iyxcSL/Y92jySB4+/rgBf/zxB1OnTqVDhw5upzPpjBV0k6Zuuukmfv75Z4KCgnj11QZUuj+KYTocmTgRwsLcjpe+rF6Nd9CzzKAduxrdwbx5ddiyZQuzZs2iTZs2bqcz6ZAVdJPmypcvzy+//ELx4sWZOLEpi267kaXUJqZXX2debwOnT3OmQzcOegryctnH+XNtHY4dO8bChQtp2rSp2+lMOmUF3biiZMmSLFmyhJtvvpllKzrSu+gdREV5+bdDDxvKCJx+/BmCtm2kU/Z+bD7YmoAAf5YsWUKtWrXcjmbSMSvoxjUFChTgxx9/pG3btqzf/zJ1s91K8O9LOPXiu25Hc1XMvB8IGfc+naU+y08P5brryrJixQpuvPFGt6OZdO6KBV1EPhORQyKyLoHlIiKjRGSriPwpItVSPqbJrHLkyMHUqVMZOHAga88u5BYKEfniYBoXXYefH5QpkzW61sPCnMeaV46zu8X9dCcv3+hiWrZsyZIlSyhRooTbEU0GkJg99C+AZpdZ3hwo57v0Aj5KfiyTlfj5+fH666/zySefsNbvODXx0PNABwL0LDt3Qq9embuoh4U5j3HnTniBh7iHvUzgOC1aPM2MGTPImTOn2xFNBpGo+dBFpAwwW1UvOcOsiIwBFqnqRN/vfwENVHX/5dZp86Gb+BQtupLjB1qgHKE5LfmWWYCQLx8MHep2utTx4otw7BjU4WW28DxHCSSGrylduot9R2wucbn50ANSYP3FgbizLO3x3XZJQReRXjh78ZQqVSoFNm0ym4MHa6JspAI38y1zyEcTjjGFY8fy8eSTbqdLLTGEMJBfGElJgvCyAqjCrl1u5zIZTUoUdInntnh3+1V1LDAWnD30FNi2yWRKlYKdO0PZy1oGcQ1v8QNwE6GhX7N58x1ux0txW7du5vbbu3M6JoKeCMv5GQ9VAOe5MCYpUqKg7wFKxvm9BLAvBdZrsqBXXnH6k09GFeBPJrKcVjTnNIcPN2TgwId5/fXXyZcvn9sxky0mJoY333yTF198kRD/QCbFwO+8yCZqApA9u81bZpIuJYYtfgf08I12qQWcuFL/uTEJ6d4dxo6F0qVhnrRkR4772CbH6X/vvXz66adUqFCByZMnk5jvftKr5cuXU61aNYYMGULrpk3ZlCOIBqWrMqnUM4g4j33sWOe5MCYpEjNscSKwHLhBRPaIyIMi0ltEevuazAW2AVuBcYBNymGSpXt354BRrxc67n6XXEUK8+bq1fy2bBnFixfn7rvvpl69eqxcudLtqEmyY8cOunbtyu23387x48eZOXMm3+TMSdETJ8j/3Rds3RmI1+s8divm5qokNA1jal9s+lyTaDNnqoLqyy9rTEyMjhkzRgsVKqSAdu3aVTdu3Oh2wss6cOCA9u/fX4OCgjQkJESff/55PXXqlOqcOc7jGjbM7YgmA+Ey0+daQTcZQ+fOqtmyqfqK98mTJ3Xw4MGaPXt2FRHt3Lmzrl692uWQF9q9e7c+9thjGhwcrH5+ftqjRw/dvXu3s/DkSdWSJVUrVFCNjnY3qMlQrKCbjO/AAdV8+VTr1lX1eM7ffOjQIR08eLDmypVLAa1bt65OmDBBo10qkh6PR8PDw7V9+/bq7++vAQEB+sADD+jmzZsvbPjYY6oiqr/84kpOk3FZQTeZw2efOS/Zjz++ZNHRo0f1jTfe0GuvvVYBLViwoPbu3Vt//PFHjY2NTdVYXq9Xf//9d3322Wcv2P7AgQN1x44dl95h+XKnmPfrl6q5TOZ0uYKeqCNFU4MdKWqSTBUaNYKICNi0CYoWvaSJ1+slPDyczz77jNmzZxMVFUVoaCiNGjWiYcOGNGzYkGuuuQaR+A6fSLxDhw6xaNEiFi5cyA8//MC2bdvw9/enYcOG9OjRg44dOxIcHHzpHWNioHp159DQ9eshd+5k5TBZz+WOFLWCbjKWLVvgppugfXuYMOGyTaOiopg7dy7ffvstCxcu5MCBAwDky5ePKlWqULlyZcqUKUPJkiUpUaIEOXPmJHv27AQHB3P27FmioqKIjIxk//797N69m127drF27VpWr17Nvn3OoRa5c+emfv36tG7dmnbt2lGwYMHL53/rLRgwAGbMgLZtU+QpMVmLFXSTuQwfDi+8AOHhzh57IqgqGzduZPHixaxevZo1a9awdu1aoqKiEr3ZgIAAKlSoQJUqVbj55pupU6cO1atXJyAgkcfn7d4NFSrAHXfAd99BMj8lmKzJCrrJXKKjnb10Pz/4808ICrqq1agqR48eZffu3ezdu5fIyEiioqKIjo4mKCiIkJAQsmfPTpEiRShZsiSFCxfGzy8Zx+K1bw/ffw8bNjhz5RpzFVJ7ci5j0lZwMHz4ITRtCm+8Ac8/f1WrEREKFChAgQIFqFKlSgqHvMicOU43y6uvWjE3qcb20E3G1aULzJwJGzfCNde4nSZh0dFw443OG9Hq1ZAtm9uJTAZ2uT10OwWdybjeeQcCAqB/f7eTXN7bb8P27fD++1bMTaqygm4yruLFYfBgmD4dFi50O0389uxxulnat4c773Q7jcnkrKCbjO2pp+Daa+Hxx50x3unNwIHOLGNvv+12EpMFWEE3GVtwMLz7rnOQzkfp7HS2S5bAxIlOUbcvQk0asC9FTcanCs2awa+/wtatcKWDe9KCxwM1asCRI85Rrdmzu53IZBL2pajJ3EScvfRTp+Cll9xO4xg/3hnR8vrrVsxNmrGCbjKHG2+Ehx+G0aOd6QHcFBUFQ4bALbc4QyuNSSNW0E3mMXy4c9Tos8+6m2PkSNi715m3JTlHlhqTRPZqM5lHkSLOF5DTpsEvv7iT4dAheO01aNMG6tVzJ4PJsqygm8zl6aedaXX793e+LE1rL7zgdLm8/nrab9tkeVbQTeaSI4fzxeiKFc60AGlp61YYMwZ69YIbbkjbbRuDFXSTGd13H1x/vTNpl9ebdtt98UXn0P6rnCzMmOSygm4yn4AAp+tj3TqYPDlttrlhgzNU8ZFH4j2TkjFpwQq6yZw6d3bmTB82DGJjU397w4ZBzpzOl7LGuMQKusmc/PycvvQtW+Crr1J3W3/8AVOnwpNPpo+jVE2WZYf+m8xLFW69FQ4ehM2br/rMRlfUqhUsW+ZMkZsnT+pswxifZB/6LyLNROQvEdkqIoPiWd5ARE6IyGrfZWhyQxuTbCLOXvquXfD116mzjVWrnLMR9e9vxdy47ooFXUT8gQ+B5sCNQFcRuTGepktUtYrv8mIK5zTm6jRpAtWrO+PCPZ6UX/9rrzmFvF+/lF+3MUmUmD30msBWVd2mqmeBSUCb1I1lTAoRcaYC2LrV6edOSZs2OUel9utne+cmXUhMQS8O7I7z+x7fbRe7TUTWiMg8EakY34pEpJeIRIhIxOHDh68irjFXoV07KF8eRoxI2aNHX3/dmY/98cdTbp3GJENiCrrEc9vF/xW/A6VV9WbgfeDb+FakqmNVtYaq1ggNDU1aUmOulp8fDBoEa9bAvHkps85du5xx5w8/DIUKpcw6jUmmxBT0PUDJOL+XAPbFbaCqJ1X1X9/1uUCgiNj4LZN+dOsGpUo55/dMCW+95fx8+umUWZ8xKSAxBf03oJyIXCMi2YC7ge/iNhCRIiIivus1fes9ktJhjblqgYEwYIAzC2NyZ2I8cgQ++QTuucd5kzAmnbhiQVfVWOARYD6wEZiiqutFpLeI9PY16wisE5E1wCjgbnVrgLsxCenZE/LmhfffT956Pv0UTp92TlBtTDpiBxaZrOXpp2HUKNi5E4oVS/r9PR4oWxauuQZ++inl8xlzBXZOUWPO6dvXKcpjxlzd/WfPdt4MHnkkZXMZkwKsoJuspWxZaNHCKehnzyb9/h98ACVKOGckMiadsYJusp5HHnHmd0nqgUYbN8IPP0CfPs4UvcakM1bQTdbTpAmUK5f0L0c/+MA5gcXDD6dOLmOSyQq6yXr8/JzD9VesgN9/T9x9/v3XmYb37rvBDooz6ZQVdJM19ejh7G0ndhbGGTOcom575yYds4JusqZ8+ZwvRydNStwsjGFhULo03H576mcz5ipZQTdZV/fucOAA/Pjj5dsdPAjh4c70AX72L2PSL3t1mqyrVSvIndvZ+76cyZPB63UO9TcmHbOCbrKu4GDo2BGmT3cO5U9IWBhUqQI3xndeF2PSDyvoJmvr3h1OnYJZs+JfvmULrFzptDMmnbOCbrK2+vWdOV0S6naZMME561HXrmmby5irYAXdZG3+/k6xnjcPjh69cJmqU+gbNIDi8Z2ky5j0xQq6MV26QEwMfP/9hbdv3ux0uXTp4k4uY5LICroxVatCSAj89tuFt69c6fysUyftMxlzFaygGxMQANWq/VfAz1m5EnLkcE4wbUwGYAXdGICaNZ15XWJi/rvtt9+gRg2nn92YDMAKujEAt9wC0dGwfr3z+9mz8Mcfzu3GZBBW0I0BZw8d/ut2WbvWKernbjcmA7CCbgzAtddC/vz/fTF6rrDbHrrJQKygGwPOwUO33PJfIf/tN2fe89Kl3c1lTBJYQTfmnJo1nT70yEinsN9yi1PojckgrKAbc84ttzhzo//8M2zYYN0tJsOxgm7MOecK+JgxzmH/9oWoyWCsoBtzTpEiULLkfzMv2h66yWASVdBFpJmI/CUiW0VkUDzLRURG+Zb/KSLVUj6qMWmgZk3nZBZlytjJoE2Gc8WCLiL+wIdAc+BGoKuIXDzTf3OgnO/SC/gohXMakzbO7ZXb3rnJgBKzh14T2Kqq21T1LDAJaHNRmzbAV+pYAeQVkaIpnNWY1Heu39z6z00GlJiCXhzYHef3Pb7bktoGEeklIhEiEnH48OGkZjUm9dWuDf372xmKTIaUmIIe30BcvYo2qOpYVa2hqjVCrX/SpEfZssGbb0JR+4BpMp7EFPQ9QMk4v5cA9l1FG2OMMakoMQX9N6CciFwjItmAu4HvLmrzHdDDN9qlFnBCVfencFZjjDGXEXClBqoaKyKPAPMBf+AzVV0vIr19yz8G5gItgK1AFNAz9SIbY4yJzxULOoCqzsUp2nFv+zjOdQX6pWw0Y4wxSWFHihpjTCZhBd0YYzIJK+jGGJNJWEE3xphMQpzvM13YsMhhYKcrG0+egsA/bodIY/aYM7+s9ngh4z7m0qoa75GZrhX0jEpEIlS1hts50pI95swvqz1eyJyP2bpcjDEmk7CCbowxmYQV9KQb63YAF9hjzvyy2uOFTPiYrQ/dGGMyCdtDN8aYTMIKujHGZBJW0JNBRPqLiIpIQbezpCYReVNENvlOAD5DRPK6nSm1XOmE6JmNiJQUkZ9EZKOIrBeRx93OlFZExF9E/hCR2W5nSSlW0K+SiJQEGgO73M6SBsKBSqpaGdgMPOtynlSRyBOiZzaxwNOqWgGoBfTLAo/5nMeBjW6HSElW0K/eu8BA4jnVXmajqgtUNdb36wqcM1JlRok5IXqmoqr7VfV33/VTOAXukvMBZzYiUgJoCXzidpaUZAX9KojIXcBeVV3jdhYXPADMcztEKknUyc4zKxEpA1QFfnU3SZoYibND5nU7SEpK1AkusiIR+QEoEs+iIcBgoEnaJkpdl3u8qjrT12YIzkf0sLTMloYSdbLzzEhEcgLTgCdU9aTbeVKTiLQCDqnqKhFp4HaelGQFPQGq2ii+20XkJuAaYI2IgNP98LuI1FTVA2kYMUUlaMcdPwAAAPpJREFU9HjPEZH7gFbAnZp5D17Ikic7F5FAnGIepqrT3c6TBmoDd4lICyAYyC0i41X1HpdzJZsdWJRMIrIDqKGqGXHWtkQRkWbAO0B9VT3sdp7UIiIBOF/63sn/27tjEwSCIArD/xRgRWbGViDYg4GlGJia2oJNXCJXwaW2MAa3xhqoyw3/ly8MLDweu8HAxLwgfZeZ966D/VDMreQCPDLz0Huef2sN/ZiZ296zfINv6PrECVgBt4gYIuL87sAStY/f10L0EbhWDvNmDeyBTbvboTVXLZANXZKKsKFLUhEGuiQVYaBLUhEGuiQVYaBLUhEGuiQVYaBLUhFPl50dXxaISl0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "(array([-5., -3., -1., 1., 3., 5.]),\n", " array([2.92401774, 2.08008382, 1. , 1. , 2.08008382,\n", " 2.92401774]))" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ip.interpol_g(6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Interpolation Quiz \n", "\n", "\n", " The accuracy of an approximation using\n", "linear or cubic interpolation improves as the number of points is\n", "increased. True or False?\n", "\n", "In the following, replace 'xxxx' by 'True', 'False', or 'Hint'" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Acceptable answers are 'True', 'False', or 'Hint'\n" ] } ], "source": [ "print (quiz.interpolation_quiz(answer = 'xxx'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When solving differential equations numerically, it is essential to\n", "reduce the continuous problem to a discrete one. The basic idea is to\n", "look for an approximate solution, which is defined at a finite number of\n", "discrete points. This set of points is called a *grid*. Consider the\n", "one-dimensional conduction problem of Example [One, Conduction](#Example-One),\n", "which in its most general form reads\n", "\n", "
\n", "(Conduction Equation)\n", " $$\\frac{dT}{dt} = -\\lambda(T,t) \\, (T-T_a),$$\n", "
\n", "\n", " with initial temperature $T(0)$.\n", "\n", "When we say we want to design a numerical procedure for solving this\n", "initial value problem, what we want is a procedure for constructing a\n", "sequence of approximations,\n", "$$T_0, \\, T_1, \\, \\ldots, \\, T_i, \\, \\ldots,$$ defined at a set of\n", "discrete $t$-points, $$t_0" ] }, "execution_count": 17, "metadata": { "image/png": { "width": "80%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='discrete/grid.png', width='80%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure Grid:** A grid of equally-spaced points, $t_i=t_0+i\\Delta t$, for $i=0,1,2,\\ldots$.\n", "
\n", "\n", "This process of reducing a continuous problem to one in a finite number\n", "of discrete unknowns is called *discretization*. The actual mechanics of\n", "discretizing differential equations are introduced in the following\n", "section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Discretization Quiz \n", "\n", "\n", "What phrase best describes \"discretization\"?\n", "\n", "**A** The development and analysis of methods for the\n", "solution of mathematical problems on a computer.\n", "\n", "**B** The process of replacing continuous functions by\n", "discrete values.\n", "\n", "**C** Employing the discrete Fourier transform to analyze the\n", "stability of a numerical scheme.\n", "\n", "**D** The method by which one can reduce an initial value\n", "problem to a set of discrete linear equations that can be solved on a\n", "computer. \n", "\n", "In the following, replace 'x' by 'A', 'B', 'C', 'D' or 'Hint'" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Acceptable answers are 'A', 'B', 'C', 'D' or 'Hint'\n" ] } ], "source": [ "print (quiz.discretization_quiz(answer = 'x'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Summary\n", "\n", "The basic idea in this section is that continuous functions can be\n", "approximated by discrete ones, through the process of\n", "*discretization*. In the course of looking at discrete\n", "approximations in the interactive example, we introduced the idea of the\n", "*accuracy* of an approximation, and showed that increasing the accuracy\n", "of an approximation is not straightforward.\n", "\n", "We introduced the notation for approximate solutions to differential\n", "equations on a grid of points. The mechanics of discretization as they\n", "apply to differential equations, will be investigated further in the\n", "remainder of this Lab, as well as in Lab Two." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Difference Approximations to the First Derivative\n", "\n", "\n", "It only remains to write a discrete version of the differential equation ([Conduction Equation](#lab1:eq:conduction))\n", "involving the approximations $T_i$. The way we do this is to approximate\n", "the derivatives with *finite differences*. If this term is new to you,\n", "then you can think of it as just another name for a concept you have\n", "already seen in calculus. Remember the *definition of the derivative of\n", "a function $y(t)$*, where $y^\\prime(t)$ is written as a limit of a\n", "divided difference:\n", "\n", "
\n", "(limit definition of derivative)\n", "$$y^\\prime(t) = \\lim_{\\Delta t\\rightarrow 0} \\frac{y(t+\\Delta t)-y(t)}{\\Delta t}.\n", " $$ \n", "
\n", "\n", " We can apply the same idea to approximate\n", "the derivative $dT/dt=T^\\prime$ in ([Conduction Equation](#lab1:eq:conduction)) by the *forward difference formula*,\n", "using the discrete approximations, $T_i$:\n", "\n", "
\n", "(Forward Difference Formula)\n", "$$T^\\prime(t_i) \\approx \\frac{T_{i+1}-T_i}{\\Delta t}.$$\n", "
\n", "\n", "#### Example Six\n", "\n", "In order to understand the ability of the formula ([Forward Difference Formula](#lab1:eq:forward-diff)) to approximate the\n", "derivative, let’s look at a specific example. Take the function\n", "$y(x)=x^3-5x$, and apply the forward difference formula at the point\n", "$x=1$. The function and its tangent line (the short line segment with\n", "slope $y^\\prime(1)$) are displayed in Figure [Tangents](#lab1:fig:deriv)." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AezdCXxU1fn/8e9MggQQMGrQBtkEEReCgsqioEC1oFbccAOXuOHPWpFWRWyhrba1UFvAqgWsggrUilqif8QNUHDBIlSCCiIoSolIFDARCZLM/Z9zJ5N9mUwms36ur5iZO3c5930m4cmZ5z7H45hFLAgggAACCCCAAAIIIBDTAt6Ybh2NQwABBBBAAAEEEEAAAVeAwJ03AgIIIIAAAggggAACcSBA4B4HnUQTEUAAAQQQQAABBBAgcOc9gAACCCCAAAIIIIBAHAgQuMdBJ9FEBBBAAAEEEEAAAQQI3HkPIIAAAggggAACCCAQBwIE7nHQSTQRAQQQQAABBBBAAAECd94DCCCAAAIIIIAAAgjEgQCBexx0Ek1EAAEEEEAAAQQQQIDAnfcAAggggAACCCCAAAJxIEDgHgedRBMRQAABBBBAAAEEECBw5z2AAAIIIIAAAggggEAcCBC4x0En0UQEEEAAAQQQQAABBFIhqF+gqKjI3Sg1LU2A1e/FFggggAACCCCAAALhF2DEvQ7TzUvn6MpeHrVo0cL9auYZogde2lzzHoWbNf/eMerl8chT+jXugZdUWPPWrEUAAQQQQAABBBBAoEECBO61cK2Ycr66Dc3W3NwsDc4KbLRMY4d3071L8wIr/N/zV+j8Nt00atIs9ZuxRNt2bNK8CYM1bexwtRkzn+C9shbPEEAAAQQQQAABBEIQIHCvAa3482c0aHyObpyxXAXOWi1d62jb6nkaXLrtpN+/UCEYL9ScGwYpx7yWNWGJZo4ZosyMrrrij89qut1h1ijdPGddDWdhFQIIIIAAAggggAACwQsQuNdglfvESGnCchOED1Tr0tcze1+h6TNGlz7bp+LSR0UbnlW2jdrNMv66Af4H7v/TdfGdE9xHc7OnaJ0/Tb7C6zxEAAEEEEAAAQQQQCB4AQL3GqyOum6Ldt4zsNorzZr7V2UNPlHppa+ufWVh6crJOrNrWqV9Mk8doRHumrlavCq/0ms8QQABBBBAAAEEEECgIQIE7jVotc7spPSq5WOKN+uJqXPN1iM0+aqTS/cq1PqlpcPtXdqqcthuNmnWrOzob/93a9ljHiCAAAIIIIAAAggg0FABAvcgxPI3vKQxfbrpvlyz8eRJGtapNEQv3qGNpXG7CsrTZ8oOmdpSXUqf5CzNrZAXX7YFDxBAAAEEEEAAAQQQCEqg6rhyUDsly0bFeSv0s+GDNMsG7O5iysuM76Mh+5bolYlDlLr3W31U+srgYeXpM6WrpNT26mVzZWxwX1NgX7Zh7Q8+++wz9e/fX4Fa8hW3tGUnDz/88IqreBwmAcdxVFJSotRUfkTCRBrUYXw+n6x9SkpKUNuzUXgEcA+PY0OPgntDxcKzvXW3i9fL2GV4RIM7Sjy47969W3v37q12Qfa9cscdd2jCBP+9i9U2iOAKopK6sFtkaszs9RqnPL0y8/caO2uZu/WySUP18Dk7detR5Tu3aXtQ+ZMaH+2rcW19Kzdu3KivvvpKxx9/fLVNbeDetWvXautZ0XiB7777TitWrNDw4cMbfzCOELTA9u3b9cknn2jgwOr3mAR9EDZssMC2bdv0+eefa8CAijfYN/gw7NBAAWtuf7+fcsopDdyTzRsj8NFH/iG3Hj16NOYw7NtAgdzcXDVv3lxHH310A/eM3Ob257GwsPoMPPbfpTfffDNyDanjTATudeGkd1Vv9y7UHuoxc4gGn3m3skbe5+6x8M2NujXr0PJUmDUfq0g9q+e5lx4/q1f3sgo1dZyy1pfWraOkZK04TfCC/SE944wz9O9//7sJjs4haxN48cUXNWXKFNxrA2qi9QsWLNCcOXNwbyLf2g5rze17/umnn65tE9Y3gcCvfvUr96h/+MMfmuDoHLI2gdtuu03t2rXT3XffXdsmMbu+Z8+eMdM2PidqQFf0vHiS5pVWhGyjZiYVpp0/FcYe45NvVO3DlQo58F26tBN/JTUAm00RQAABBBBAAAEEKgkQuFfiqO9JmnoP9UfuBe6mzXTgYaX7tDFxfNXdi8tz4A/LbFv1VZ4jgAACCCCAAAIIIBC0AIF70FR2w2JtWeu/U3VY3w7meZqGXjvZf4Scxfpol/9h4P9FW3Ld+1LNnKq6YECnwGq+I4AAAggggAACCCDQYAEC9xrIdm1eofnzn9eaz6tE4rtWa940E7gPnqEb+ma4e6b3vVT+e4xz9GDOhkpHC0zOlDVhqoZlVhuPr7QtTxBAAAEEEEAAAQQQqEuAaLKaTqGevmGQbvIXkNGIe2Zr0hWD1TJvmS4dlK3crAnKzRlTNnOq1EmT1i/QomNGam72pTqt6/MaM7CT8t6do35jbR3IEZp1x5BqZwl2RatWrYLdlO3CKHDooYfqrrvuCuMROVQwArbawPXXXx/MpmwTRgF749XVV18dxiNyqGAEevfurbZtSaMMxiqc25x11lnhPBzHClLgnHPOETFNkFh1bOYxNZOdOl5Pypfylk5R+6Hjq1z7YE1ecL9uvbh3jZVjCje/pNsvHF6h5rtJkBk9WbP/+gv1zgj976M1a9aoT58+bm3rKg3iKQIIIIAAAggggEATC9jBjY4dO2rRokVNfKb6Dx96RFn/seN2i8whd8rZf6t2FZo6McXF5q7T1kpPL50ttZarat11mGau3a8/5e/Q3v1SsxYHK6OefWo5FKsRQAABBBBAAAEEEKgmQOBejaR0RWpavcF69V1TlZ6RWSGNpvoWrEEAAQQQQAABBBBAIBQBbk4NRY19EEAAAQQQQAABBBCIsACBe4TBOR0CCCCAAAIIIIAAAqEIELiHosY+CCCAAAIIIIAAAghEWIDAPcLgnA4BBBBAAAEEEEAAgVAECNxDUWMfBBBAAAEEEEAAAQQiLEDgHmFwTocAAggggAACCCCAQCgCBO6hqLEPAggggAACCCCAAAIRFiBwjzA4p0MAAQQQQAABBBBAIBQBAvdQ1NgHAQQQQAABBBBAAIEICxC4Rxic0yGAAAIIIIAAAgggEIoAgXsoauyDAAIIIIAAAggggECEBQjcIwzO6RBAAAEEEEAAAQQQCEWAwD0UNfZBAAEEEEAAAQQQQCDCAgTuEQbndAgggAACCCCAAAIIhCJA4B6KGvsggAACCCCAAAIIIBBhAQL3CINzOgQQQAABBBBAAAEEQhEgcA9FjX0QQAABBBBAAAEEEIiwAIF7hME5HQIIIIAAAggggAACoQgQuIeixj4IIIAAAggggAACCERYgMA9wuCcDgEEEEAAAQQQQACBUAQI3ENRYx8EEEAAAQQQQAABBCIsQOAeYXBOhwACCCCAAAIIIIBAKAIE7qGosQ8CCCCAAAIIIIAAAhEWIHCPMDinQwABBBBAAAEEEEAgFAEC91DU2AcBBBBAAAEEEEAAgQgLELhHGJzTIYAAAggggAACCCAQigCBeyhq7IMAAggggAACCCCAQIQFCNwjDM7pEEAAAQQQQAABBBAIRYDAPRS1Bu5TlLdZeYXFDdyLzRFAAAEEEEAAAQQQKBdILX/Io6oCm1fM15TfTNasZbnuS1mDR+vmX/9WY4Z0rbqp+3zXuvm668E31LJlywqvf61p0+Zq3qa9uqI13BVgeIgAAggggAACCCDQAAEiyRqxivT83X014j5/wB7YJHfZXN1kvt6cnasnr+kZWF36vVA5E0dpVk6V1fbpiNm6sGtaDS+wCgEEEEAAAQQQQACB4AQI3GtwKlz3uD9oH3GPlv/pKvVosVdvPPEHjZw01916bvZojTprtYZllvMVbXhB2SZoH3HbZA3pUh6kFxUVKeu8i1S+poYTsgoBBBBAAAEEEEAAgXoEyiPPejZMppffeuwmE4HP0M6FY5ReeuEXT3xSq9tKfcba4D1XuVsLTeAeeLVYr0wdZdZP0CNT71RGMmFxrQgggAACCCCAAAIREeDm1KrMRes0ZZo0b/p1ZUF7YJPe2bdohPtksHoc3iKwWsp7TRNn2af36YYxd+uBOc9r3ee7yl/nEQIIIIAAAggggEBcCnz77Y9VUNAlJtpO4F61G9KO0r+27dQlnWr4MKJZS7V2t1+mDdv3lu5ZrKUPjjdj8P4lZ9Z9Gps9QlmdD9aQcXOURzGZUhm+IYAAAggggAAC8SWwf7+jXbt+qhYttsdEwwncq3VDmjJMCkwNYbuKd35WGqAP1klHlqfJtOo9TtMn36MbRwyudLRl07LV/qwpyqu0licIIIAAAggggAAC8SDwn/84at58i5o1CwzYRrfVNcWn0W1RDJ/9nbnT3MB98D2/05CyRPY09b34GvV12z1RD+36XMtzZmpo9n3+K1k2XuPnDK+hCk3DLvSss86qtkNqaqpefPHFautZgQACCCCAAAIIINAwgfvvv1+vvPJKpZ0++2yk9uxZUmldNJ8QuAern/eSbhm/TMq6R7MnDqx1r9T0ThpyzR9V0Od4nZY1yg30505drL+a8pFlsX6te9f+ws0331ztRa+XD0yqobACAQQQQAABBBAIQWDIkCHq1q1bpT03b26r6dP/ZNb1qLQ+Wk8I3IOS/1z3Dh9ugvDRWvn6RHUKYp/WPa/QcwtWqdtIc6dr7tv6tFDK8CfIB7F39U3OP//86itZgwACCCCAAAIIIBAWgd69e8t+VV3mzKk4sWbVVyP7nCHber2L9My4zpqUm6WcTY+obyC1vd79pK4/ubK0Ck0QG7MJAggggAACCCCAQMwILFzo0/Llvphpj20IgXs93bHigctkB81nrH5d5zV09tNmzUqr0ByrQytUj6znlLyMAAIIIIAAAgggEGWBJ5/0mdQZT5RbUfn0BO6VPSo9Wzd/nAaNzdH0lTs0pnflofZd7z6gMTPXVdq+6pOiLas1164cfbzak5RUlYfnCCCAAAIIIIBATAp88IGjdBP6ZWbGVuBOOFnL22Xz8/cqa5QZar9tgc45vEAbNnxTtuW3W97QjcPH6uLlO1Scv0aPzn5NzY/sr3POH6iMMtF8zbo5290n5/eXKK1sbx4ggAACCCCAAAIIxLLAihU+DRwYe+PbZWFmLONFum2fL52ibiMm+U87baS6mfi9+jJBzw/M0K4Vs3XT+PGlL4/WgpW/1YDDv9aj2f00yRShmb5ki86raTKn6gdkDQIIIIAAAggggEAMCAwe7FXnzjHQkCpNiL0/Jao0MOJPi9bp10MDgXjtZx89+3K3ukzrzB4VbkCdq5H9uql9535adtR0rd62V7cOCaYGTe3n4RUEEEAAAQQQQACByAr06OFRWlpspclYAUbcq74P0nrqScfRk1XX1/I8ret5Wujs1a78nSr4fr/ZqpnaHNxO6a2hrYWM1QgggAACCCCAQMwKLFrkk88Uk/npT2NvfJvoMixvmzSlZ2Sq8u2rYTkwB0EAAQQQQAABBBCIoMCCBT7ddVdKBM8Y/Kli70+J4NvOlggggAACCCCAAAIIhE1g61ZH339v5kk1qTKxuBC4x2Kv0CYEEEAAAQQQQACBiAssX+6YajKxGbRbDFJlIv6W4IQIIIAAAggggAACsSgwaJBHGRkE7rHYN7QJAQQQQAABBBBAAIEygQ4dYjdot40kVaasq3iAAAIIIIAAAgggkKwCr73m0+OPm3IyMbwQuMdw59A0BBBAAAEEEEAAgcgILFrk6JhjInOuUM9C4B6qHPshgAACCCCAAAIIJITAN9842rTJUZ8+pMokRIdyEQgggAACCCCAAAKJKfD66/5qMikpsR24U1UmMd9/XBUCCCCAAAIIIIBAkAJnnOExM6XGdtBuL4XAPcgOZTMEEEAAAQQQQACBxBQ45JDYD9qtPDnuifn+46oQQAABBBBAAAEEghBYtMinWbNiu5pM4DII3AMSfEcAAQQQQAABBBBIOgFbTSbWb0oNdAqBe0CC7wgggAACCCCAAAJJJfDVV47y8hydeGJ8XDaBe3z0E61EAAEEEEAAAQQQCLPAsmWOTj/dI683PnLcuTk1zG8ADocAAggggAACCCAQHwLnn+/RAQfER9BuRQnc4+N9RSsRQAABBBBAAAEEwiyQlhY/Qbu9dFJlwvwG4HAIIIAAAggggAACsS/w9NM+PfRQSew3tEILCdwrYPAQAQQQQAABBBBAIDkEXn3Vp9NOi69QOL5amxzvI64SAQQQQAABBBBAoAkFtm1ztHOnlJXVhCdpgkMTuDcBKodEAAEEEEAAAQQQiF2B5csdDRnikccTXznu3Jwau+8pWoYAAggggAACCCDQBAKXXx6fY9fx2eom6EAOiQACCCCAAAIIIJAcAj/84MTlhRK4x2W30WgEEEAAAQQQQACBUASeeMKnRx7xhbJr1PchcI96F9AABBBAAAEEEEAAgUgJvPGGT0OHxmcIHJ+tjlTPch4EEEAAAQQQQACBhBHYvNnR999LPXrE102pgQ4gcA9I8B0BBBBAAAEEEEAgoQXeecfRBRfEb/hLVZmEfntycQgggAACCCCAAAIBgdGj4zdot9cQ360P9ALfEUAAAQQQQAABBBCoQ8BWktmxIz6ryQQui8A9IMF3BBBAAAEEEEAAgYQVmDbNJzvxUjwvBO519N7mFfM1Zkgvd1YtO7NWryFXaubSzTXvUbhZ8+8do15mO7ut/Rr3wEsqrHlr1iKAAAIIIIAAAghESGD/fkcrVjimmkx83pQaYCJwD0hU+l6k5+/upW6DRmnWstyyV3KXzdVNQ7vpyjnryta5D/JX6Pw23TRq0iz1m7FE23Zs0rwJgzVt7HC1GTOf4L2yFs8QQAABBBBAAIGICrz9tuNWkklPJ3CPKHwkTla47nGNuM8E7CPu0fL1W7Rjy3otuGd02annZo/WS3nFpc8LNeeGQcoxz7ImLNHMMUOUmdFVV/zxWU0fbFbOGqWbqwb6ZUfiAQIIIIAAAggggEBTC2zcKI0cGd9BuzVixL2Gd8pbj91kgvYZ2rlwogb26KSMTj108cQntXp6IHjPVe5WfxJM0YZnlW2jdrOMv26A/4H7/3RdfOcE99Hc7ClaV1ThJR4igAACCCCAAAIIREzghhu8OuWU+A974/8Kwt3lRes0ZZo0b/p1Sq9y7N7Zt2iEu26wehzewn209pWF/q2yJuvMrmmV9sg8dUTp9nO1eFV+pdd4ggACCCCAAAIIIND0At9842jLlvi+KTWgROAekAh8TztK/9q2U5d0qqHEfbOWau1ut0wbtu81jwq1fmnpcHuXtqoctpuXmzULHFVv/3dr2WMeIIAAAggggAACCERG4He/82n7dgL3yGhH/CxpyshMVw1hu4p3fib/raqDddKRZjy+eIc2lsbtKtinQNZ7WZNTW6pL6ZOcpbncpFoGwwMEEEAAAQQQQKDpBWzd9i++cHTyyfGf3261aopPm14xTs/wztxpbuA++J7faUiGuYjCb/VR6bUMHnZitdQapbZXL5tbY4P7mgL70n2D+da9e/dqm6WmpuqjjwItqPYyKxBAAAEEEEAAgaQWeO01R2ec4VFKSv2B+1133aXnnnuumtfWrVvVsWPHauujsYLAPVj1vJd0y/hlpnTMPZo9cWC1vdq0Pajausor9lV+2sBnTz/9dLU9bK14FgQQQAABBBBAAIGaBQoKHF18cXCZ4TfffLMuu+yyagcaOXJktXXRWkHgHpT857p3+HAz2j5aK1+fqE6BfVq0LU+FWfOxitSzep576bZZvbqX5scHdm7Y9xNOOKFhO7A1AggggAACCCCQ5AI33ZQStIAdVa9pZD0trdpdjEEfM9wbBvcnSLjPGlfHK9Iz4zprUm6WcjY9or4mtb1sSW3nT4WxKz75RvZ21UpLhRz4Ll3akZdUCYcnCCCAAAIIIIBA0wls3Oho06bEuCk1oETgHpCo5fuKBy7TyGnSjNWv67wq5R5N2RgdeFjpjm1quGGguDwH/rDMtrWcgdUIIIAAAggggAAC4RRwHEe/+lWJmjcP51GjfywC9zr6YN38cRo0NkfTV+7QmN4Vh9qlXe8+oDEzP9HQayf7j5CzWB/tqnywoi257n2pJjFeFwwoS7CpvBHPEEAAAQQQQAABBMIqsHatlJHhUYcOiXU/IIF7LW+Tzc/fq6xRZqj9tgU65/ACbdiwoezr3Zdm6ox+Y3XEsYcrve+l8s+PmqMHczZUOlpgcqasCVM1LJPbCSrh8AQBBBBAAAEEEGgigRdf9OnMMxMraLdURJM1vGE+XzpF3UZM8r8ybaS6mfi9+jJBzw+0NSGlSesXaNExIzU3+1Kd1vV5jRnYSXnvzlE/M1ovM3fqrDuGuNvxPwQQQAABBBBAAIGmFSgudtS+vUdnn514gTsj7lXfO0Xr9Ouh46uurfZ89OzLy6rLpPW4WG9uWqwbs3J106DOsmUa2/fLVtboyVq945nKN7RWOxIrEEAAAQQQQAABBMIlkJrq0dVXe01+e+IF7oy4V32XpPXUk+aGhierrq/neeuuwzRz7X79KX+H9u43t622OFgZ6bFTPqie5vMyAggggAACCCCQEAIvv+zTMcd4TGnHxAvcGXEP61s0VekZmcrMzCRoD6srB0MAAQQQQAABBOoXyM939PDDPhOL1b9tPG5B4B6PvUabEUAAAQQQQAABBKoJvPyyoyFDPLLpMom4ELgnYq9yTQgggAACCCCAQBIKvPKKT2edlbjhbeJeWRK+WblkBBBAAAEEEEAgWQV273aUne1189sT1YCbUxO1Z7kuBBBAAAEEEEAgiQQOOsijwYMTM0Um0I2MuAck+I4AAggggAACCCAQlwI+n6OpU0tUWOjEZfuDbTSBe7BSbIcAAggggAACCCAQkwJvvunof/+TWrdmxD0mO4hGIYAAAggggAACCCBgBV55xTE3pSZ20G6vkxF3q8CCAAIIIIAAAgggEJcCBQWO1q51dPrpBO5x2YE0GgEEEEAAAQQQQCA5BPbtk/72txSlpSV+4E5VmeR4T3OVCCCAAAIIIIBAQgpkZHiUkZGQl1btokiVqUbCCgQQQAABBBBAAIF4ENi+3dEdd5TEQ1PD0kYC97AwchAEEEAAAQQQQACBSAv8+98+9eiR+CkyAVcC94AE3xFAAAEEEEAAAQTiRqCkxNHLLzs6+2wC97jpNBqKAAIIIIAAAgggkHwCb73l6MgjPfrRj5IncOfm1OR7n3PFCCCAAAIIIIBA3AuccIJH/folT9BuO4zAPe7ftlwAAggggAACCCCQfAJt2iRX0G57mBz35Hufc8UIIIAAAggggEBcC/zznz7NmJE81WQCnUXgHpDgOwIIIIAAAggggEBcCOTk+HTmmckXxibfFcfF25FGIoAAAggggAACCNQksHq1o7ZtPeralVSZmnxYhwACCCCAAAIIIIBATAgsW+bT+ecnX9Bu8bk5NSbegjQCAQQQQAABBBBAIBiB229PCWazhNyGVJmE7FYuCgEEEEAAAQQQSDyBvXsdFRQ4iXdhQV4RgXuQUGyGAAIIIIAAAgggEF2Bn/2sRJ99Ft02RPPsBO7R1OfcCCCAAAIIIIAAAkEJbNjg6IcfpF69kjO/3SIRuAf1VmEjBBBAAAEEEEAAgWgKvPiiT2efndyha3JffTTffZwbAQQQQAABBBBAICiB/fsd7dghnXtu8o62WyiqygT1dmEjBBBAAAEEEEAAgWgJNGvm0Z/+lLzVZALujLgHJPiOAAIIIIAAAgggEJMCH3zgaPfu5K0mE+gUAveARBN+L8rbrLzC4iY8A4dGAAEEEEAAAQQSU2DzZkf33FNiZktNzOtryFWRKhOEVuHnazT7j9la1Xu2nhzTu9Y9dq2br7sefEMtW7assM3XmjZtruZt2qsrWsNdAYaHCCCAAAIIIIBAvQLPP+/Teed55fEkd367hSKSrOPtUphnAvbf3a6xs5a5W42YXsfGKlTOxFGalVPDNiNm68KuaTW8wCoEEEAAAQQQQACB2gSKihwtXeroiSdIErFGBO61vVOKN+j29tk6ZPLFGqxl5r+6l6INLyjbBO0jbpusIV3Kg/SioiJlnXeRytfUfRxeRQABBBBAAAEEEPALbN4s/fznXqWnM9puRQjca/vJSO2hmc5a82qx5rw9SctqGkkv27dYr0wdZZ5N0CNT71RG2XoeIIAAAggggAACCIQqcNxxHtkvFr8AnzvU+07YW+8WyntNE2fZze7TDWPu1gNznte6z3fVvx9bIIAAAggggAACCNQokJ/v6NlnfTW+lqwrCdwb3fPFWvrgeOWWHidn1n0amz1CWZ0P1pBxc5RHMZlGC3MABBBAAAEEEEg+gUcf9amkJPmuu64rJnCvSyeo14rVqvc4TZ98j24cMbjSHsumZav9WVOUV2ktTxBAAAEEEEAAAQTqEvjuO0dvvulo+HDSZCo6EbhX1AjpcZr6XnyNbr1zomYuXKr9O7doyewJ5UdaNl7j56wrfx7iowMOOEBVv1q1ahXi0dgNAQQQQAABBBCIXYGXXnI0YIBHrVtHLnC//vrrq8VaNvZav359zEARuIe5K1LTO2nINX9UQe48ZZUee+7Uxcpv5Hl27Nihql95eYzlN5KV3RFAAAEEEEAgBgU6dJBuuSWyYeoDDzxQLdaysVf37t1jRoiqMk3UFa17XqHnFqxSt5HTpNy39WmhlNE69JMddNBBoe/MnggggAACCCCAQBwJ9O0b2aDd0tgJNCtPoukHS0lJiRm5yKvEzKU3fUO6/uRKjWj603AGBBBAAAEEEEAgYQTmzfNp5UqqydTUoQTuNamEa12zZvIPsh+rQ1uE66AcBwEEEEAAAQQQSEyBXbscPfWUT716RS63PZ4kCdybsLeKtqzWXHv80cerPUlJTSjNoRFAAAEEEEAgEQQWL3Z0xhketWhB4F5TfxK416RS27rmzaq9Upy/RjOnTNGcZ1Yov1LN9nzNujnb3T7n95cordqerEAAAQQQQAABBBAICPh8jhYu9OmCCwhPAyZVvzMOXFWkyvOivFVamONfmbNmnXapp9IrbLNrw2u6afz40jWjtWDlbzXg8K/1aHY/TVomTV+yRed1grkCGQ8RQAABBBBAAIFqAvv3SzNnpig9ndH2ajilK/iTpjaZonUa4zEf1bQfqtK4XZo1Sgebdb3GzJcpEuMurTN7VLgBda5G9uum9p37adlR07V6217dOqRTbWdgPQIIIIAAAggggECpQPPmHoL2et4NDAXXBpTWUzMdRzNre710fVrX87TQ2atd+TtV8L35U1HN1ObgdkpvDW09dLyMAAIIIIAAAgi4Alu2OJo4sURPPJEijxkkZalZgOiyZpcGrk1TekZmpRSaBh6AzRFAAAEEEEAAgaQVWLDAp+HDvQTt9bwDSJWpB4iXEUAAAQQQQAABBJpOoKDA0fLljs49l5H2+pQJ3OsT4nUEEEAAAQQQQACBJhN44w1HP/2pV23aELjXh0yqTH1CvI4AAggggAACCCDQZAI2aGcJTgCp4JzYCgEEEEAAAQQQQCDMAt995+iLL5wwHzVxD0fgnrh9y5UhgAACCCCAAAIxLfDrX/v02WcE7sF2EoF7sFJshwACCCCAAAIIIBA2gU8/dZSX52jgQHLbg0UlcA9Wiu0QQAABBBBAAAEEwibw3HM+jRjhlddL4B4sKoF7sFJshwACCCCAAAIIIBAWgaIiRwccIF10EUF7Q0CpKtMQLbZFAAEEEEAAAQQQaLRAWppHt96a0ujjJNsBGHFPth7nehFAAAEEEEAAgSgKOI6jnByfdu/mptSGdgOBe0PF2B4BBBBAAAEEEEAgZIFXX3W0YoWjgw4iTaahiATuDRVjewQQQAABBBBAAIGQBZ56yqfLLiNoDwWQwD0UNfZBAAEEEEAAAQQQaLDAqlU+U0VGOukkQtAG45kdUAtFjX0QQAABBBBAAAEEGizQooVHf/oTN6U2GK50B6rKhCrHfggggAACCCCAAAINEjj+eFJkGgRWZWNG3KuA8BQBBBBAAAEEEEAg/AKPPebTsmW+8B84iY5I4J5Enc2lIoAAAggggAAC0RDYvt3R88/71L8/I+6N8Sdwb4we+yKAAAIIIIAAAgjUKeBTiaY+/b7OPdcrO/ESS+gCBO6h27EnAggggAACCCCAQB0CRSrU4sKH9darB+miiwja66AK6iVuTg2KiY0QQAABBBBAAAEEGiKwU1v0jh7Vka1P05svdGnIrmxbiwCBey0wrEYAAQQQQAABBBAITeBTvaUPtUgna5Sa7zpWvraOqd/OiHtomuV7kSpTbsEjBBBAAAEEEEAAgUYI+FSsNXpKm/SGBmucVr1wjP7yFzvpEkF7I1jLdiVwL6PgAQIIIIAAAggggECoAkUqMOH6A9qn7zREv9SBytAzz/h02WWEm6GaVt2PVJmqIjxHAAEEEEAAAQQQaJDAN/pMK00+e1cNUg+d5e77+us+tWnjEZMuNYiyzo0J3Ovk4UUEEEAAAQQQQACBugTK89mv1OE6pmzTjz92dOutjLaXgYThAYF7GBA5BAIIIIAAAgggkGwCJSaf/X0tkK0eM1i/MKkxh1YiGDMmpdJznjRegD+DGm/IERBAAAEEEEAAgaQS2KtvTT77dO3X3hqD9mXLfNq61Ukqk0hcLIF7JJQ5BwIIIIAAAgggkCACX+tTLdEUtVeW+ulapap5pStbt87Ro4/6dMQRlVbzJAwCpMqEAZFDIIAAAggggAACySCwWSu0XotNffardZiOrvGS58716YorvPJ4KAFZI1AjVjLiHgRe4edr9MCYXrpy5praty7crPn3jlEv8ya1b1T7Ne6Bl8xEvywIIIAAAggggEB8C9h89tWab8ba33RTY2oL2jdtcvTZZ47OOougvSl6nMC9DtXCPBuwD1Gbzn00dlauCvfVsnH+Cp3fpptGTZqlfjOWaNuOTZo3YbCmjR2uNmPmE7zXwsZqBBBAAAEEEIh9gb3ardc11eSzF5mg/ZdqVeUm1IpXUFIiTZuWotRUAveKLuF6TOBem2TxBt3ePlvbuw42b9K6lkLNuWGQcswmWROWaKYJ9DMzuuqKPz6r6XbHWaN085x1dR2A1xBAAAEEEEAAgZgUyDdzoC7Rn9VBvUvz2Q+os51HH+1RZiZBe51IjXiRwL02vNQemums1R/vnKCrRtS2kVS04Vll26jdLOOvG+B/4P4/XRebfe0yN3uK1hW5D/kfAggggAACCCAQFwKbtFzv6jGdoqvUXUPrbfPjj/v04ou+erdjg9AFCNzrtdtb5xZrX1nofz1rss7smlZp28xTR8gf88/V4lX5lV7jCQIIIIAAAgggEIsCNp/9Pc0z1dnfMVkHt6tdLTehVmx7fr6jZ5/16fTTGW2v6BLuxwTujRIt1PqlpcPtXdqqcthuDtysWdnR3/7v1rLHPEAAAQQQQAABBGJR4HvtcvPZS0xG+xkaZ/LZDw6qmU895dO553rVqhWBe1BgIW5EOcgQ4dzdindoY2ncroJ95u/TKktqS3UpXZWz1Nzcemtvta6ySbBP8/Lyatw0MzOzxvWsRAABBBBAAAEEGiJg89nf1Wwzvv5jHVXPHX4Vj1tQ4GjZMkePPRbf48G7d+/W999/X/HS3Mf79++vti5aKwjcGyO/91t9VLr/4GEnKr3qsVLbq5fNlbHBfU2BfdXt63h+7LHHVnu1mRnRz88nBacaDCsQQAABBBBAoEECn5hx9o/1qslnv9qkxnRv0L5t2nj03HPxH1Lefffdmj9/frVr37Nnj7p27VptfTRWxL9yNNRqOGebtgfVsLbiqtpqSVbcpvbH9q9AFgQQQAABBBBAIJwCNiVmjZ7St8orLfUYXGpMoA0+n6MvvpA6dpS83vhOk3n44Ydlv6ouPXv2rLoqas/j+zONqLGVnrhF2/JUmDUfm+qmtS9ZvbqHnCZT+1F5BQEEEEAAAQQQCE1gj3ZqmanP7shngvZfBJ3PXvFsf/+7v5JMvAftFa8plh8TuDemd1Lb+VNh7DE++UbV6s9UyIHv0qWd+HijMdjsiwACCCCAAALhEsjXJyZo/4s6meQYmx6TovKCGsGeY+dORy+/7OjyywkngzVr7HbEko0SbKYDDys9QBtVD8yLy3PgD8ts26gzsTMCCCCAAAIIIBAOARuy23z2vrpWGeoW8iHnzfPp7LM9Sk+P7xSZkAGisCN/IjUKPU1Dr53sP0LOYn20q/LBirbkuvelmjlVdcGATpVf5BkCCCCAAAIIIBBBAZvP/h89ri9MlfYhuqNRQfvevY7atvXommsIJSPYhUK7IdrNq3+MlN73UvnnR83RgzkbKh0tMDlT1oSpGpbJhxuVcHiCAAIIIIAAAhET8Oez/0UeE/rZ+uwtq9fCa1BbWrTw6KqrvEpLY7S9QXCN3JjAvR7AorxVWlhaqz1nzTozLUHVpZMmrV9gxtSludmXauaKz90N8t6do35j7Y4jNOuOIVV34jkCCCCAAAIIIBARgR0mMWaZ7ldnDdDJutLkszduMHHPHkcPPVSioiInIu3nJOUCBO7lFpUfFa3TGI9HLdoPLU13MS/PGqWDzbpeY+arsMLWaT0u1pubFuvGrFzdNKizPGab9v2ylTV6slbveEZ9qxV4r7AzDxFAAAEEEEAAgSYS2KilJj3mCTefvZsGheUsjzzi0wEHeBhtD4tmww7SuD+5Gnau+No6radmOo5mBtnq1l2Haeba/fpT/g7tNRNsNWtxsDLS04Lcm80QQAABBBBAAIHwCRTrB63WfH2nfA01+ewtVN98M8GdOz/fP0vqk08y9hucWHi3InAPq2eq0jMyG5k1FtYGcTAEEEAAAQQQSDKBPfpab+sRE490lM1nb2xqTEW+uXN9+ulPvbKzpbJEXoDAPfLmnBEBBBBAAAEEEGgSga9MPvsqUznmGA1T1zClxgQaamdJtTekHtywyVUDu/M9DAIE7mFA5BAIIIAAAggggEC0BWxt9k/0uvrpeh2qI8PeHJ9POshk3Nh7+ViiI0CCUnTcOSsCCCCAAAIIIBAWgWLt00o9pm3KdfPZmyJo37LF0SWXlOiHH8LSZA4SogAj7iHCsRsCCCCAAAIIIBBtge9MPvs7Jp/9YHXS6Rob1nz2itc2a5ZPo0d7Zeu3s0RPgBH36NlzZgQQQAABBBBAIGSB7Vpv6rP/1c1l76MrmixoX7fO0WefOTrvPIL2kDsrTDsy4h4mSA6DAAIIIIAAAghESmCDyWffrDfMlEo36BB1adLTvv++o4kTTW2aVAL3JoUO4uAE7kEgsQkCCCCAAAIIIBALAjaf/T3N017tNvnsdypNbZq8WVdeSYJGkyMHeYLw9kRxvlas2BDkqdkMAQQQQAABBBBAIFgBm8++VH9RMzOd0um6NSJB+4IFPv3vf06wTWS7JhYIb+C+91PdMugY3T1/hfILi5u46RweAQQQQAABBBBIDoHt+tDks/9F3UzI3keXy6umT5p48UWf3n7b0RFHkCITK++y8Abu5m9Am2V136hBatemmc4fN0Uvrdmsoli5WtqBAAIIIIAAAgjEmcB6vazVekqnaoypzn5qRFq/f7+jOXN8uvHGMIeKEWl94p4kvL3RoqUOy7pRK7es1+IZ96hg2ngN79NNLTy9dPfM57UhrzBxJbkyBBBAAAEEEEAgjAI2n/1tU+rRjrbbfPaD1TmMR6/7UM895+iYYzzuV91b8mokBTyOWcJ5wuKiIqWmpZUeslh5G1brleef0hPjp5mPeKSsEbdp3E2X6Zwz+igjrek/5gnntUXjWGvWrFGfPn0U5m6KxqVwTgQQQAABBBAIUqBQO0zQPksZOkon6GKTGpMS5J6N38zGHF99JWVkSCkppMn07NlTHTt21KJFixqP28gjhHfE3TSmPGi3LUtVZo++uub/btP1E7LcpubmTFP28H5q18Km0jygFRvy3fX8DwEEEEAAAQQQQED60oywv65p6m7G2Xvr0ogG7dbfDum2a0fQHovvxfAG7kWbTT7UCgVuS83fsEJTxp0vT5vOGnVfbtn1D77xHs1wU2nGatAx7dTryilak0cmfBkQDxBAAAEEEEAgKQXW6yX9V/8ymew3mvsG+0fcIC/P0YUXlujbbyN+ak4YhEB4c1X2f60nsn+jAzvepjUPTNR9OeXBum3LiNuma8ItV6pv13S3aWPGTNCGl/6qY4aPV5+587Rg07u6uGsgzSaI1rMJAggggAACCCCQAAL7TSmPVXpSP2iPhugOU+qxdVSuasYMny691Kv0dFJkotIB9Zw0vCPuzZqpvclkHzl0RKWg/cbJ87R+x14tnHprWdDub1eqegy7VbNH2Ge5uvfRt+tpLi8jgAACCCCAAAKJJVCor0x99vtNdfaDNEg/j1rQnpvraONGRxdfTNAeq++w8I64V7rKLE2YMVljrvixOrWu4zRFH2lJjn/H3JWfaJf5O9M/Hl/pYDxBAAEEEEAAAQQSTiBP60ypx/nK0vnqpL5Rvb516xzde2+KmjUjcI9qR9Rx8joi6jr2qu2l/fu1zbx244wl+tN1JgAP5uipLdWy9HgjrhpA0F6bLesRQAABBBBAIKEEPtJibdE7Ok3/Z+KfjlG/tlGjwpuIEfULSsAGBBNaB3/ZrY/UbbMX66xrhpiPeYJcUnto+o5turtgvw7u2inIndgMAQQQQAABBBCITwGbz/4fPa792mvqxtyh5lHKZw/oFRc7euwxR+ef7zHVZBhtD7jE4vfwBu6m2uh51wxr8HWmZWSqk6kVyoIAAggggAACCCSyQIHJZ39bM3W4jlUvXSiPKfYY7eWJJxx9841jgvbotyXaFrF+/jAH7rF+ubQPAQQQQAABBBCIjkCeKcSxWv80+ewXmHz2U6LTiCpnzc93tHChz4y4R26CpypN4GkDBAjcG4DFpggggAACCCCAQEMFHDn6SC/qc70bM/nsgWuYOdOniy7y6tBDSZEJmMTydwL3WO4d2oYAAggggAACcS1g89htPnuxqdA+VHeafPYDY+p67rrLq9RUgvaY6pQ6GkPgXgcOLyGAAAIIIIAAAqEKFGi7yWefpR/peLfcYyzks1e8FjtLatu2MoF7xbU8jmUB7kKI5d6hbQgggAACCCAQlwLbtFZvaLq5BfXsmLkJtSKkzWv/8599atWK0faKLrH+mL+xYr2HaB8CCCCAAAIIxI2AzWf/UIv0hVaZfPabTX32DjHX9l27HM2Z49Pf/sYNqTHXOfU0iMC9HiBeRgABBBBAAAEEghGw+ezvao5KTIV2fz57q2B2i/g2Dz3k07nnetWhA6PtEcdv5AkJ3BsJGMzuRXmbtbN1J2W2hjsYL7ZBAAEEEEAg3gQK9GVpPnvPmMxnD3ju3Olo0CCPTjuNoD1gEk/fiSTD2Fu71s3XXQ++oZYtW1Y46teaNm2u5m3aqysI3Cu48BABBBBAAIHEENim97VG/zK57Bepo06K6Ys6+GCPG7jHdCNpXK0CBO610jT0hULlTBylWTk17Dditi7smlbDC6xCAAEEEEAAgXgV8Oezv2Dy2VdroG7RQWof05fywgs+ffaZo1tvJbc9pjuqjsYRuNeB05CXija8oGwTtI+4bbKGdCkP0ouKipR13kUqX9OQo7ItAggggAACCMSiwA/63uSzzzZNc/RjjdcBqvhpe+y1ePt2R//4h0+PPELQHnu9E3yLCNyDt6pjy2K9MnWUeX2CHpl6pzLq2JKXEEAAAQQQQCC+Bb5VnpvP3l4nqKfOU6zVZ69Jd9o0ny6/3Kt27SKb2+4zt+raCjubtNz8gXNnTU1jXQMECNwbgFXrpnmvaeIs++p9umGMNKR/Pw0ePFA9O6XXugsvIIAAAggggED8CWw12ezva4EJ2UeaQo+94+ICPvzQ0WGHSZdcErmg3VbW+cz8ebNRS9Rah7m17OMCK8YbSeDe6A4q1tIHxyu39Dg5s+5TjhvES4Nvm625f75GmSg3WpkDIIAAAgggEE0BRz59oBf0PxO2D9LP1VaZ0WxOg8593HEeHXdcZFJkbElMO7q+yUw/dai6qr+uN7XsOzaovWxcuwAhZe02Qb5SrFa9x2n65K368O1l5ubUZWX7LZuWrfZrd2jb0jvj6Me7rPk8QAABBBBAAAEj4M9nf8y1GKo7Yj6fvWKnvf22T44jnXqqt+LqsD8uUqEJ1pfpU71lYp4snaGx7kh72E+U5AckcG/0GyBNfS++Rn3d40zUQ7s+1/KcmRqafZ//yMvGa/yc4Xrymp6NOtOCBQuq7e/1enXRRRdVW88KBBBAAAEEEAiPwG5t0zt6REeYtJjj9VOTzx65dJPGXsEHHzj66199evzxphtt36OdbjrMVr3nlsL8se4yt+nGZ6rwqlWrtGXLlmrsBQUF1dZFawWBe5jlU9M7acg1f1RBn+N1WtYoN4Vm7tTF+qsJ3Btz0+qcOXOqtTQ1NZXAvZoKKxBAAAEEEAiPwFZT5vF9PaMTdYkJ3E8Mz0EjdJT9+x1NmVKiceO8atUq/H9sFGi7PtarZtqpD3SkTtNPNFHNdWCErq5pTvPmm2/qtddeq3bw3bt3V1sXrRUexyzROnmin3fzM+PUbeQ0c5kjtLJgofq2bvgVr1mzRn369DEfc9FNDddjDwQQQAABBBouYPPZ1ynH1I7J1QDdqDb6UcMPEuU9Hn/cZ0aPHf3mN+Edbd9lasSs18tmnP0zddNgk8U+UM0SvOh1z5491bFjRy1atCjKvSox4t6EXdD1J1eakH2a+dFnQQABBBBAAIF4ENinPaY++2PymhBpSJzls1f0vfrq8Oa07zDj6xvMCPt32qGjTWHHvspWCmFkRfKIPCZwb0rmZs3MjRl2OVaHtmjKE3FsBBBAAAEEEGiswG5TM+Ztk8/eUSfpOJ0bV/nsFa9940ZHhxwi89X4FBn7qcMGvWKKOxaph85ybeKhbn1Fj0R6TODehL1ZtGW15trjjz5e7ZFuQmkOjQACCCCAQOMEvjA3V67Vs+YW1EtlJ1aK1+XZZ316801HU6eGniJjU4W+MPn9H5uAPcXU0OlhMtjbm0oxLNEXIJxsZB8U56/Ro7NfU/Mj++uc8wcqo0w0X7NuznaPnvP7SxI8+6uRiOyOAAIIIIBAlARskJqrhe5Nlqfr1rjMZw/QffWVoyef9Omhh0IL2ktUrC3mM4ePzaRJB5oq7CfoYrUziTEssSNQFmbGTpPiqyW7Nrymm8aPL230aC1Y+VsNOPxrPZrdT5NMSffpS7bovE4wx1evJnZri4sd7dsnt8rAzp2OVq92tGuX9O23Ups20qWXelVY6Oj++33udvv3S6byqP74R6+aNfNo1iyf9uxxlJYmtWzp0bBhHjMjn0ebNzvau1c60BQVSDeVwNq2bfxHtIndE1wdAghEW2CfydheafLZ7aiyrc/eTPGd1zp1qk+XXeZV+/YN+/1r02A+1Qp9YuqwH6wu6qdrzfdO0e4ezl+DABFlDSgNWdU6s4e5AVWlN6DO1ch+c93dB984Xavn3qjemSa6YUEgwgJ79zqmmoA/gD78cI+WLPEpJ8dRXp6j776T+4v9mms82rpVWrXKcQNtmwuZUVqz9IADpKFDPWreXGrRwqMffnCUUjqA06OHtHu3Rzagt8eyfwTY5f33Hb3xhuMG/faPgBEjvLI3R61c6f/Y1gb3PzKFGY4+2qMOHRr2j4r/DPwfAQQQCJ/ALm019dn/YcLTU8ydaGfHbT57QGTXLkc33OBV167B/361f7h8otdN0P6mDjcKg9xPHA4PHJLvMShAOciwdEqRduXvVMH3JpIxf6+3Obid0luH528iykGGpYMS+iD2o9FWrexIt8dMsuHTyy/73BF0+8t7zBivevb0aP16xwTfMqMw0qGHBv9LvTFwJSU22Pfo668dvfuuo6++kvly3BH5n/88RZ984ujBB30miJc6dfLo+OM9OuaYyLStMdfFvgggEP8Cn+s/Jj3m3yaf/fKEyd0uKnLcwRaPp/7fo99rlztp0hdapQ7qo+6mSkwrM8bOUrNALJWDJHCvuY9iZi2Be8x0RUw1ZNkyn5Yvd/Tf/zomXUVmko0UHXGER7m5jg42v3ttgB7ML+9oXpQN7Netkxn1d9yv7dule+5JcdNwpk/3uSPzPXp41L27+XPYpOiwIIAAAo0VsPnsa03A/pU+Un+3PvthjT1k1Pf3+Rz9/Oc+/fjHHl1wQd0lIAvNlX+s19z69F10qo4yddjTSuvfRf1CYrgBsRS4h2dYOIaxaRoC8S5g883ffttxU1rsx6A25eTTT6X+/T362c+8lUbQs7LiJ8C1o/EnmMINJ5xQuc0tTIpp794effyxo6VLHXOtjhYv9v+qWrXKp2OP9TTJLIDx/j6h/QggULfAPhWa1JjHzOfizU199tvjPp89cLXz5zsmpVF1Bu02LcjOcpqvTWbSpNM1XL9NmOsPOCTLdwL3ZOlprjOuBOwIitfr0eTJJe7Ier9+Hp10UnkO+nXX1T2qElcXW6Wx9rrtDa/DhvlfsB//BpZnnrGj9D7z6YLUq5dHN93kddNxAq/zHQEEEKhJwM72afPZO5vbLm0+e6IsNuXQln985JGaq8jYQN3WYC/UdjO6PsRUpx9tpkwyNzGxxK0AgXvcdh0NTzSBggJHr73maNkyR3fe6XVzv88806tx46QDDqg8Kp1o117X9aSllV/75Mkpsn/UfPKJ9N57/rx9O9L061+XmJQa/x839uZZG/yzIIAAAlbgczMPqi332Mfks2cmUC1yx3GUn+9oxoyUSp+82mv+Uh+agP1l/WBmgT1aZ5pJk042M8HWHNzb7VniR4DAPX76ipYmsICtu/v00z4NHOjRVVeVV12xKSMslQVsUH60KStsq9MElpEjvXrnHZ+mT3e0fbujf/4zxS1VGbhBNrAd3xFAIHkEfCoxAftzblb3GbrNZHLHfz57xd6z9zENGFD+e9Dm72/VGjclxs5samc5tRNJecx/LIkjQOCeOH3JlcSRgB0leeklx1RRkUmB8apbN+mpp1LI3Q6xD23aTK9e/tEkaxsoXXnVVSVupZpBgzzuPQHc5BoiMLshEGcCRSY5ZKUeNUkhLUvz2dPi7Arqbu66dY4ZqCjRAw+kqHnLEvdTBXvTaUsdpJ4635R2NP+4sCSkAIF7QnYrFxWrArbO7kMP+dw0j8GDbflDf656//6Jm7Me6b7IyCgfXXr44RT3HoEXXvBPKPXccylKTbU16B0q1US6YzgfAhES2GnCWBu0dzZ1Y441t2Em2mInwPvDH0r0iztL9L+Wy00d9qUmXO9gqtFfpUPM5EksiS1A4J7Y/cvVxYjAF1846tjRo1dfddxc7Dvu8Jp6u+UBZow0M+GaYWdv/elP7ZfcMpN2Bli7jBxZolNO8eiMMzyyN/6SE+934f8IxLvAFhOyrzNTItqbMH+k4+L9cmps/z1/3KfuZ3ys7b3/KcckxJymm9XWZO+zJIcAgXty9DNXGQUBexOlLWf41FM+EyB6NXq0xwSMJtswiMkxotDchD9lq1blfyg9/niKXn/d0YIFjuwU4QsWpIp8+IR/C3CBCSxg89nX6lntMNMKnaFxJp+9XcJd7V7t1qsb31WLQV/op2e1NiH77WbSpEMT7jq5oLoFCNzr9uFVBEIS2LvXMbOWlqhdO//spSef7B/qJWgPiTPsO9mR+BEj7JfMLLP+cpNFRVJ2drGZxMTrTmRy5JHlgX7YG8ABEUAgbAI2n/0dPWKqs7fWUN1hyh02D9uxY+FA35nq6zZ/fZveV+fu/XVW90vNpEltYqFptCEKAiTWRgGdUyauwNtv+9yLKyiQbrstRfffn6JA0J64Vx3fV5ae7g/Q7Yj8n/+cYtJmpF/9qkS//GWJe2H2kxMWBBCITYGd2qIlmmJuxjxOA3RDQgXtu02o/q5ma5n+qpR96Vp2++9U9J/zCNpjnNoAdQAAQABJREFU860YsVYx4h4xak6UyAJ2Rs9HH3Vkyuqa8lxyZzc9LLEqjyVy95VdW6dOHl1/vf3yujO32hc2bbIVf0p0zjle9enDKHwZFg8QiLLAZ2ac/QO9YCqUj3ID9yg3J2yn/1qfupMmfWsC9+4aYurPX6HJ96eqg0ljP+UUxlvDBh2nByJwj9OOo9mxIzB3rk9Llvh0zTVenX46v1Rjp2ca15JAnXhbqvOEEzyaNcsnO0nW5Zd7dd559HPjdNkbgdAFfCo2SSPPmASSTRps8tkPVEboB4uhPbfrIzdgL1KBmTTpx+YThOtNNfZUUzrYp82bfe5ESzHUXJoSJQEC9yjBc9r4FrDlBNetk+wESUceKXPjKT9K8d2jtbfeVpw57zz7ZUffHb37rj915r33fO6MtllZjMLXrscrCIRXwAa17+gfbrpIIuSzm89p3dz1DXrFPPKZG05/oiPcSZP8gwN2sODbb6Vp01KSegbt8L6L4vtoRBvx3X+0PgoCNmCbNs2nq6+2v1jtzHWMvkahG6Jyym7dPGayLH+gfuihHv3mNyXuZE8jRnh17rke85ggPiodw0mTQuAbfebWZ++qQe6soPF80fZTg8+1yp3lNM3cVHuczq2xfGWbNh5deim/V+K5r8PddgL3cItyvIQW+N3vSrRxo2NuPPVy02lC93T9F9e5s0ePP56q9993tHChz0zsJJMH79HOnY4OPph/aOsXZAsEghf4VG/pQy0y+exXxvWsoMXaZ/78eNsUrVzq1l63+esZ6lYjxKOP+uQz9Q5uuIHBoRqBknQlgXuSdjyX3TABWzLQVh/p0sWju+/2Mutmw/gSemub/37CCSkqKvKn0Dz+uE/btkkXXuhR//7U7U/ozufimlzAjkz/Vwtkq8cM1i9MPnt81i3/Qd9rs5abrPw3TKB+lE7VTWa20/a1+v373z6tXOnTgw+m1LoNLySnAH/GJWe/c9VBCnz7raNJk0q0fbt/h6uuImgPki7pNktL84+yjx3r1bBhHs2bZ29kLTH5qZSTTLo3AxccFoG9+lava7r2a2/cBu02Jz9XC/WSfmdC953udfTTtXUG7evWOXriCZ9+//sUZtgOyzspsQ7CiHti9SdXE0aBFSt87qyaw4d7dcwxpD6EkTahD2VvZv3xj+2X3LSqH37wX+5jj/ncPHg7KRcLAgjULWBLIq7Uo2Zs+gxTYeXMujeOwVf36GuTv75E/9MadVJfcwUT1MKE6/Ut9pO7rVsdU8UqRRkZ/K6ozysZXydwT8Ze55rrFHBMMfavv5Zb/u8Pf0ghaK9TixfrEujevfwf3gMOkKkPX2LqMHt05ZVe2ZrxLAggUF1gs1ZovRabfPardJi5DTWelm+V595wut1cQVcNNDViJpl5XFsFfQn2k7uzz+Z3Q9BgSbghgXsSdjqXXLvA+vWOGeWQWynk0Ucpv1W7FK80VGD0aK8uusijF15wNGWKTw89lKI9exzZGVtZEEBAKnHrsz9tEko+d1NKWsVRPruteGNLOu7SF+6kSb11WYNncZ0+vUT2E7o77iCvnZ+H2gUI3Gu34ZUkE3juOZ+bV/j00wTsSdb1EbvcFi08uuQSjy6+2J/3bu+duO++Yl12mVdDhnhk02xYEEhGgb3abWqtPGLGpg8xQfsvTdBrPqKKg+UrE67bgN3mr9uUnn66Timm9Q1dnn/ep7VrHf397wTtDbVLtu0b/u5KNiGuN+EFbGrM737n05dfSjNnErQnfIfHwAUGAvSuXT0aM8arp56yOa0+/epXKerVi+A9BrqIJkRQ4GtTb2WlHnNHqrtraATPHPqptpm5WzfoVTNlUrEbsHdQbzOrR2j1Pj76yDGlZf2fwjVvzs9/6L2SHHsSuCdHP3OVtQjYGVDtqGfbtjJBExVjamFidRMKnHyynRPAPyvrZ5/ZkXiP/vMfM4NiD4/s5CssCCSygC2R+JGpudJXV6udCYFjefGZZJ4v3EmTXjOfB7TUMRqmTPVsVJPtzajff+9o9uwUft4bJZk8OxO4J09fc6VVBF55xafjjvOYyXKkceP4eLIKD08jLFBxVtZ9+6RRo0rcCZ1sGs1BBxHAR7g7OF0TC9h89v/qXyZBZquG6HaTImN+EcfoUmIKUvonTVpi5jg9zIytX+rWYm9sc30+RwUF0vHHexQoJ9vYY7J/4guE9rlO4rtwhQksYFNj/v73Es2f79Nhh4mbAxO4r+P10gYO9GrOnBQVF8tUoCkxVY6oBR+vfUm7qwt8b27hfF1Tzfj1flPs8RcxG7Tb+vHr9bJe1G+Ub6ZO6q/rTZ2Yn4UlaLcj7WPGlOjVVx2C9upvEdbUIcCIex04vJSYAhMmmKxEExDZm4BSUxnJTMxejv+rOuQQj265JcWMvDvutOf2ih5+uMRUpvGaPzh538Z/DyfnFdgA+F3NNvnsQ92c9lhUKFKhaeUyU0n+LZMKk2X+uBjrjrSHq612pH3iRJ+OPdZjfr4ZPw2Xa7Ich8A9WXqa6yybkj4zUyYg8lLBg/dEXAikp5cH6bYqzY03+mvBX321V0ccUf5aXFwMjUxqgU/MOPvHpgLLKbrG5LN3jzmLPaYyzEYzadJWvaeOOkk/1l0mkz097O38y198Ovxw6bbbCNrDjpsEB/SYtAE+g43hjl6zZo369OkjuqlxnWTLbNkbgE4+2cMoe+Mo2TvKAnv3Onr+eUcrVzpmZt8UffedowMPJICPcrdw+joEbErMGj0lOzlRf90Qc6kxBdruTpr0pT7QkTrNzNY62EyadGAdV8RLySbQs2dPdezYUYsWLYr6pTPiHvUuoAFNLfD//p9Pdrp5e9c+qTFNrc3xm1rAjrpfeqlHI0f6x1y2bJFmzCjR6NEe9evHCF5T+3P8hgnYfHZbn72NualzsMlnT1Gzhh2gCbe2kyXZHPad2qJuJiHmBI00rUtrsjPaqlG5uY47M2qzZvyx3WTQCX5gfsuHq4MLN2v+vWPUy+ORp/Rr3AMvmUw5lmgKvPCCT08/7dODD6aYko/8ooxmX3Du8AoEasHbihQ2kP/HP3wmjaZY27bxIWp4pTlaqAL5+kRLdb86meSYU0y5x1gJ2neYhJjlelDv6B/mz4mjNVy/VQ8zeVJTBu3Ll/t0++0l7qe+BO2hvqPYzwow4h6O90H+Cp3fbpByzLFunLFEiy/spNen3qBRY4dr2ofzVDDzCnNjC0s0BOzoxsMPp5BKEA18zhkxAVuFxn699ZZPH3zgqH17jzZscNxa8BFrBCdCoILAJ+bmzo/1mqnPfk1YqrBUOHTID/OU685yul9FJlA/y81jD3XSpIY04r33fCatzae//CVFmZkMIDXEjm2rCxC4Vzdp4JpCzbnBH7RnTViimWOGuPtf8cdn9fXKgzV21ijd3L+nnrymcZM0NLBRSb15SYmjnBxHF17oNSMcXjETXVK/HZLq4k89tfxD1LfecvTnP5eYcpJenXFG+fqkAuFiIy5g89lX65+yeeO2PntT3NzZkIsyNZlMQsxq96ZYMy+2Cdh/ovamUkykli+/dPTee/4BpB/9iKA9Uu6JfB5+mzeyd4s2PKtsO9RulvHXDfA/cP+frovvnOA+mps9ReuKKrzEwyYTsLVx77rLzG9X4j8FQXuTUXPgGBe47jqvbr45xaSKObr22mLzM0EKTYx3Wdw3z1ZlWaa/utdh89mjGbTbCZ42a4WZk/Uefa6VJn/9YlOA8o6IBu0WwgbrN92U4n6P+w7mAmJCgMC9kd2w9pWF/iNkTdaZXSvf1JJ56giNcF+dq8Wr8ht5JnavT2D/fseU1/JPqjRyJG/t+rx4PfEF+vTxuKliN97o1f790p49jt55x5f4F84VRlxghxnTXmby2Turn8lnv8rks0fnA32bBvOxXtViTdJXJjHGpuoM0s9N+cmjI2qyfbuj//u/EjPazs9bROGT4GTR+clKGNhCrV9aOtzepW31e9Gbld89//Z/t0oDMxLmymPxQlas8Jd7tCONLAggUC4QqDZTXOzo0Ud9evJJR1df7VHfvvyslCvxKFSBjeYWVFv/vK+uNfns3UI9TKP226fvzK2wr5tJk97U4TrWBOu3mko2plh6FBYbtN92W4mys7066SR+xqLQBQl9SgL3xnRvsbk3vTRuV8E+88FclSW1pbqUrspZmqvCW3tzk2oVonA+7dLFoyFDyCEMpynHSiwBWw71H/9I1Ztv+jRrlk8ffiiTRkNgkVi9HLmrKdYPJnt8vgmZ8900lBY6KHInLz2TLTdp/2j4QqvUQX1MO+6Map343bsdkxZTrGeeSdFPfsLPVsTfEElwQgL3xnTy3m/1Uen+g4edWH1+tdT26mVzZWxwX1Ng34Bz//nPf662dUpKin7xi19UW59MKwoLHd13n08DBnh07rn8kkymvudaQxc47TSv7NfGjf689xdf9JnKS9KgQfwMha6aXHvu0TemPvss8+9eR52hcRFPjSk0iTC2ao2tFNNFp5oaMb82n3pHt36b/ffooIM8Jh0thTkVKvw42BuE7c3KdgIuOyNtLC+LFy82lbk+qNbEr7/+2p2AqdoLUVhB4B4m9DZt6xtp2NeoM22xs6xUWWzgnsxLQYGjsWNLNHiwl6A9md8IXHvIAt27+z+hOuEEj+69105SVux+vE8AHzJpUuxoQ+ZVelzHaJi6mqSUSC67tNXNYc/XJpOUc7pbg72ZWkSyCTWe66uv/DMa33BDck+EFgjS7eRWu01f2f7arW3ujcqHmndLrAfuNkCvKd7ab28SipGFwL0xHdGibXkqzJqPzS0xPavnuZceP6tX90aNBTz00EONaWnC7WtHNmwOoQ0wrrqKUcKE62AuKKICtrb03/+eolWrfHr8cUeHH+4oENRHtCGcLOYF7Ci3rdHeT9fJBmKRWmygvkGvmEkNt+soU2jyJI02t78eEKnT13keW/Jx3LgSU9EsuQbTKgbp/gDdBun/M0H6we4nMekmeam9bDZCB9NXzes0jJUXr7zySlNC98pqzVm+fHm1ddFaQeDeGPnUduWpMJ98o73mWJXqylTIge/SpV2U7rFvzAXG5r6O4+iHH2RydVMUmD0yNltKqxCIL4GTT/aamR0l+4exXe68s0Tnn+8xqWj8cRxfPRn+1hZrn5vPblNkbFnFSOWzf6kPTcD+ssmm32PqwpxpRmxPltck5sTKYksQ209+7QCS/eQqURcbpH+rLyuMolcN0jua8Ly3ucvhiLgJ0uO1rwjcG9VzzXTgYaUHaFPDNLTF5Tnwh2W2bdSZ2NkvYGtRr1zp6NBDPTrkkMT9JUl/IxBNgdat/T9bl1zi0cyZPj3xhKOf/cyrnj35mYtmv0Tr3N/pa72jR9xR1NN1W5Pns9sgcavWuCkxdmZTO8tpe1OJ3WP+i6XF53O0erWdJ8GrYcMS54/bqkG6TXux+emtzEj6QSY8t/c1EKRH751I4N4o+zQNvXayNGu8uQF1sT7aNUZ908sPWLQl170vVWaWtgsGdCp/gUchCdg67Xfc4dOJJ3p06qmx9Qs8pAtiJwRiXMCWsrNfy5f79NRTPhO4p2jXLkfp6fz8xXjXha1527Xe5LM/qeN0to7UaWE7bk0HspMmfa533ZtOW5oQsafONwUdj6lp06iv27zZcW/o7trVY1LL4vfnIRCkV8xJrx6k9zG90Z6R9Ki/6/wNIHBvZEek971UEzRe95kQ/cEcM9nDNT3KjhiYnClrwlQNy4S6DCaEBzY95p57fGakXab+dOKMbIRAwS4IRFzA3ksyqPQexG3bZPJ5izV6tNctv0q6WsS7I2In3GAmMtqsNzRAN+iQsju6wn96m4bzqd4yufNL3RFdO4FTU56vsVewZo3996hE//pXiuJpdu7ag/RD3Dx0O5rewdw9QJDe2HdI0+7vMQER82A30rhowzPqe8xIU5QqSzOWP68xAzsp7905at8v2xx5hFbuXFhpJL4hp1uzZo369OmjZO+mF17wmdq4Uu/e5oNTb/yObjSk79kWgVgVsOkBTz7pU36+oz/8IUWdO/MzGat9FUq7bCD9nuaZ+7Z2uzehtlDTpHruM3nr9g+DzVrhzmxqU2LaKjOUJkdsH/vp09SpPlOFKUXHHx+77/uKQXpgNN0/kn5oWZBuU14I0oN76/Ts2dMtB7lo0aLgdmjCrQjcw4RbuPkl3X7hcM3KLT9g1ujJmv3XX6h3Ruij7QTu5Z48QgCB2BL44APHTZ0ZONDrTu1ub86zkzyxxK+AzWe39dntiPeJGmkyzEP/96s2BfsHgZ1t1abF2KojR+vHOtDUqImH5cori92gPZb+WPWpxNRJ/9ItvVhTkO4P0DuYIN3eOBoblXjioa8rtjGWAvfw/0RWvNIkety66zDNXLtff8rfob2m3GezFgcrI71SjZkk0gjfpa5Y4dOyZY5++UuvWrUiIAifLEdCoPEC/hFH/8/lxo3S5MkluuIKO6+CR82a8fPaeOHIHmG7qeCyyoy0H6dzTD77qWE/uZ1h1ZaT3Kb31Vn9zfj6r0wlNlPZIQ4Wmx5jP/GdNi0lqoURag7Sv3T/8PHfONrBrbxDkB4Hb6oQm0jgHiJczbulKj0j03wMxRIOgTfe8Omhh3z6299SCNrDAcoxEGhCARuwn3yyx1Sg8WnuXJ+b/8voexOCh/nQ603JxU/1ZpPks9sJeD42Ndh3mHF2O2HTMP3GjPu2DPMVNM3hiosd8162lczs8SNbzaw8SP+ibDTdzkBqP50gSG+a/o6HoxK4x0MvJWEb1651NH26zSVM0WGHMXKXhG8BLjkOBY46ys7AmqJPP3VUUiLt2+fohRcctxZ8Who/x7HYpTaf3VaNKTLJFkN1pxkBbx22Zn5t/hSwkyZ9awL37mbSpD66Iq4qk+zZ45i5DHxmhF26/PKmLYpgg3Sbgx6YbdSmvASC9ECqSyedYu4BsNVdSHcJ25s0Dg9E4B6HnZboTbYTWtivOXNS1KYN/9gnen9zfYkncOSR/p/bAw5w9Mknji67zKeRI72ydeFJoYmd/rapK29ppjLMXKR9lR22iY226yM3YLd/DNj89QG6vkly5Zta8sEHferf3+NWUArnuWoO0m26S4ZbI92OphOkh1M8sY5F4J5Y/ZkQV2NH6mwuIf/AJ0R3chFJLODxeDRxYoq2bvVXoZk61Y5gpsjOycDPd3TfGHZG0vc0V8frPHMbav9GN8aR4+au2xF2W9Gkh35iboW0kyY17Uh1oxtewwFycx1lZXnMJ0VeHX104waP/EH6NjfVJTCabm8krRqk25z0FDWroTWsQqCyAIF7ZQ+eRVHAzkI3YYJPHTpIt9wSO1NaR5GEUyOQEAIdOnh0993+yZvsBS1aZIK8bf5R+HbtGhcYJQRQhC9ivV5y66afqjFmLszOjTq7z500aZU7y6lNszlO5+pH5v/xuNiyy3am4L17zbSJWSkNDtqthU132WXmfa0pSE93R9L7utVdCNLj8R0SG20mcI+NfqAVRuDvf/eZevXSzTfH3wgNHYgAAvULBGZcHTbMo8cfd3T99SXq29ej226jalT9eo3fwuaz/0dP6Ad91+h8dnusz0zhSFvW0dZet/nrGerW+EZG6Qg2PfO3vzWhd7H0+9/X/29QxSA9EKhXHEknSI9SRybBaQnck6CT4+ESX3zRp5UrHc2YkcIES/HQYbQRgUYI2BtVx4xJ0VVX+W9eXbfOUb9+Hn38sdPgUc5GNCOpdi3UVybMfsSd6Kifrg05n/0HfW8mTFquTWbiJJsbf6pucifxiXfMefMcdeki3XCDt9q/QcEE6V3MVFVt3XQXwqp4fy/Eevt5h8V6DyVB+2y+60kneTRsGEF7EnQ3l4hAmUCLFh73htXAioULfW7wfumlXg0dymROAZfGfs/TOq3WfPU0M3l3NgFmKIu90dSOrm/RO6auSS8N1i/cPO1QjhUr+5SUOHrlFUfDh3t11lkek6bpNdn5xSbVxZ/uUnEkvbX5kydQgpEgPVZ6MDnbQeCenP0eM1dtg/YNG+SOdHi95LrGTMfQEASiIDB+fIpWr3b09NM+zZrl04IF/DHf2G74SIvdYPs0/Z9bsaShx9tjZlL9WEv0P60xlU766kxNUAsTwsb7sm2bo9/dU6wTBuw2+f4btavDF+Y6t6rQ1EknSI/33k3s9hO4J3b/xvTV/fCDY/LZS9w793v2rD+nMKYvhsYhgEBYBPr08ahPnxRt2WJueDGLraU9e7ZPF17oVWYmf9wHi7zfVGb/jx7Xfu01+ex3qHkD67PbfG1bIeYr8/8jdZqpETPJHKNVsKePue1KzEh6QelI+sr3v9WDvzlSp1+3Qt3P+8aMsHd0R9NtdR3SXWKu62hQFQEC9yogPI2cwP33+9Stm8dMj07QHjl1zoRAfAh07uwP0luZWLFVK4/7R/5xx3l07bVede1KAF9XL9p8dluf/XAdY5JaLmpQScZvzC2nNmC3EwAdZRJieuuyuJo0ybpUDNLtddgva5K6p70yW/1Im1f20Yy/tdRxHbNNCUbCoLreS7wWewK8Y2OvT5KiRc8/79PmzY6pJEPZx6TocC4SgUYIZGd7zSQ4Hjcf+dlnfW4t+O3bHbVrp2o3EjbiNAmxa55yTT77P5WlC9xJfIK9KDuybgP277XTTJp0psmEvy4uglobpNuZWQPlFwNBemsdZlKDOpSOpA/Qiv+XqW3/8+qnN6XoxBsd3jfBvjHYLuYECNxjrkuSo0HnneeV/WJBAAEEghGwEzadc4798m/91Vd2vocSnX22VyNGeMy09IzCf6hF+lzvmsSW4PPZt+l9E7C/6t6UaQP2DmaMPVYnTao7SO/oBupdzDytbc3ts4GRdPsH3j1/8plJv8rLPHI/VTA/cWwTqwIE7rHaMwnaruJiR//5j7/kG//QJmgnc1kIVBGwM2mGOxjs1cujadNS9NxzPl1zjU/jx3t12mnJORhg89jfNfnsJaa2+lDdaXLRD6zSA5Wf2tk8v5CdNOk1HaCWJqFmmKnE3rPyRlF+VjlIt+ku9sbRr0ymvh1JrzlIr6nJ48eXmD/svLrgAo/sTL4sCMS7AIF7vPdgHLXfzkp3111mKuweHg0YwC/QOOo6mopAowTyTdXvNXqqLOAKlNVrZuqTNGY54giPbr01RTea1IcvvvAfae5cnxl9l4YM8ah588T/PVNgqqC8rVlmttLjTXrM+XX+gVRiblX1T5q0xA2Ae+tStxZ7Y/ogHPv6g/T/ucF5IOWlcpDeyb1Bto358yIwkl7Xef/7X/+NzSee6NFf/pKiQw9N/PdBXR68llgCBO6J1Z8xfTWzZzvuzKjXXssv0ZjuKBqHQJgF2qm7SWC4sSwws3XFd5sCg2lqU5aHbPOR7UhqKMG8ndCpe3d/owcN8uiRR3x6+GGfzjzTTvTkTdgAfpvJZ1/j5rNfaPLZT6611+yI/KbSSZMOVVdTO+V617rWHZrwhZqD9B2lI+n2PdCwIL1iU7/80nH73d4/9eCD/vunCNorCvE4EQQI3BOhF+PgGt57z6fly3164AHqMsdBd9FEBMIu0MbUOLFfgQDT/BlvUh92lN5U+MX/b+9c4KOqzrX/TEggAQKGS9QA4RLUoBIkqEERNAEt1O8Q20q1gBa0gqU9KtXKoZ/ltNRKaauAx6pgNbSAqGiP0U+hysWC2lgKlqBcFDRAuSVAJCEmkEn29669szP3ZCaZ2555tr9hZtZee13+77jzrLXf9S7swjr9c7JIOGNG3nCHCFTMZ2ba8KtfdcCJExreekvDvn3AZZdBXPQaJcykDR06WH/iQLFT/uwHJeDjdZilD368GaxOCO/DJolT/oHMVefgBtyvC2RveUOR5hDphquLmk1XNk+V34ExUGu7SHdv76FDmr7m4fbbEzBvXgLUmggeJBCLBGzivmA8U4rF3sVAn7Zv3y5/bEbITDXNFAPmZBdIgARaIaBcJJQ/sxHG75CbmDdm5ZWwV77ZgRyLFzdgyxYN+flql+YEPRRtINdHS17Dn325eKnX65FfvMVWr5HIMJ/JpkmH8E95hnGlPO8YJ7TSQtqFlkW6OQjrJwtHM5AQpBCMjY0aNmzQ5MlKAr78UsN5si9UWhoFe0gNHaeFDx06FJmZmTIZ8FbECVC4R9wELTcgFoS7munq3dsmu6PyhtqytXmWBEjAGwFnMW/6QKsNhYxZWxXyzxCGrYn548c1rFunXo14/vkO6NzZhq++UoLPGvcmtSmS4c8+1Ks/u/J33ysRYo7iE90nXMVhb22hqjferaW5i3Q1yDqDCnmicmHT0xI1wAquSHdukxLsb7+tYdWqRvTvb8NvfsOwws58+Dn4BCjcg880Zku0unBfvrwRn3yi4fe/5401Zn+k7BgJRICAKeZNIa/eO8rOnsq1xtnVxpeYV+JPhQX89rftuPRSG8aOtWHUKBs6doxOEa/CNm7Hy/qGSmoW3flQwnk3/irz7GUYLA4xWRgtawWSnbO0+bMS6YqtyTncIt254erJs4oM89BDDeLyBHz/+wm67Zzz8DMJhIJANAl3+riHwsIsUyewY4eGN99sxB//SNHOnwQJkEBwCaiwgOrlLGIdPvOHJDb5X3Wx6SrmDVcbJebNWN4vvdRB1t8YM/HPPNOIV15JhApbqyIHRoM/vOHP/qZI5+0ix38sg5I+zSDLxSFmr2yapPp9ibjD5GGaRF1Jaj4f6AflfqMWDXsT6WoGvQcG6IOCYLq7+NPGujrDPmr9Qm6uit+fAHNnXX+uZx4SiCUCFO6xZM0o6kt1tSaPLxvwf/9vB/ocRpFd2BQSiGUCqUgXMZ8uEnNEczddxfw7zWLeDEl5Xsd+GD0uE+PGdYG6b6nj7FlgypQG3R9+zJgEDBsWmR1az8k+ph9huSxFbUQBfipuL1309qndUdUup/WoQ7ZsmpQpEWUCjZMfrSJd72DTPzU1GlasaMTatZoIdhtuusl4GkLR7kyJn+ONAIV7vFk8TP1NTbVh9Wr+vMKEm9WQAAn4IOBNzCt/bHMB7GeyCZFy/0hSyzdTlb+8zMp3ycT/LMvEh5tS9NCS9fWavCdCzfw2NABduoTeneY0jog/+3Myvz5MtkaaqPfugL5p0jsyq95RBPs35FyOj167JttxDqdxWO+zMZvu8ElXM+k9MVBm0sc0LRyN/BNStdvpBRfY8MYbxkDquec6ID099MxdqfEbCUQnASqr6LSLpVt15IiGY8egz5BYuiNsPAmQQEwS6CrbDqlXP4jfRdNxBid0Aa+ErYrIUpl+AKm3dcYdt/VDYtUAWfYpLiq1mbh7aicMGWL4w6uN5M4/P/iC8t/4WP57BVdgkh7GUYVzVG3qIhL7CtwqzxQuMZvt8e5dpJ/QQ3Eq//9oE+lmB6qqNGzcaLzU7Pq0aTZ897sqfGd87oZrcuE7CbgToHB3J8Lv7SKgNr548MEGPPNM5Gdt2tURXkwCJBBXBLqil4j5Xt7FfLcmMZ92EDP+0gVH/3kF/l5yEf7fpt54+skUnK3qgr17NVxxha1d8cOVS8wneFO8zD8Wf/YfSWDM3ViL/9Z9y5X/uvIxdz4cIt0RJ10NQFS8/GgW6WYfzp3T9MXAu3dr+oJTtTh48mQbRo40xHo0rDEw28p3EogWAgwHGS2W8NEOK0WVUTfhH/ygQV4JUH6hPEiABKxDQLlmNEoEERVj2/GSDdPku9pmXuY+9Xfr9Cg0LVXC2Fy8+ZW42CiXG3tNV6z+2UQc/zwdw4fbkH9tKm652fBH97cVhj/7C2KDBhHoA/GlzLJfgMt0H3YVZlGJdOeFo6oNziJdCXXl9qLyJoilovX4+msNH32k4f33NZw7B32zrJMnNaSmImoj+kQrS7YrfAQYVSZ8rFlTGAksXdqI7GwbRXsYmbMqEggWgc+wESpOuBLvxquh+V0tZBTvbvlPCXtDzHu+K8FvnlNiv4OIfSPNWfgbA4Akp7zqGvM6890cPDh/N/OpkpP0gYQxwDDyONcRLCbeyjFn5vtiePPpmi4ncPWSQzhSsx1bP67Fpn128ULfhYRTWXj9iWtw5fBOGDW8J4YM6tp8jfOHr8T//AM8I/71ffWBgIqWMxJ3iT1UXHZx25EBQo0MGFQ0F+WD30s80i+SsI/RLtLNPlZWanqQgrIyDbNmNehPJsaMseGGGww3o549g+9uZNbNdxKINQKccY9yi1plxl3FRFaRGFJSeAOO8p8Um0cC7SKgZoQdwt787Cr2lcBXQt/Mp76b15kDAPOc93dHfuO6+qbrVZlmuY48RvlGncbgwhxEuAt/cyBhCH9fgwv3Jw7GwMIsS727DzycBxpGPgiB09oxvPteLf71r0bsLk1BfU0yFr7yD5ynZWK/uNrkXZaOmm47sRlPyUDEpoe2PCvz6F+LVDdFujGTninfL5Qc1niSqRbzfvihhl27NHz8sYZevWx47LEOetSejh2BTp34d6Jd/xPy4rATiKYZdwr3sJs/sAqtINzVphhffAGJAhCeaAuBEWRuEiCBeCPgGAwYQt98YuBIt+tPD8zBhXqW4HzO9bP7OfO7Y+Bg5De/G08mzLLVQEPVr96raxqQ0KUStVoVXp4zCf/edQFS0qqRnnUcUx4pQefEzqg7kY7evdRQwTG4UAMJ01XJ+xMLbwMVM815UGGkOT+dUOW5u0OZT0D8+d0o1xd1/1ciXUXc+d73ErBzp4aXX27UN0dSfv9qgyseJGBlAtEk3Lk4NQy/pLoj+3EqtT8yUmMT9+OPN+qblTz4YPT6VYbBzKyCBEggSgiYM+aRbI4dZ8UnXYVgVH7wB3W/+IYupyTo5AA02M7htt++pPuw9z/4I5Tuq8RF2nky134QCx7Jxcl/n4dBF59FZt9E3DGtEb16JOLYkUR0SzuLjilqgGC+XAcRyg/e85wxcHAeSBiDCcdTEfOJheNphlGuwdEQ9g3nOqLmVFcc398TnTomIPuqCnyyOROrf3Ml+mZVo99F1Rh+fbnEna9GwtBEfEteagBQL4OOnU0uU44nFy09sfAcXHgOXIw8Kp0HCcQbAf7qg2jxyp0v4r+e+hs6d+7sVOoJLF68Eqv21WJyDAr3rVsb8c9/ali+nKLdyej8SAIkEEcEDJH+bxHoh5pFeg1O6e4uasFoOi4WR5fLsQ/viRvMKZHXNbJl0vcl5T9gk91AL8s8X2hl68RueBY4WnUKpftlX9RDp3Gw4VMckGCQb74yCjv/ejlSO3dEeo+OmHF3Mq4fmQp1D963D+je3Xip+OdZWTaomfCjR9WCT+WaAn1ypXdvY+ZbxUlXh9od9vRpyC6kxsLQDz5oxMGDQE0NUFGhYdxNjRg+ohHPv9CINS/b0LNXI/pmNuCbhXUSSFM2f7qyEZPfkvUPts4yYOgor/O8Dhwam544qIGBMbiobsrnGHioM+bgQg011GczzXxi4e1JiPPgwnxSoJ4oOIt9x4DBfHLR0sDBGKi4lusYKKiy3J9YeNZn5jfdpnTc/IcEgkKArjJBwagKqcbyW7pherGXAguLUPv6NCR7OdVaUjS7yqhd7aZNa8Ajj3SQnQWNPwit9YfnSYAESMDKBHyJ9PMkznvzbqwi1pVPujoOYbssMH1X90/vj6v1HU9zcZvkviIgDGogoCLJHDx9FAcqTsLe/Quc17sOX+3Kwf4PslH/VS80nklDzpBk3H57gh6e8ne/a9Ajt9jt0BeH/uEPHaDWI6ldYdXRQeZb1GZSjz2WALVAdPXqRvFDB7p1U/mBq66yoUcPm5RhhG0MqMFhymyKeYfIN55GuAp/043J+d39s/ndHEw43k1XK7MOVafz4MLzKYdrWabQNwcDyg3KHGSYLlDOgwsjnyn+jUGImd/3uyO/Glq4Dlwc51xdrVQ+Di78+alGk6sMhbs/FvMjT92eF5EyZAoKH1iIgoEOiV5XV4eciT/E+GyJddWGI5qF++HDmn7jVzM8PEiABEgg1gg4RLoR9lG5vKgZcxX9xV2kOy8cVQLvgDiN7JVdWTtLzktwo8Rk3yMxez7BtbhHjwYTDFZqEaua5TfCUxouOaodapZfLWo12piJFBlG8IgcAVPwO78rsW8OLszBh8NVyRT+5ru5ONv87hhUmIMG17LVEwvnwYX79aoc17KcBxfmEwRT1JsDDuO7EvqOgYdnHscgwTxnlp0oT2X6YUTkDNGOmqNJuNNVph2GdFxqxzuLpsjXuXhu0cOyH1/sH2rWprd0tGNHivbYtzZ7SAKxT0CJdIcINlxeTJFuurtcgnH65kbOIt2ZjCpD7XL6uYTWVKL5atwpmzqlowTPy7xmR4zFT0XypDhf0q7PnUWeq1cf5DSXo8S8GWf+C7wv3w7qs/2qD+ZgQ4n6FPnGIzwElHCFvBIhPktRergKf1PUm4MLU/irAYM5aHDkMQcPjnNGHru4U6k084mFOGdZVrhHk9ko3INhjSPr8fNlqqAFuGcmUHDNSOTnj8bQ/vKsMQaP6moN06c34NFHO0jc9hjsILtEAiQQ0wS8i/RKkbJ99Nlq5ZPemkh3BnRWfNb342/y2iIy/RJch1m6f7saCGzAQvRHHi7FN0W2hH6iwxTzGT7F/Ici5l/SW3KeCHhjdt6YoaeYd7ZqfH22wuAiviziu7cU7r7Z+HnGjo1PzUFpU+7iZQtQrIt4IP+BIqz83TRkxBjlp59uREGBTd9syU9IzEYCJEACESHgKtINlxc1K91Wke7ciVqZ21YbVym3mD6yIVM+HpQZ9l56lgP4h/xd+F9ZxPk9lxlx5+vD9dmbmFdtNyLeHJJdWj8UT/yXxL1CfNtlTtTchZUz8+GyEOshAf8JxJik9L/jwctpR5fc2Viy8BA+/XATlhVvai560+Lp6LOjHIc3Piz73cXG8a9/adi+XcOf/sQoMrFhUfaCBGKHQGsi/XyJ3KL8zbtJIEZf7i7+0Dgju5iqBaeH8S8MkD1Ob8TPmv3INXEO2CGC/bjsnHo9HpC6VMSY6DvU7Lp6Oc/MG2Le8Jn3JuZNVxs1EOBBAiQQGQJcnBpk7vbKA9hcvBRjpy9oLnlqUSlWTBva/D2QD+bi1FmzZnlc1kFCAjz55JMe6aFKUH7ta9dqGD7choyM0D/yDVU/WC4JkID1CXgT6Up4qh1HzVljJTTbK9KdSam47HvxDiRQI7IwBoNFmncUL3PzOCvRxUrwgu7LfLWEewymP7tZR7jfncW8Ge5SDU4ci18N3/ku6BHuprE+Egg6gRUrVqCkpMSj3Jdffhl5eXl46623PM6FO4Ez7kEmnpjWHwXTHkPViMtxXc4U3YVm5aK1eEKEe3sWrQ4YMMCjpUq4h/NISLDh5psp2MPJnHWRAAlAooBL2EOoOOnGRkZKQDqLdDWTno2bkCqz2+2ZSffF+oQsOd0jgv20CPeLUSBxMSZ7LDRUbfs7/qj7s1+Gm30VZbl0x8y8Y/KpVkiYC2DLZKjyFdbIAkS7k4uNEvOZoJi3nLnjvsG9evWSfQ0GeHBISkrySItUAmfcWyVvx54t61FW45bxHNDnmnEY2tv32Gf/q7MxeNJiubAQJVWvI68NESHNGXdNMzbMcGtF2L4eP67JRlKNmDs3QWL8UryHDTwrIoE4I+BLpDvHSVezvaES6c64j4m7ixLsdajSF6uqOOwqNJ77oXzcS/G6CPrvubieuOeL5e918rTB8Jk3B1cHKeZj2eBx1jeGg7SUwavxxpgJmOOlzfNLTolw9+3rl/WNO0SyL0axl2utlvTrXzdi7FgbRbvVDMf2kkAUE3AW6eZsuprNNUV6qGfSvaHRZImm8l1Xgl25hGTjGxK1/QqvM/mGP/treoz2G8SfXQ0m4vVIlt5fiMv0l8nAWcyrxbr/wmsi5s85zcwbsea7oKd5Cd9JgARaIeA5ddDKBfF3Og23lRSj7/4zrl2XGfesfq3E45VHK8Yk+6Xo1UpW18Kj69vbb0skVtlob+JEzrRHl2XYGhKwDgFDpKv46EaMdOVq4RDpmbJc9FIMEZGcqi8cDf+9RsWiPoCt+qJTJUIvw/9xEaHupJUoVfHZlR97gR6f3bHxnnveeP3ekphX9le8d+AvQv6sy7oEtUahS1N0nnhlx36TgC8CFO6+yDil98+biP55Tgl+fqwr24aVKu/Uy9HHoqRrajR88IGGRx5JgM0W/j+mfqJmNhIggSgi4C7S1Wy6cjcxdxyNtEh3RqVEo4qgosI6qoWtyn+9tyw7bek4JZJTifYBuEaGGxNayspzbgS8iXm1qNdwszkkv5R/6mE0M3EVLsd/uF3NryRAAhaVk9FjOHvFdjxftB6dBl2Dm28ZDYfLewWWzZquN7T40e/CqnMxXbrY8Otfh3cRbPRYly0hARJojYAS6aabizmb7inSx8sctlo4Gj2D/3P4WjZM2ox9snFSb1yEUbhXd9Fprb9qMeZOcYC8ElNkRv7y1rLzvB8EOunPWS6TZy2XNedWAyoeJEACngQo3D2ZBJRSuWc97p1jesBPxZqSX+DaC07g+ekjMU9Cui/ZUIaJ/a2J+csvNRQXN+K++xKgIsrwIAESiG8C9eLcosS5GVHEeSZdLRhVwmsIok+kO1tNDSrU7HqZxIDpg2GyadJPZNOk1mN+qa3bd4iPtgoFeQNmi9RMdy6Wn4NMIBGdglwiiyOB2CBgTUUZRexTM7JlASqaFqCuxKSRK/XW5c9Ygm0rZyA3w5pz7Q0NGn7xiwbcey9FexT93NgUEggbAVeRbuw4as6kW0WkO8Oq0TdN2iBBJbfrIRtvxFx9AyLnPL4+G/7sf5SY7V0xVvzZKSp9kWI6CZBAqAlQuLeTcHLWRLyuySxUxSlUfV0vpSWhW490pKVaG+1rr2m48EIbrrkmoZ2EeDkJkIAVCCi/7Qp83jyb7izSL8RQmUn/pj7LHE3uLv5wrcJRPULMcfl3EK6T5a/zZC63iz+X6nlO6XPzz8u1o/SnCX5fyIwkQAIkEAIC1laXIQDStiKTkdZb7dYXG0dlpYZVqxrx9NP0bY8Ni7IXJNA6gS/xgcwkJ4vftnVFunMvleBWIR3VgOQicYjJxe0Bz5R/Ke40n+ANWSY51cX/2rkefiYBEiCBcBKgcA8nbYvUpTYIW726Azp3pl+7RUzGZpJAuwmoaCqxcKiZdSXYvxbJfgnGIQ93oYOXTZNa6qsKDalijqsnEP76wLdUHs+RAAmQQLAIULgHi2SMlKN821XM9q5dKdpjxKTsBgnEBQFj06R3Zcskuwj2GyUSeK7XTZNag6FchP6OP4o7TSr92VuDxfMkQAJhJ0DhHnbk0Vuhpmn44Q8bcPvtCSgooHCPXkuxZSRAAoqAivRySOJ+78G7snC0s+6DniGuPm09TkpE9xK8oPvCq82geJAACZBAtBGgcI82i0SwPW+9pSE52SainQtSI2gGVk0CJNAKgQbUN22atEFfMJuL2/RY7K1c1uLpL8TH/1O81eTPfmmLeXmSBEiABCJFgMI9UuSjrN4zZzQ8/3wjHn+cC1KjzDRsDgmQQBMBFaJyX9OmSb2QJfuW/kCCAmS2i49yrfkYr+IkvmjyZ+/VrvJ4MQmQAAmEkgCFeyjpWqjs3bs1zJ2bgEGD6CJjIbOxqSQQFwRUHPV92CTS+gNkIEc2QLpfZtrPb3ffa3Fa92dPkT1TC/BgwFFn2t0AFkACJEACARKgcA8QWKxmv+oqusfEqm3ZLxKwKoEaiQzzGTbofuyZuFJixPyXeLIHJ/DuCRkGlOB5CRV5g76Y1aqM2G4SIIH4IkDhHl/29trbF15oxOWXA1dfTfHuFRATSYAEwkqgCsewVxacHpUo6samST+XKC9dg9aGL/C++LO/jatxp8zbZwetXBZEAiRAAqEmQOEeasJRXv7WrY34298aMW0afduj3FRsHgnEPIFKHMRu/FXm2cswWGbCr8Ak2Ys6OWj9btDjs6/Ryy/AT2T/VPqzBw0uCyIBEggLAQr3sGCOzkpU+MdnnmnEzJkJSEigb3t0WomtIoHYJ1AuDjF7ZdOkapQ3bZo0TTZNkp3ggnjU4ivdn70zesgiVOXP3jGIpbMoEiABEggPAQr38HCOylo2bNCQnm7DtdfSRSYqDcRGkUCMEziCUj0Gu4oWky2bJmVKMEYbgn8/OoH9+AhF+iy+2k2VBwmQAAlYlQCFu1UtF4R2jxuXgHH8GxYEkiyCBEjAXwKabJt0ENv0GfYOMuudjZvQB8P8vTzgfPslfOQurBN/9u+LP/slAV/PC0iABEggmghQuEeTNcLYlooKDXV1QL9+dJEJI3ZWRQJxS0D5l5eJs4qKEtMFPcV//Vakh1BIq/o+xsviIHNIQj0+JHX2iFv27DgJkEDsEKBwjx1b+t2Tr77S8IMfNGDpUi5I9RsaM5IACbSJgB1nxVFlMz7HeyKdByAP0/T3NhXm50Vfo1L3Z+8q+6neIItQ6c/uJzhmIwESiHoCFO5Rb6LgN7CoqBHjx9twwQWcbQ8+XZZIAiSgCJxFjWya9J6I9i24AJdiDH6Mbrgw5HAqpFblz34xxsqrIOT1sQISIAESCCcBCvdw0o6Cug4d0iT8o4aVKznbHgXmYBNIIOYIqNlu5Q5zEFvRF7kin3+qu8aEo6P78DdZ7PpX3Z89lG444egL6yABEiABbwQo3L1RieG0o0c1PP54B3Ttytn2GDYzu0YCYSdQjeOy4HQ9VKSYgRglS04fkQjsqWFph/Jn346XcBqHJdQj/dnDAp2VkAAJRIQAhXtEsEeuUu6OGjn2rJkEYpFApSz+VLucKheVwbgeE/ALicCeErauqhn+D/GcuOGcL6L9J0GP/x62jrAiEiABEvCDAIW7H5BiJcuiRQ24/voE5OZytj1WbMp+kECkCCihvkffNOkYLhJf8isxNeyLQCtkyetHWK5v2nSRyHYeJEACJBDrBCjcY93CTf374ING7NqlYfZsivY4MTm7SQIhIXAUn+p+5Odk8eklTZsmJcg8d7iPz7FJd81RUWp6y9CBBwmQAAnEAwEK9ziwsqZpeO65RsyaFfwdCeMAH7tIAnFPQG2adEi8yJVLjNrZ1Ng06Qr5HP6JgAbUy/ZNq1GFY3p89s5Ii3v7EAAJkED8EKBwjwNbv/eehr59baB/exwYm10kgSASUIs+D4gzilp02hnnYShukdCOQ4JYQ2BF1eCUxGdX/uwXNvmz809YYASZmwRIwOoEeNezugX9aH9+fgLy6f7pBylmIQESUATUpklf4APxIN8ocr2fhFe8U/Y6HRhROOUyfPgH/iSz/d/QF8FGtDGsnARIgAQiRIDCPULgw1XtyZMazpwB+vcP/yPtcPWR9ZAACQSHgNo0ab/EQlebJqk46NdhFrojIziFt6OUz2QAoWLD5+Eu8Wcf3I6SeCkJkAAJWJsAhbu17ddi62trNdxzTwOeeCL8C8dabBhPkgAJRB0BJY7V5kV9MFzcUB5EV/SKeBvtOCee9atRjXL6s0fcGmwACZBANBCgcI8GK4SoDa+8oolfuw0DBnC2PUSIWSwJxAwBtdD0RvxMIrB3j4o+1eCk7s/eXfZfvQGzJW4N/1xFhWHYCBIggYgS4J0wovhDV/np0xr+8pdGLFvG2fbQUWbJJBA7BKIpDrrag3Wr+LMPwXhkYUzsQGZPSIAESKCdBCjc2wkwWi8vKwPmz++A88/nbHu02ojtIgES8CSgItjsw3sYibvFWSfLMwNTSIAESCCOCVC4x6jxhw2jYI9R07JbJBCTBJQ/+zaskuWxJ3V/9hSJZ8ODBEiABEjAlQB35HHl4fVb9YHteHLmMNyxdLvX83pi9X68+KuZGGYTT9Gm1+wn18miqvAfL7/ciHffbQx/xayRBEiABNpAoAYnZB/Ux8WPvSOuxwPiZ0/R3gaMvIQESCAOCFC4t2Dk6iNKsBeg24ARuH9ZKarP+shcsQW3dBuMKfOWYeSzG3C4fB9Wzc3H4vsnoNvMF8Mq3o8c0bB6dSNGjeKMuw9rMZkESCCKCBzDboln84Q4xYzGlZjCRahRZBs2hQRIIPoIULj7sol9Dx7qMx3HsvIlNFpLRzWW3zMGxZIlZ+4GLBWhn9E7C5Mfew1L1IXLpmDW8p0tFRDUc6tWNeJb30pA584U7kEFy8JIgASCTmAv3tXdY67BDzBIosbzIAESIAESaJkAhbsvPonZWKrtwGMPz8Wdhb4yAXV7XsN0pdrlmHP3tcYH/d803CrXqmPl9N9iZ53+MaT/HD+u4f33Ndx6K0V7SEGzcBIggXYRUDuzluAFHEap+LP/VBahDmpXebyYBEiABOKFAIV7q5aubTHHjndeN87nLMSNWckueTNGFcLQ/CuxdmuFy7lQfFERZIqLE9GlC4V7KPiyTBIggfYTOCP+7BvFnz1JPNlvwP1REze+/T1jCSRAAiQQegIU7u1iXI3dG5um2wd2h6tsl4KTkppL//DjQ82fQ/GhsVHDiRMaNE0LRfEskwRIgATaTeAYdumLUAfLEtQR+B4SuKlSu5myABIggfgiQOHeHnvby/FZk25H1VnY3ctK7IyBTWnFG2Vxq/v5IH7/n/9pxP/+r6ZHtAlisSyKBEiABIJCYDf+Kv7sq3EtZohjzKiglMlCSIAESCDeCDCOe3ssXnta5o+MI3/8cKS5l5XYB8OUr4wS996EvXv+Fr7ffPPNHmcTExPFNaYYJ09q2LBBw4oVHId5QGICCZBARAkof/atWIE6VGGs+LMno1tE28PKSYAESMAXgUWLFmH9+vUepw8ePIjMzEyP9EgkULgHiXq37q3FHfYVS9K/BkybNs0jY0KCIdRV+MdvftOG7t3p2+4BiQkkQAIRI3AGFfgAS9EbFyEP0+gaEzFLsGISIAF/CFx33XXo27evR9ZPPvnEIy1SCXEp3O0Ve7D+72WQvT5cjy4DMG50tv9elyndHa4w2/fKjNJQTz/3phpyhl2MVNfaAvo2adIkr/m//lr5tQN33snZdq+AmEgCJBARAkfxKf6JlbgcE+U+eU1E2sBKSYAESCAQAldddRXUy/2YP3++e1LEvselcK/94g1MKJzjBfpCnNKyPV1evOTUkxLTHa4wn5+Eij/jskDVyQd+4MB0/wcEvurzkq7itf/nf3bwcoZJJEACJBAZAruxDl/IXPsozEQPDIhMI1grCZAACcQggbgU7qmXfgfFq/rijLtBu2ZLaLJAjiR0Pb8pv7htesC0O3zgz8/oHkjBfuU9e1bDa69psuGSDSkpdJPxCxozkQAJhIyA8mf/B/6Mc3J3HYuHZSKjPc8ZQ9ZMFkwCJEACliXgoTUt25NAGp6ahYmTswK5wkfeZIy9a6Hsjiqz98VrsatyJvKcVqjWlZXq61JlT1V869r+Pspoe/Kf/6xBucqkpNBNpu0UeSUJkEAwCFSjHB9iGdJxMUbiLvFn55PAYHBlGSRAAiTgTICKz5lGa587OeKym1nT8m6DsT9qMZ4q3mMm6+/m5kw5cxdhfEZwx0g1NRreeqsRU6fShC7Q+YUESCDsBI7iE7yHRbgE4zAc36VoD7sFWCEJkEC8EKDqa8XSdUe24vWmWO3F23ei0iN/f8zbvUbm1IGV02/D0i0H9BxHPlqOkferCwux7KcFHle1N0HFbL/2Wht69qSLTHtZ8noSIIG2E9iFtfgYr+A6/FC82Ue2vSBeSQIkQAIk0CoBCndfiOp2YqZNfMf7jG1yd5GMy6agh6QNm/miy2ZKydm34v19azEjpxT3jhmgb4LUZ+R05ExdiG3lr7q4z/iqLpB0tTvqiBE2PPAAzRcIN+YlARIIHoF6iaOlQj2WYy8KJD57GqIjxnHwesiSSIAESCD6CATXfyP6+tf2FiUPxVIRyEv9LCE1azyW7qjHbyrKUVsPJKX0QO80lxgzfpbUegV5+PsAABdzSURBVDabDB6GDGk9H3OQAAmQQCgIVOO47s9+PrIxDN+BTZxjeJAACZAACYSeAO+2QWWciLTeGcjIyAiZaG9s1HDffQ3Yv1+Ct/MgARIggTATOIJS8WdfLJL9JlyBSRTtYebP6kiABOKbAGfcLWb/jRs1JIrVsrLo224x07G5JGB5Ap/iLRzAR7o/O11jLG9OdoAESMCCBCjcLWa0F19sxKxZfFBiMbOxuSRgaQL1sr3cP/AnqDjtKj57J3S1dH/YeBIgARKwKgEKdwtZbvt2TY8ic+WVFO4WMhubSgKWJlCl+7MvxQW4TPzZv0XXGEtbk40nARKwOgEKdwtZMDfXhtxcbmpiIZOxqSRgaQKHxZ99O1ZLuNtvoz+usnRf2HgSIAESiAUCFO4WsWJdnYYjR4BBg+jbbhGTsZkkYFkCGjTswttN/uyzJNRjP8v2hQ0nARIggVgiQJ8Li1hz/vxGfPopI8lYxFxsJglYloDyZ1fx2U9gv/izz6Fot6wl2XASIIFYJEDhbgmr9sfevRrGj+dsuyXMxUaSgEUJVOEoNuB3SEU6xuDHsgi1i0V7wmaTAAmQQGwSoKuMJex6O269NQFJSRTuljAXG0kCFiSgdkD9CMv1DZUycaUFe8AmkwAJkEDsE6Bwt4SNy0W4U7RbwlRsJAlYlMBn2ITRMst+HvpYtAdsNgmQAAnEPgG6yljCxkWcbbeEndhIErAugetwL0W7dc3HlpMACcQJAQr3ODE0u0kCJEACJEACJEACJGBtAhTu1rYfW08CJEACJEACJEACJBAnBCjc48TQ7CYJkAAJkAAJkAAJkIC1CVC4W9t+bD0JkAAJkAAJkAAJkECcEKBwjxNDs5skQAIkQAIkQAIkQALWJkDhbm37sfUkQAIkQAIkQAIkQAJxQoDCPU4MzW6SAAmQAAmQAAmQAAlYmwCFu7Xtx9aTAAmQAAmQAAmQAAnECQEK9zgxNLtJAiRAAiRAAiRAAiRgbQIU7ta2H1tPAiRAAiRAAiRAAiQQJwQo3OPE0OwmCZAACZAACZAACZCAtQlQuFvbfmw9CZAACZAACZAACZBAnBCgcI8TQ7ObJEACJEACJEACJEAC1iZA4W5t+7H1JEACJEACJEACJEACcUKAwj1ODM1ukgAJkAAJkAAJkAAJWJsAhbu17cfWkwAJkAAJkAAJkAAJxAkBCvc4MTS7SQIkQAIkQAIkQAIkYG0CFO7Wth9bTwIkQAIkQAIkQAIkECcEKNzDYOi6I/txpNoehppYBQmQAAmQAAmQAAmQQKwSSIzVjgWzX9UHtqPosenYmluEFTNzfRZdufNF/NdTf0Pnzp2d8pzA4sUrsWpfLSanErcTGH4kARIgARIgARIgARIIgACVZAuwqo+IYP/lQ7h/2SY9V+GSFjKjGsU/n4JlxV7yFBbh21nJXk60nnTy5MnWMzFH0AmUlZXh9ttvR0lJSdDLZoG+CWzatAlLly7FSy+95DsTzwSdwNtvv41XX30VL7zwQtDLZoG+CSjm6jf/hz/8wXcmngk6gd///vd6mQ899FDQy2aBvgnMnz8fPXv2xI9+9CPfmXimVQIU7r4Q2ffgoT7T0XPhrcjHJvmv5aNuz5uYLqK98IGFKBjoEOl1dXXImfgdOFJaLsf9bGNjo3sSv4eBQH19PQ4dOhSGmliFM4Ha2locO3bMOYmfw0CgpqYGx48fD0NNrMKZwJkzZ1BRUeGcxM9hIFBZWRmGWliFO4FTp04hMZGy051LoN9J0BexxGws1XbIWTuWfzgPm7zNpDdfa8c7i6bIt7l4btHD6N2czg8kQAIkQAIkQAIkQAIkEBwCFO6tcqxtNQeOrMfPl6lsC3DPTKDgmpHIzx+Nof3TWr+WOUiABEiABEiABEiABEjADwKMKuMHpJaz2LHxqTkobcpUvGwB7p9eiJwBPVAwezmOMJhMy/h4lgRIgARIgARIgARIwC8CFO5+YWopkx1dcmdjycL5mFGY75Jx0+Lp6HPTb3HEJZVfSIAESIAESIAESIAESCBwAnSVCZyZ2xXJyLt1GvL01J/jD5UHsLl4KcZOX2Dk2zQHc5ZPwIppQ92u8+9rx44d9Yw2m83jApWWlJTkkc6E4BCw2+3o1KlTcApjKX4R0DQNakE2ufuFK2iZyD1oKAMqiNwDwhW0zGbQBzO6TNAKZkEtEjC5//KXv2wxXyRPNjQ0QL28HZmZmd6Sw55G4R5k5Ilp/VEw7TFUjbgc1+VM0V1oVi5aiydEuLdl0WpeXh7UzaWqqsprSwcNGuQ1nYkkQAIkQAIkQAIkQAL+EygvL4eK9uR+dOjQAbfccot7ckS+x6Vwt1fswfq/lwHGZLYDfJcBGDc6G8GAkjp0Mv6yZisGT1oMlH6IL6qB3qmOqvz9pDZzevDBB/3NznwkQAIkQAIkQAIkQAIxSiAYGtVyaGq/eAMTCud4afdCnNKyEaxYMFnfuAOFWIwWI0l6aQWTSIAESIAESIAESIAESMCdQFwK99RLv4PiVX3h8TCkazZS3Am157v4nxuT7JeiV1ALbk+jeC0JkAAJkAAJkAAJkIAVCcSlcEdqFiZOzgq5verKtmGlqmXq5egTn6RDzpgVkAAJkAAJkAAJkEC8EKCcDMTSnTwjuNgrtuP5ovXoNOga3HzLaPRuJlqBZbOm66UXP/pdJAdSD/OSAAmQAAmQAAmQAAmQgBuBZpnpls6vTQTqjmzF601O6sXbd6ISQ1184Cv3rMe9c0x/+alYU/ILXHvBCTw/fSTmbQKWbCjDxP7EzB8UCZAACZAACZAACZBA+whwAyZf/Op2YqbESU/pM9axuHTZFPSQtGEzX4QEidGP1IxsWYBqHisxaeRg9BkwEpsuWoJth2txX0F/8yTfSYAESIAESIAESIAESKDNBGyyAYTW5qt5YROBOlRWnELV1/XyPQndeqQjLZWz7Px5kAAJkAAJkAAJkAAJBI8AhXvwWLIkEiABEiABEiABEiABEggZAbrKhAwtCyYBEiABEiABEiABEiCB4BGgcA8eS5ZEAiRAAiRAAiRAAiRAAiEjQOEeMrQsmARIgARIgARIgARIgASCR4DCPXgsWRIJkAAJkAAJkAAJkAAJhIwAQ5+EDG1oCq6rq9MLTkxOBo0XGsYslQRIgARIgARIIIgE7HWos6vyEpGcTPXSHrKccW8PvTBeu3/jctwxTOLKp6ToryRbAZ5ctz+MLYjDqir348VfzcQwid1v01/DcMfPlmOPGcQ/DpGEt8vV2P7Gk8L/Dmwn8+Cjr3b/fdsw+8l1zXtUBL9CluhKgL9vVx4h/sb7eYgB+yi+eg+W/+wO2JIM7ZKSkoSCmUv5d9QHLr+SVRx3HtFNYPPCQhVrX145Wn6Oene85m84HN2Nt2jravcVazlOnJ2ZAzO0bVUW7ZgVml1fpW0rXqLlN/MvJO9g2618syYbx+n3khnPbtAOl+/TVs3NN+4tM1Zp/HkHG7hTefx9O8EIz0fez8PD2aMWp/tMTn7T/cW8r+cs1KhePIj5lcAZd7+GN5HLZD/wKsbMKcaMZzejStuBjTs0HN62CiJq9GPeo29yhizo5qnGSw8WolTKnbtqM8rKD2P35lWY2lzPMkxfsA76U7/mNH4IFoH9rzyEES8cQ/4M81cerJJZjkGgGsvvGaPvCJ0zdwOWzixARu8sTH7sNSxRyGWH6FnLdxJWiAjw9x0isD6L5f3cJ5qQnqjDG4+o+8wMbC6rwo6NG6HVHsaqB5ru66Vz8CofpbbNAn7Je2aKGIFt82VWbO5mj/pLn51qzI7lL9FOeZxlQrsIHF6rs322xI3sqRJNxDu5twuu/xfX7y4yWIMz7v5Taz1nbTNXaKv21bpccHjt3CbmU7VS11Mu+fil/QT4+24/Q79K4P3cL0xBz1RVot9LNpS7lVy7rfnv6JJtbn9j3bLyq3cCnHFv23gnbFdddHcZTs0f7VFfUicjKSd/ONI8zjKhPQT2vPlboHAN7s5zI5uWh9lLxMFAHd06cXGwQSJk/9bWnw1Z2fFc8I53Xje6n7MQN2Ylu6DIGFUI4xe+Emu3Vric45fgEuDvO7g8fZXG+7kvMiFOT70UZYdPoaC3Wz2JndFZT8rH5f3c/sa6ZeVX7wS4tNc7l6hJTc3o79kW+378edFKSS/Ewjuv8jzPlHYRGDz5ZZRPTvMqzJO6pRplV52lq0y7KPPiyBCoxu6NxUbVA7vDVbZLclJSc7M+/PgQMNr9r27zaX4gAUsQ4P08UmZKRf8Mz7r3v/1nLJPkwoUP41reXjwB+ZHCGXc/IEVTloo96zBzxGAsUA7YC+dhfH+PP73R1FxLtiUxtTd6p3ob09px+DMFHsgfzycdljRuvDfaXo7PmnQ7vA0+ZTZsYBOj4o2lXD8T77+XGOg/7+dRYkR7BdY9ORODCxfoDZp333jPiYMoaWq0N4PCPdot1NQ++5EtmCnhINOHTMAyXTtKzJM5I1Dwq42c+Q2XDSv/jt/qI6Z8/PIeT/elcDWD9ZBAmwnUnsaupou9Dj4T+2BYkzeYV2Hf5op5IQlEGQHez8NkEDu2LJ0t4SDTMeF+NdduHCNSCrDuCEM8mDwCeadwD4RWJPOmZGBm0W7s3rYBS/RoG8bM76Z5Y/H09spItixO6rZj3e9+jE3S2/lrizCarnlxYvfY7Wa37ue10jmuMWgFEE9blgDv5+E0XcZVd2D3vt3YvGZhc0Q8yF/TCbOeB9VL4Jbw5g8QeCm8oo0E7NizZT3KatwuPwf0uWYchvZ2mCcxLQu5uljMRvbSAuTf+DPkTDIeOb3+/me4LzfPrRB+9U3Af+5mGUfWLcAEmW0vfLYEPx/vZd2BmZHvLRAInHsLhfFUWwikdHe4wmzfizoM9fm4OmfYxWha0dGWmngNCUQtAd7Pw2maRGTl5uoVZmdlY+OpCfjZd3KwQM2CFa/FZ9UzkccbTUAGcSjDgC5j5uAQqMYbYyZgjpfC5pecEuHue1p36K3zsGrqAkxZKQFO4FhQ5qUoJnkQCIx73Z5X0WfCPOTMLcZLMzlA8sDpd0Jg3P0ulhn9J5CYbrjCKD/3z0+iVt5cVsk4+cAPHJjudYG2/5UxJwlEHwHezyNsk7ShmP90ERYMma43hOolcHtQuAfOLIhXpOG2kmL03X/GtUyZcc/ql+Ka5vEtGbljJar4ypWo8jjHhJYJBMC9YgtuHzIJmFqE9x6b6CpyWq6EZz0IBMDd41omBIdAErqe31RSN3gKc7vDB/78jO7BqZKlkEC0EOD9PCoskThghL6hocw7oj4qWmStRlC4R9he/fMmon+bJnHtKNth+LmPz+sX4V5Yr3q/uFfvxOx02fmt8FmUr5jmFi+/Ak/e8Riue3oRcvmYz+8fgF/c/S6NGQMnkIyxdy2U3VHn6I+pd1XKY2qnB3t1ZaX6jqpADr51LV3CAufLK6KWAO/n0WOaU1/qO5MjvwCD+PczYLtQuAeMLLwXVO7fgrUfVSJ71Gjk9nf6C1u5DasWi3DPfxb35DEYatCtIrHyf3VdDhZLwWvmjUPVnj04aVZSfxolL8zA/aVTUM6bjkkl6O+OR6gC2fEl6PXEW4FpebdhrjjoLRCJ/lTxHuRNy25GYG7OlDN3EcZn8M9DM5gQfHD8pPn7DgFe1yJ5P3flEZZvldjy6lpU9sjG6DG5SHO6nXz05hpduC/5/R2gemmDMbxvqMrU6CBQpT2bD03Mqr8K5xdp2/aVabs3F2kSDFITp2uttCo6WhpTragv0xY6cTf5u78/UFwWU92Ors7UahsWFjb99nO0olJujR1M+9TuXmPcQ5CjPbvZ+B0fLilq4l2olRB3MHF7KYu/by9QQpPE+3louLZSau1u836i9MtUrWjDNq2sbLe2am6Ofp+Zu6a0lRJ42hcB+DrB9OggcHjDwqY/pg4BL9Ps2sI127Ta6GhizLVid9FUL8yd+avPM7RSGiAktt9dNMMHfyXgOVINFvSqfWu1GTmuv+ucqQu1beX1waqC5XghwN+3FyghTOL9PIRwWypaDZgKXe8vavIrf8YSreQw/3i2hK61czaVQWDyiGYC9jpUVkv8B7tsVpCYirQ0lzgQ0dxyto0ESCCqCdhRWVGOWlkhlpTSA715b4lqa7FxJGA1AnXVlagV6aLkS3JaGrxuSm61TkW4vRTuETYAqycBEiABEiABEiABEiABfwhw51R/KDEPCZAACZAACZAACZAACUSYAIV7hA3A6kmABEiABEiABEiABEjAHwIU7v5QYh4SIAESIAESIAESIAESiDABCvcIG4DVkwAJkAAJkAAJkAAJkIA/BCjc/aHEPCRAAiRAAiRAAiRAAiQQYQIU7hE2AKsnARIgARIgARIgARIgAX8IULj7Q4l5SIAESIAESIAESIAESCDCBCjcI2wAVk8CJEACJEACJEACJEAC/hCgcPeHEvOQAAmQAAmQAAmQAAmQQIQJULhH2ACsngRIgARIgARIgARIgAT8IUDh7g8l5iEBEiABEiABEiABEiCBCBOgcI+wAVg9CZAACZAACZAACZAACfhDgMLdH0rMQwIkQAIkQAIkQAIkQAIRJkDhHmEDsHoSIAESIAESIAESIAES8IcAhbs/lJiHBEiABEiABEiABEiABCJMgMI9wgZg9SRAAiRAAiRAAiRAAiTgDwEKd38oMQ8JkAAJkAAJkAAJkAAJRJgAhXuEDcDqSYAESIAESIAESIAESMAfAhTu/lBiHhIgARIgARIgARIgARKIMAEK9wgbgNWTAAmQAAmQAAmQAAmQgD8EKNz9ocQ8JEACJEACJEACJEACJBBhAhTuETYAqycBEiABEiABEiABEiABfwhQuPtDiXlIgARIgARIgARIgARIIMIEKNwjbABWTwIkQAIkQAIkQAIkQAL+EKBw94cS85AACZAACZAACZAACZBAhAlQuEfYAKyeBEiABEiABEiABEiABPwhQOHuDyXmIQESIAESIAESIAESIIEIE6Bwj7ABWD0JkAAJkAAJkAAJkAAJ+EOAwt0fSsxDAiRAAiRAAiRAAiRAAhEmQOEeYQOwehIgARIgARIgARIgARLwhwCFuz+UmIcESIAESIAESIAESIAEIkyAwj3CBmD1JEACJEACJEACJEACJOAPAQp3fygxDwmQAAmQAAmQAAmQAAlEmEBihOtn9SRAAiRAArFCoG4nZqbkoCQ/HwO7dZNeVeHL1Fvwl0eH47fT/xufS9LJ4k3IKSrFimlDY6XX7AcJkAAJhI2ATZMjbLWxIhIgARIggZgmYK/cgwXfGYJ5m4xuFpWegtLoy+/ogekrgSUbdmPGmGwkc9oopn8H7BwJkEBoCFC4h4YrSyUBEiCB+CVQsRHD0seiVBGYsQq776rGkJH34oHifVg0MSt+ubDnJEACJNBOAhTu7QTIy0mABEiABDwJ7H9xJgZPWeY4IQK+aulkpDpS+IkESIAESCBAAhTuAQJjdhIgARIgAX8IVGLpLT1wb7GRt2hfPaZl0T/GH3LMQwIkQAK+CDCqjC8yTCcBEiABEmgHgTR8+965zdcveupt2Ju/8QMJkAAJkEBbCHDGvS3UeA0JkAAJkEDLBOr2YHbKECx2yrVwczkeHt3bKYUfSYAESIAEAiHAGfdAaDEvCZAACZCAHwTsWDf/NhHthdiwrxTzc4xL5oz5CXbW+XE5s5AACZAACXglQOHuFQsTSYAESIAE2kqgYssTmLCgVALK/AYFWUPxQNGzTUWtRM7cN+gy01awvI4ESCDuCVC4x/1PgABIgARIIHgE6g5sxD1j5gD5S/Do5Gy94NTcu1GU31TH4kLMe3VP8CpkSSRAAiQQRwTo4x5HxmZXSYAESCCUBOz7X0XS4ElNVeSgqPR92XwpFXWSntKc3nR6ahGqVkxjeMhQGoRlkwAJxBwBCveYMyk7RAIkQAIkQAIkQAIkEIsE6CoTi1Zln0iABEiABEiABEiABGKOAIV7zJmUHSIBEiABEiABEiABEohFAv8fHDMIsIKtzVgAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 19, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='deriv/deriv.png', width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">
\n", "**Figure Tangents:** Plot of the function $y=x^3-5x$ and the forward difference\n", "approximations to the derivative for various values of $\\Delta t$\n", "
\n", "\n", "> Each of the remaining line segments represents the forward difference\n", "approximation to the tangent line for different values of $\\Delta t$, which are\n", "simply *the secant lines through the points $(t, y(t))$ and\n", "$(t+\\Delta t, y(t+\\Delta t))$*. Notice that the approximation improves as $\\Delta t$ is\n", "reduced. This motivates the idea that grid refinement improves the\n", "accuracy of the discretization …but not always (as we will see in the\n", "coming sections)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Investigation\n", "\n", "Investigate the use of the forward difference approximation of the derivative in the following interactive example. \n", "\n", "The next cell loads a python function that plots a function f(x) and approximates its derivative at $x=1$ based on a second x-point that you chose (xb). You need to run this cell ([how to](#Running-Code-Cells)) to load it." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "from numlabs.lab1 import derivative_approx as da" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once you have loaded the function you can call it as da.plot_secant(xb) where xb the second point used to estimate the derivative (slope) at $x=1$. You can compare the slope of the estimate (straight line) to the slope of the function (blue curve)." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU5dn/8c89k32BkIUQsrKEJSBLCPsmkigWFaVqxbWutdW6PK1Vn1ptbWtb26daqV3c6lLcqqCiqGTYdwhhJwthyQrZExJCtpn790cCP6SokMzkzJy53q8Xr2RmkrmvEybfnLnPfa6jtNYIIYQwJ4vRBQghhHAdCXkhhDAxCXkhhDAxCXkhhDAxCXkhhDAxH6MLOFNkZKROSkoyugwhhPAo27dvr9JaR53rMbcK+aSkJLKysowuQwghPIpSqvDrHpPpGiGEMDEJeSGEMDEJeSGEMDEJeSGEMDEJeSGEMDEJeSGEMDEJeSGEMDEJeSGEMNhr6w/zxd5jLnluCXkhhDBQa7uD52z5rMwtd8nzS8gLIYSBth2poaG5nfTh0S55fgl5IYQwUOb+cvx9LExLjnTJ80vICyGEQbTW2HLKmTY4kiA/17QSk5AXQgiD5JU3UFJ7kvQU10zVgIS8EEIYxra/42Dr7GF9XTaGhLwQQhgkM6eC0fFh9O0V4LIxJOSFEMIAFceb2VVcR8Zw1+3Fg4S8EEIYYmVuBQCzXbR08hQJeSGEMIAtp5zYsECG9Qt16TgS8kII0cNOttpZd6CKjJRolFIuHUtCXgghetj6gipa2h0uO8v1TBLyQgjRw2z7ywn192HCgHCXjyUhL4QQPcjh0KzILWfm0Cj8fFwfwU4ZQSn1mlKqQim194z7wpVSmUqpA50f+zhjLCGE8GQ7S+qoamwlw4VnuZ7JWX9GXgfmnHXfY8AKrXUysKLzthBCeDXb/nKsFsXFQ1y7Pv4Up4S81notUHPW3fOANzo/fwO42hljCSGEJ1uRU8GEpHB6B/n2yHiunBCK1lofBej8eM4/W0qpe5RSWUqprMrKSheWI4QQxiqqbiKvvMGlDcnOZviBV631S1rrNK11WlRUlNHlCCGEy9hyOhqSpbu4lcGZXBny5UqpGIDOjxUuHEsIIdyeLaec5L4hJEYE99iYrgz5T4DbOj+/DfjYhWMJIYRbq29qY8vhmh6dqgHnLaF8B9gEDFVKlSil7gR+D2QopQ4AGZ23hRDCK63Or8Du0D1yluuZnHK9Ka31gq95aLYznl8IITydLaeCyBA/xsSH9ei4hh94FUIIs2uzO1idV8Elw/pitbi2IdnZJOSFEMLFth2uoaG5vcenakBCXgghXC4zpxx/HwvTkiN7fGwJeSGEcCGtNbaccqYNjiTIzymHQS+IhLwQQrhQfnkjxTUne3zp5CkS8kII4UKnznKdPaznznI9k4S8EEK4UOb+ckbHh9G3V4Ah40vICyGEi1Q0NLOzuI50g/biQUJeCCFcZmVOR8suo+bjQUJeCCFcxpZTTmxYIMP6hRpWg4S8EEK4QGNLO+sLqshIiUapnj3L9UwS8kII4QJf7D1Gc5uDK0fHGFqHhLwQQrjA4uwSEiOCSE3oY2gdEvJCCOFkZXUn2XSommvGxho6VQMS8kII4XQf7SxFa5g/Ns7oUiTkhRDCmbTWLMkuJS2xDwkRQUaXIyEvhBDOtK/sOAcqGrkmNdboUgAJeSGEcKoPs0vws1q44qL+RpcCSMgLIYTTtNkdLN1Vxuzhfekd5Gt0OYCEvBBCOM26A5VUNbYyP9X4A66nSMgLIYSTLM4upU+QLzOHRBldymkS8kII4QTHm9vI3F/OlaP74+fjPtHqPpUIIYQH+3zPUVraHW41VQMS8kII4RSLs0sZGBnM6LjeRpfyFRLyQgjRTcU1TWw5XMP8VOPbGJxNQl4IIbrp452lAMwb4x4nQJ1JQl4IIbpBa83iHaVMGBBOfLjxbQzOJiEvhBDdsKuknkOVJ/ium7QxOJuEvBBCdMOS7BL8fSxcfpGxFwf5OhLyQgjRRa3tDj7ZVUZGSjS9AtyjjcHZJOSFEKKL1uRXUtvUxnw3naoBCXkhhOiyJTtKiAj2Y3qy+7QxOJuPqwdQSh0BGgA70K61TnP1mEII4Wr1TW3Y9ldw06QEfK3uu7/s8pDvNEtrXdVDYwkhhMt9tucorXaHW1zi75u4758fIYRwY4uzS0juG8LI2F5Gl/KNeiLkNbBcKbVdKXXP2Q8qpe5RSmUppbIqKyt7oBwhhOieouomsgprucYN2xicrSdCfqrWOhW4HLhPKTXjzAe11i9prdO01mlRUe578EIIIU5ZsqMUpeBqN2xjcDaXh7zWuqzzYwWwBJjg6jGFEMJVOtoYlDB5YAT9wwKNLudbuTTklVLBSqnQU58DlwJ7XTmmEEK40qaD1RRWN7ld3/iv4+rVNdHAks45Kx/gba31Fy4eUwghXOaV9YeJDPHjilHu2cbgbC4Nea31IWC0K8cQ3Vdc08TqvAo2FFRzvLkNu0Pj0Jp2h8bh0Ni1pt3ecV/HY9A/LICx8X1ITQxjTHwfwoP9jN4MIVyuoKKBlbkVPJw+hABfq9HlnJeeWicv3EhLu52th2tYnVfJ6rwKDlaeACCuTyD9egVgtSh8rRYCfBVWi8KqFBaLwsfS8VEBh6tO8Pc1B7E7NAADIoMZmxDG2IQ+pCaEMTQ6FB83PkFEiK54df0R/H0s3DwpwehSzpuEvJc4tbe+Oq+SjQerOdlmx8/HwsQB4dw0MZGLh0YxIDL4gpaDNbW2s7uknh1FdWQX1bI2v5LF2R0XTwjyszIqrjczh/Tl+rQ4IkL8XbVpQvSI6sYWFmeXMD/Vs17PEvImprXmy33H+HNmPvnljQDEhwdyXVocFw+NYtLACIL8uv4SCPLzYdLACCYNjDg9XkntSbKLatlRVMf2wlr+8EUuz2Xm852L+nHL5CRSE8Lcfl2xEOfy1uZCWtod3DltgNGlXBAJeZM6VNnIU5/sY92BKoZEh/CLK1K4eGgUAy9wb/1CKKWIDw8iPjzo9GXQCioa+PfmIj7cXsJHO8tIienFrZMTuWpM/279gRGiJzW32XlrUyGXDOvL4L4hRpdzQZTW2ugaTktLS9NZWVlGl+HRmlrbWbiygFfWHSLAx8rDGUO4dXKi4fPjJ1ra+WhnKW9tKiT3WAOhAT5cOy6OWyYlMjDKs35phPd5d2sRjy3ew9t3T2TKoEijy/kvSqntX9f8UULeJLTWLNtzjN98tp+j9c3MT43lscuH0Tc0wOjSvkJrTVZhLW9tKuTzvUdps2umJ0dy+9QkZg3tK1M5wu1orcl4bi1+VgufPTDNLV+j3xTy8n7ZBAoqGnjqk31sKKhmeEwvFi4YS1pSuNFlnZNSivFJ4YxPCqeiYTjvbytm0ZYi7ng9iymDIvjFFSkMj3Hvhk/Cu6zOr6SgopHnvjfaLQP+28ievAdrbGln4YoDvLr+MIF+Vn566VBumphg+NTMhWqzO3h7SxHP2fI5frKN741P4CeXDiHSg1YwCPO66ZXNFFQ0su5nl+Dn456/W7Inb0LbC2u4b9EOjh1v5vq0OH42Z5jHhqKv1cJtU5KYN6Y/f1lxgLc2FfLprjJ+PHsw358ywG1/sYT57S87zoaCah6dM8xjX4eeWbWXW3+giptf2UqAr4UPfziFZ68d7bEBf6awID+eunIEXzw0g/EDwnlmWS6XPreG5fuO4U7vOIX3eGX9IYL8rNw4wXNOfjqbhLyHWb7vGHe8vo3EiCDev3cy4xL7GF2S0w3uG8Jr3x/PG3dMwMdq4Z63tnPzq1vIOXrc6NKEFyk/3szSXWVcnxZP7yBfo8vpMgl5D/LxzlJ+uCib4f178e49k9xu5YyzzRwSxRcPTufpeSPYV3acuS+s4+dL9tDQ3GZ0acILvLHxCO0OzR1TPevkp7NJyHuId7YW8dB7O0lL7MOiuyYSFuQdDcF8rBZunZzEmp/O4rYpSbyztYg5z69j86Fqo0sTJtbU2s6iLUVcltKPhIggo8vpFgl5D/DKukM8vngPM4dE8frtEwjx977j5b2DfHnqyhH8594p+FoVC17ezG8+3U9zm93o0oQJfbC9hPqTbdw9w7P34kFC3q1prXnels9vPsvh8pH9eOmWNAL9PKO9qauMS+zDsgenc/PERF5Zf5grF65nb2m90WUJE7E7NK+uP8yY+DBSEzz/mJeEvJvSWvPMshyetx3gu6lxLFww1mOXcDlbkJ8Pv756JG/cMYHjzW1c/eIGFq44QLvdYXRpwgRsOeUUVjdx9/SBHnny09kkNdyQ3aH53yV7eXndYW6dnMgfrx3lcSc49YSZQ6L48qEZfOeiGP4vM59r/7GJQ5WNRpclPNwr6w4R1yeQy0ZEG12KU0hyuJk2u4P/eX8n72wt4ocXD+JXV43AYvH8vQlXCQvy44UFY1m4YCyHq07wnRfW8eamIzgcsq5eXLidxXVsO1LL7VMHmGbHyhxbYSK/WrqPj3eW8chlQ3l0zjBTvF3sCVeO7s/yh2cwaWAET368j9v+tZWKhmajyxIe5pV1hwj19+F74+ONLsVpJOTdyNJdZfx7cxH3zBjIfbMGG12Ox4nuFcC/vj+e31w9km1Hapj7wnq2yFJLcZ6Ka5r4fO8xFkxMMNUKNgl5N3Gk6gSPL95DakIYj1w21OhyPJZSipsnJfLRfVMJ9ffhxle28I81B6UtgvhWf1qeh49FcfvUJKNLcSoJeTfQ3GbnvrezsVoUC29Mxdckc4FGGtavFx/fP5U5I/rx+89zufvN7dSflDNlxbntKKrl451l3D19IDG9A40ux6kkTdzAM8ty2Fd2nP+7bjSxYeZ6gRkpNMCXv944lqeuTGF1XgVXLFwna+rFf9Fa8+tP9xMV6s8PLx5kdDlOJyFvsGV7jvLmpkLunj6A9BRzLNlyJ0opbp86gPd+MJl2u2b+3zfyztYimb4Rpy3dfZTsojoeuXQowSaaiz9FQt5AhdUnePSD3YyJD+Nnc4YZXY6pjUvsw2cPTGfigHAeX7yHn/xnFydbpSWCt2tus/OHz3NJienFd8fFGV2OS0jIG6Sl3c79b+9AKVi4YKzMw/eA8GA/Xr99Ag+lJ7NkRylXv7iBg3LylFd7df1hSutO8osrUrCa9HwUSRaD/G5ZLntK6/nTdaOJD/fsLneexGpRPJQ+hDdun0BFQzNXLVzPF3uPGl2WMEBFQzN/W1XApSnRTB4UYXQ5LiMhb4Av9h7l9Y1HuGPqAC4d0c/ocrzSjCFRfPbAdAZHh3Lvv7P58/I8OUvWy/zfl/m02h08/p3hRpfiUhLyPayouolHPtjN6LjePHa5zMMbqX9YIO/dM4nrxsXxwsoC7nkrSy5I4iX2ldXz/vZibp2cxIDIYKPLcSkJ+R7U2u7gx+9kA/DXG1Olq6QbCPC18uy1o3h63ghW51XKPL0X0Frzm09zCAv05YFLko0ux+UkZXrQ7z/PZVdJPX+8Vubh3YlSilsnJ/HvuyZS29TG1X/dwMrccqPLEi6Sub+cTYeqeSh9iEdfu/V8Scj3kMz95by24TDfn5LEnJEyD++OJg2MYOmPp5EQEcSdb2Tx15UHZD29ybS2O3hmWQ6DooK5cWKC0eX0CJeHvFJqjlIqTylVoJR6zNXjuaOTrXae/Hgvw2N68fh3ZB7encWGBfLBvVOYN7o/f1qez48WZXOipd3osoSTvLnpCEeqm3hiborXLFt26VYqpazAi8DlQAqwQCmV4sox3dEr6w5xtL6ZX101An8f7758nycI9LPy3PfG8MTc4Xy57xjz/7aRwuoTRpcluqn2RCsvrDjA9ORILh4aZXQ5PcbVf8omAAVa60Na61bgXWCei8d0K+XHm/n7moNcPrIfEwaEG12OOE9KKe6aPpA375jIsePNXPXXDazNrzS6LNENz9vyaWxp54m5KV51nQZXh3wsUHzG7ZLO+05TSt2jlMpSSmVVVprvl+hPX+bRbtc8frm51+Ka1bTkSJbeP42Y3gF8/19beWmttC32RAUVjfx7SxELJiQwtF+o0eX0KFeH/Ln+XH7lN0Rr/ZLWOk1rnRYVZa63UHtL6/kgu4TbpyaRECGraTxVQkQQH/5wCnNG9uOZZbk8+O5O6XvjYZ5ZlkOQr5X/yRhidCk9ztUhXwKceR2tOKDMxWO6hVPtS8OD/LjvErnKk6cL9vfhxRtTeeSyoSzdXca1/9hISW2T0WWJ87Aqr4KVuRXcf8lgIkL8jS6nx7k65LcByUqpAUopP+AG4BMXj+kWvtxXzpbDNTycMYReAeZfi+sNlFLcN2swr902nqKaJq766wY2HZTLC7qziuPNPPKfXST3DeH7Jrvi0/lyachrrduB+4EvgRzgfa31PleO6Q5a2u387vMchkSHcIOJLggsOswa1peP75tKeLAfN7+6hdc3HJZ5ejdkd2gefHcnjS3tvHhTqteubHP5QlGt9TKt9RCt9SCt9W9dPZ47eHNjIYXVTfx8bgo+XrIW19sMjAphyY+mMGtoX365dD+PfLCb5jaZp3cnL6w4wKZD1Tw9byRDor3rYOuZJIGcrLqxhRdWHuDioVHMHGKuA8niq0IDfHnplnE8ODuZD7aX8L1/buJo/UmjyxLAxoIqXlh5gPmpsVxn0ouBnC8JeSd73naAplY7T8yVJZPewGJRPJwxhH/eMo6CikauXLiBbUdqjC7Lq1U0NPPAuzsZGBnMr+eN7Naa+OLjxby29zVqmj33/9R8FzQ00IHyBt7eWsRNExMY3Nd73x56o8tG9OOj+6Zy95tZ3PDSZh6/fBh3ThvgVSfduAO7Q/PweztpbGlj0V0Tu3TN1oN1B8kszMRWaCOvNg+A+NB4MhIznF1uj5CQd6LfLsshyM/KQ+netxZXQHJ0KJ/8eBo/+89ufvNZDtuO1PDH60bL6qoe9OKqAjYUVPOH71503ic9aa3JrcntCPYiG4frD6NQjOk7hkfSHiE9MZ3+If1dXLnrSMg7yZr8SlbnVfLE3OGEB/sZXY4wSK8AX/5+cyqvrj/M7z7P5aqF6/nbTeNI6d/L6NJMb9PBap635XP1mP5cn/bNq9q01uyp2oOt0EZmYSYljSVYlIW06DRuHHYjsxNmExVkjmNqyp2WfqWlpemsrCyjy7hg7XYHl/9lHW12B8sfnikXAxEAbDtSw/1vZ1PX1Mav543kellO6zJVjS185y/rCAnwYen90845TWN32NlRsQNbkQ1boY3ypnJ8LD5MjJlIRkIGsxJmER7gmf2llFLbtdZp53pM9uSd4J1txRyoaOSft4yTgBenjU8K57MHpvPguzv42Ye72XakhqfnjSTQzzvXa7uKo3Mevv5kG2/cMeErAd/maCPrWBaZhZmsLFpJdXM1fhY/psZO5cHUB5kZP5NefuZ+lyUh3031J9t4LjOfSQPDuTQl2uhyhJuJDPHnzTsm8rwtn4UrC9hTWs/fbx5n+uuK9qS/rS5g3YEqnrnmIobH9KLV3srmo5vJLMxkVfEq6lvqCfQJZHrsdDISM5geN51gX+/5+UvId9PfVhVQ29TKL67wrval4vxZLYqfXDqU1MQ+PPzeTq5auJ4/XjeKOSNjjC7Nc+1+H1Y8ja4v4WodQUDSnfTt58+ja19kbclaGtsaCfUNZWb8TNIT05nafyoBPgFGV20ImZPvhvqmNib9bgVzRvbjue+NMboc4QFKapu4b1E2u0rquX1qEo/OGUaAr0zfXJDd78PSBzjR3szaoEAyg4NYFxhIs0UR5h/GrPhZZCRmMClmEr5W71jZJHPyLrJoayEn2+zcM2Og0aUIDxHXJ4j3753M75bl8q8NR1h/oIo/Xz+Gi+J6G12aR6hvqWf1uqex9QlmY2AkrRZFZLudeY2NpBNC2n2r8LFIrJ1Jfhpd1Nru4I2NR5ieHMnwGHMfuBHO5e9j5ZdXjWDWsL787INdXPO3DTwwO5kfXTxIeh2dQ01zDSuLVmIrtLHl6BbaQxT92v24vqGBjBMnGd3SQsd7oTqQgP8v8hPpok93l1F+vIVnrx1tdCnCQ80cEsXyh2by5Cd7+XNmPityK/jz9aMZFBVidGmGq2iqwFZow1ZkY3v5dhzaQXxoPFcPWsDMtS8zs6Xiv69I1Nu7e9R8HQn5LtBa8/K6wwyJDmFGcqTR5QgP1jvIl7/cMJaMlGie+Ggvc19Yx+OXD+eWSYlYLN51IL+0sfT0yUm7KncBMKj3IO6+6G4yEjPwtcdy8ytbaGo5znTrK1jtZzSD8w2E2U8aVLl7k5Dvgo0Hq8k5epxnvztKVtQIp7hiVH/GJ4Xz6Ie7eeqTfWTuL+fZa0fRPyzQ6NJc6kj9EWxFHcG+v3o/AMPCh3H/mPvJSMxgYFjH8a7cY8e5/pXNOLTmlrsfwVo9ClY8DfUlHXvws5+EUdcbuSluS1bXdMHt/9rKntJ61j96iayMEE6lteadrcX85rP9WC2KX88bybwx/U2zM6G1pqCugMzCTDILMymoKwBgVOQo0hPTSU9MJz70q2cG7yyu47bXthLga2HRXROl+d85yOoaJyqoaGBVXiX/kzFEAl44nVKKGycmMHVwBD95fxcPvbeTz/ce5Ym5KcSHe+bF4LXW7K/Z3zHHXmjjyPEjKBRj+47lsQmPMTthNv2C+53zezcfqubO17cRHuLHojsnkRDhmT8DI0nIX6BX1x/G38fCTRMTjC5FmFhiRDDv/WAyL687xPO2fFblreHu6QP40cWDu9Q+t6c5tIPdlbvJLMxkRdEKShtLsSor4/uN55aUW7gk4RIiA7/5eNbqvAp+8NZ24voEsuiuSfTr7Z0nM3WX+79a3EhVYwsfZpdy7bg4r7zqu+hZVovi3pmDmDemP3/4PJcXVx3k/awSfnbZUL6bGud2B2btDjvZFdkdwV64goqTFfhafJncfzI/GPUDZsXPIiwg7Lye6/M9R3ng3R0k9w3lrTsnyO9bN0jIX4C3NhXS2u7gjqkDjC5FeJGY3oE8f8NYbp2SxNOd15N9c1MhT16ZwvgkY7smtjna2Hp06+k+MTXNNQRYA5gaO5X0xHRmxs0k1O/859AdDs2/txTyy0/2MSY+jH/dPoHegd5x1qqrSMifp+Y2O//eXMjsYX0Z3FfWMYuel5rQh8U/nMInu8r4/ee5XPePTcwdFcNjc4b16Hx9i72FjaUbsRXZWFW8iobWBoJ8gpgZ19EnZlrsNIJ8L7ye3SV1/OLjfewqrmPGkCj+flOqR0xNuTv5CZ6nJTtKqT7Ryl3TpYWBMI7Forh6bCyXjojmn2sO8c+1B8ncX+7y+fqmtibWl67HVmhjTckamtqbCPULZVb8LNIT0pkSOwV/a9emVGpPtPLH5Xm8s7WIiGB//nz9aK4ZG2uaFUVGkyWU58Hh0GQ8t4YAXyuf/niavPiE2yirO8mzX+Ty0c4yIkP8WDAhgRsnJhDTu/vr6xtaG1hTsgZboY0NpRtotjcTHhB+ugHYhH4TutUAzO7QvLetmGe/zKWhuZ3bJifxUEayXC6xC2QJZTetya/kYOUJnv/eGAl44Vb6h/3/+foXVxbw11UF/G31QdKH9+XWyUlMGRRxQa/ZuuY6VhWvwlZkY1PZJtocbUQFRnFN8jVkJGYwtu9YpzQA21lcx5Mf72V3ST0TBoTz9LwRDOsnPaBcQUL+PLy87hD9egUwd5T0/xbuKTWhD69+fzzFNU0s2lLEe9uK+HJfOQOjgrllUiLzU+PofWDJOc8SrTpZxcqilWQWZrLt2Dbs2k7/4P4sGLaAjMQMRkWNwqKc0ziturGFP36Zx3tZxUSF+POXG8Zw1WjznOzljmS65lvsK6tn7gvreezyYdw7c5DR5QhxXprb7Czbc5Q3NxWys7iOa/028oz1Zfx0CwDHrFZW9OrN8tgUdpwoRqNJ6pV0+qzTlHDnXQRHa82hqhMs31fOP9Yc5ERLO7dPTeKB2cmEytSMU8h0TTe8uu4wQX5WFoyXk5+E5wjwtTI/NY75qXHsKakn7o2HKdft2IJDsQUFsTug4yDp4PpC7h33IzISMxgcNthpwd7U2s6mg9WszqtkdX4FxTUdzcSmDIrgV1eNIDlaWhP0FAn5b3CsvplPdpVx86REegfJHofwPIfqDrGxOhNblCLXPxaAlJYWHqypI/1EEwltdmbXplCQcIKxCUWkJoQxNDr0gvvan9pbX51Xyeq8CrYcrqG13UGgr5UpgyK4Z8YgLh4S5bGtGTyZhPw3eGPTERxay8lPwmNorcmvzSezMBNboY2D9QcBGGPx5afVtaQ3NRHbbj/99Q0BMQzuG8La/EoWZ5cCEORnZVRcb0bHhRHga8WhNXbHGf+0xuHQtDs0Dq1paXOQVVhLUU0TAIM6jwNcPDSK8Unh0uPJYBLyX+NESzuLNhdy2Yh+0hRJuDWtNXur9pJZ1BHsxQ3FWJSFcdHjuH7o9cxOmE30wTWw9AE4I+DxDSR07tO8PCoNrTUltSfJLqplR1Ed2UW1vLr+MO0OjUV1tFiwKIWPRWGxKKyWzs877xse04u7ZwyUvXU3JCH/Nf6TVczx5nY5+Um4JYd2sLNi5+kGYEdPHMVH+TAxZiJ3jLyDWfGziAiM+P/fcKrX+tf0YFdKER8eRHx4EPPGdEzrOBwapZCVLx5OQv4ctNa8vvEIYxPCGJfYx+hyhACg3dFOVnkWtkIbK4pWUHWyCj+LH1P6T+H+sfczM24mvf2/4YLgo66/oAtruFsDNNE1Lgt5pdQvgbuBys67/ldrvcxV4zlTVmEtR6qb+PElyUaXIrxcm72NzUc3n24AVtdSR6BPINNip5GRmMGMuBkE+wYbXaZwY67ek39Oa/0nF4/hdIuzSwj0tTJn5LkvZCCEKzW3N7OhbENHn5jiNTS0NRDiG8LM+JlkJGQwJXYKgT7mviygcB6ZrjlLc5udT3cfZc7IftIBT/So1cWrWXpwKetK13Gy/SS9/XszO3E2GYkZTIqZhJ/Vz+gShQdydYrdr5S6FcgCfqK1rj37C5RS9wD3ACQkGH/C0crcChqa25mfGmt0KcLLZBZmsr18O1cOvJL0xHTS+qXha8vszx4AAAk2SURBVJHzM0T3dKutgVLKBpxrTuPnwGagCtDAr4EYrfUd3/R87tDW4K43trGntJ6Nj83GKgeeRA+qb6knxDcEq0XWlYsL47K2Blrr9PMs4GXg0+6M1ROqG1tYnVfJHdMGSMCLHveNK2OE6CLntJY7B6XUmS0brwH2umosZ1m6q4x2h5apGiGEabhyTv5ZpdQYOqZrjgA/cOFYTrFkRynDY3pJX2shhGm4LOS11re46rldoaCikV0l9Twxd7jRpQghhNO4bLrG0yzZUYJFwVWj+xtdihBCOI2EPB09Oj7aUcb05Cj69gowuhwhhHAaCXlgy+EaSutOygFXIYTpSMjTMVUT7Gfl0hRpYyCEMBevD/mTrXaW7TnG5RfFEOgnJ6EIIczF60M+M6ecxpZ25o+VqRohhPl4fcgvyS6hf+8AJg2M+PYvFkIID+PVIV/Z0MLaA1XMGxsrF0gQQpiSV4f8J7vKsDu0TNUIIUzLq0N+cXYJF8X2Jjk61OhShBDCJbw25PPLG9hXdlzWxgshTM1rQ35xdilWi+JKaWMghDAxrwx5u0Pz0Y5SZg6JIjLE3+hyhBDCZbwy5DcfqubY8WaZqhFCmJ5XhvyH2SWE+vuQPjza6FKEEMKlvC7km1rb+WLvMeaOiiHAV9oYCCHMzetCfvm+cppa7Vwja+OFEF7A60L+w+wS4voEMj4p3OhShBDC5bwq5KsaW9hQUMXVY6SNgRDCO3hVyK/MrcCh4fKLpG+8EMI7eFXI2/aX0793ACkxvYwuRQgheoTXhHxzm511B6pIT4lGKZmqEUJ4B68J+Y0HqzjZZpe18UIIr+I1IZ+5v4IQfx8mDpRVNUII7+EVIe9waFbklDNjSCT+PnIClBDCe3hFyO8praeioUWmaoQQXscrQt6WU45FwayhfY0uRQghepRXhHzm/nLSksLpE+xndClCCNGjTB/yJbVN5B5rIEOmaoQQXsj0Ib8ipwKA9BQJeSGE9zF9yNtyyhkUFcyAyGCjSxFCiB5n6pA/3tzG5kPVshcvhPBa3Qp5pdR1Sql9SimHUirtrMceV0oVKKXylFKXda/MrlmbX0mbXcvSSSGE1/Lp5vfvBeYD/zzzTqVUCnADMALoD9iUUkO01vZujndBbPvL6RPkS2pCn54cVggh3Ea39uS11jla67xzPDQPeFdr3aK1PgwUABO6M9aFarM7WJlbwSXDorFK73ghhJdy1Zx8LFB8xu2Szvv+i1LqHqVUllIqq7Ky0mkFZB2p5XhzOxkpcgKUEMJ7fet0jVLKBpzrKhs/11p//HXfdo779Lm+UGv9EvASQFpa2jm/pitsOeX4WS1MT45y1lMKIYTH+daQ11qnd+F5S4D4M27HAWVdeJ4u0VpjyylnyuAIgv27e9hBCCE8l6umaz4BblBK+SulBgDJwFYXjfVfCioaKaxuklU1Qgiv190llNcopUqAycBnSqkvAbTW+4D3gf3AF8B9PbmyxtZ5luvs4TIfL4Twbt2ay9BaLwGWfM1jvwV+253n7ypbTjkjY3sR0zvQiOGFEMJtmO6M16rGFrKLamWqRgghMGHIr8ytQGsk5IUQAhOGvG1/OTG9AxjRv5fRpQghhOFMFfLNbXbWHagifXg0SslZrkIIYaqQ33iwipNtduk6KYQQnUwV8pn7Kwj2szJpYLjRpQghhFswTcg7HJoVOeXMHBqFv4/V6HKEEMItmCbk95TWU9HQIqtqhBDiDKYJeVtOORYFs4bKWa5CCHGKiUK+grTEcPoE+xldihBCuA1ThHxJbRM5R4+TLr3jhRDiK0wR8idb7VyaEi3z8UIIcRZTNFtPjg7lpVvTvv0LhRDCy5hiT14IIcS5ScgLIYSJScgLIYSJScgLIYSJScgLIYSJScgLIYSJScgLIYSJScgLIYSJKa210TWcppSqBAq78RSRQJWTyjGSWbYDZFvckVm2A2RbTknUWked6wG3CvnuUkplaa09/tRXs2wHyLa4I7NsB8i2nA+ZrhFCCBOTkBdCCBMzW8i/ZHQBTmKW7QDZFndklu0A2ZZvZao5eSGEEF9ltj15IYQQZ5CQF0IIEzNVyCulfq2U2q2U2qmUWq6U6m90TV2llPqjUiq3c3uWKKXCjK6pq5RS1yml9imlHEopj1vuppSao5TKU0oVKKUeM7qerlJKvaaUqlBK7TW6lu5SSsUrpVYppXI6X1sPGl1TVyilApRSW5VSuzq341dOH8NMc/JKqV5a6+Odnz8ApGit7zW4rC5RSl0KrNRatyul/gCgtX7U4LK6RCk1HHAA/wR+qrXOMrik86aUsgL5QAZQAmwDFmit9xtaWBcopWYAjcCbWuuRRtfTHUqpGCBGa52tlAoFtgNXe9r/i1JKAcFa60allC+wHnhQa73ZWWOYak/+VMB3CgY89i+Y1nq51rq98+ZmIM7IerpDa52jtc4zuo4umgAUaK0Paa1bgXeBeQbX1CVa67VAjdF1OIPW+qjWOrvz8wYgB4g1tqoLpzs0dt707fzn1NwyVcgDKKV+q5QqBm4CnjS6Hie5A/jc6CK8VCxQfMbtEjwwTMxMKZUEjAW2GFtJ1yilrEqpnUAFkKm1dup2eFzIK6VsSqm95/g3D0Br/XOtdTywCLjf2Gq/2bdtS+fX/Bxop2N73Nb5bIuHUue4z2PfIZqNUioE+BB46Kx38h5Da23XWo+h4936BKWUU6fSfJz5ZD1Ba51+nl/6NvAZ8JQLy+mWb9sWpdRtwBXAbO3mB08u4P/F05QA8WfcjgPKDKpFnKFzDvtDYJHWerHR9XSX1rpOKbUamAM47eC4x+3JfxOlVPIZN68Cco2qpbuUUnOAR4GrtNZNRtfjxbYByUqpAUopP+AG4BODa/J6nQcsXwVytNZ/NrqerlJKRZ1aOaeUCgTScXJumW11zYfAUDpWchQC92qtS42tqmuUUgWAP1DdeddmD14pdA2wEIgC6oCdWuvLjK3q/CmlvgM8D1iB17TWvzW4pC5RSr0DXExHS9ty4Cmt9auGFtVFSqlpwDpgDx2/7wD/q7VeZlxVF04pNQp4g47XlgV4X2v9tFPHMFPICyGE+CpTTdcIIYT4Kgl5IYQwMQl5IYQwMQl5IYQwMQl5IYQwMQl5IYQwMQl5IYQwsf8HlEzwxEtRgiEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "da.plot_secant(2.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Forward Euler Method\n", "\n", "\n", "\n", "We can now write down a discrete version of our model ODE problem ([Conduction Equation](#lab1:eq:conduction)) at any\n", "point $t_i$ by\n", "\n", "1. discretizing the derivative on the left hand side (for example,\n", " using the forward difference approximation ([Forward Difference Formula](#lab1:eq:forward-diff));\n", "\n", "2. evaluating the right hand side function at the discrete point $t_i$.\n", "\n", "The discrete form of the problem is\n", "\n", "$$\\frac{T_{i+1}-T_i}{\\Delta t} = \\lambda(T_i,t_i) \\, (T_i-T_a),$$ or, after\n", "rearranging, \n", "\n", "
\n", "$$T_{i+1} = T_i + \\Delta t \\, \\lambda(T_i,t_i) \\, (T_i-T_a).$$ \n", "
\n", "\n", "This formula is called the\n", "*Forward Euler method* (since it uses forward differences). Notice that\n", "this formula relates each discrete solution value to the solution at the\n", "preceding $t$-point. Consequently, if we are given an initial value\n", "$T(0)$, then all subsequent values of the solution are easily computed.\n", "\n", "(**Note:** The forward Euler formula for the more general\n", "first-order IVP in ([Model ODE](#lab1:eq:modelode')) is simply $y_{i+1} = y_i + \\Delta t f(y_i,t_i)$.)\n", "\n", "#### Example Seven\n", "\n", "\n", "> Let us now turn to another example in atmospheric\n", "physics to illustrate the use of the forward Euler method. Consider the\n", "process of condensation and evaporation in a cloud. The *saturation\n", "ratio*, $S$, is the ratio of the vapour pressure to the vapour pressure\n", "of a plane surface of water at temperature $T$. $S$ varies in time\n", "according to the \n", "\n", ">
\n", "(saturation development equation)\n", "$$\\frac{dS}{dt} = \\alpha S^2 + \\beta S + \\gamma,$$ \n", "
\n", "\n", "> where $\\alpha$, $\\beta$ and $\\gamma$\n", "are complicated (but constant) expressions involving the physical\n", "parameters in the problem (and so we won’t reproduce them here).\n", "\n", "> What are some physically reasonable values of the parameters (other than\n", "simply $\\alpha<0$ and $\\gamma>0$)?\n", "\n", "> [Chen (1994)](#Ref:Chen) gives a detailed derivation of the equation, which is a\n", "non-linear, first order ODE (i.e. non-linear in the dependent variable $S$,\n", "and it contains only a first derivative in the time variable). Chen also\n", "derives an analytical solution to the problem which takes a couple pages\n", "of messy algebra to come to. Rather than show these details, we would\n", "like to use the forward Euler method in order to compute the solution\n", "numerically, and as we will see, this is actually quite simple." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> Using the ([forward difference formula](#lab1:eq:forward-diff)), the discrete form of the ([saturation development equation](#lab1:eq:saturation)) is\n", "$$S_{i+1} = S_i + \\Delta t \\left( \\alpha S_i^2 + \\beta S_i +\n", " \\gamma \\right).$$ Consider an initial saturation ratio of $0.98$,\n", "and take parameter values $\\alpha=-1$, $\\beta=1$ and $\\gamma=1$. The\n", "resulting solution, for various values of the time step $\\Delta t$,is plotted in\n", "Figure [Saturation Time Series](#lab1:fig:saturation)." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAINCAYAAABhzfrmAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAABAAElEQVR4AeydB2BUxdbH/7ubXklCQkjovSV0EQSkqJ9YCCpWUEEUrID6FNFnQx88K4hPQRBBxfZsgAX1KSCoFCkC0gmIQCAJJCEJySbZ8v3nbkLabkjCZrO7nNGwu/fOnfKbu3vPnDnnjM7KBElCQAgIASEgBISAEBACQkAIuDUBvVu3ThonBISAEBACQkAICAEhIASEgEZABHe5EYSAEBACQkAICAEhIASEgAcQEMHdAwZJmigEhIAQEAJCQAgIASEgBERwl3tACAgBISAEhIAQEAJCQAh4AAER3D1gkKSJQkAICAEhIASEgBAQAkJABHe5B4SAEBACQkAICAEhIASEgAcQEMHdAwZJmigEhIAQEAJCQAgIASEgBERwl3tACAgBISAEhIAQEAJCQAh4AAER3D1gkKSJQkAICAEhIASEgBAQAkJABHe5B4SAEBACQkAICAEhIASEgAcQEMHdAwZJmigEhIAQEAJCQAgIASEgBERwl3tACAgBISAEhIAQEAJCQAh4AAER3D1gkKSJQkAICAEhIASEgBAQAkJABHe5B4SAEBACQkAICAEhIASEgAcQEMHdAwZJmigEhIAQEAJCQAgIASEgBERwl3tACAgBISAEhIAQEAJCQAh4AAER3D1gkKSJQkAICAEhIASEgBAQAkJABHe5B4SAEBACQkAICAEhIASEgAcQEMHdAwZJmigEhIAQEAJCQAgIASEgBHwEgesJmDKT8e3yHeh67XA0D3BC/cZ0rF/1M9bvTWFhRhiNAWiS2B/DLumBCBlhJwCWIoSAEBACQkAICAEhUP8ERKxz5RjkHMJnc6bj+inzWOtgrMs+d8H90Jq3MHzg3dim9SMRSUlRWLp0ZXGvkrB010IM7xDhyl5KXUJACAgBISAEhIAQEAJ1QEBMZeoAaqUijSlYNnsCdGEtioV2lSMMvpUy1uzA7s8eRItioT3pheXItm7FkiUrkH90NUZrRS1FUsdIvLU5s2YFS24hIASEgBAQAkJACAgBtyMggnsdD4lx9yLoAuORtCIIk0cPdlptpkOfoeP1s2zlJS3E+49ejtDi0gPiBmDh0eVILP58d8+xWCOyu9PYS0FCQAgIASEgBISAEKgPAiK41zF1n/jLsP9oBqxLZmLm/JeR5JT6jPh21nNnSpo28cozQnvJQZ+4yzHvhZKJwlLc/581JafkVQgIASEgBISAEBACQsADCYjgXseD5hMah9ZxpTbmJVrxc6rWuBPvzLJZtYNTgUHdo+0W12nYjWeOb3tqHjbnnPkob4SAEBACQkAICAEhIAQ8jIAI7h42YKq5ptQjOFim3cEOXIxD2/YutnVXmRfjx51iL1MGm7wVAkJACAgBISAEhIBHERDB3aOGy9bY/JPHiqPIqM9V6fDLu7/+tr6suO+BHZcmCwEhIASEgBAQAkLgPCYggrsnDn45eXwb0nJM9nsR0AJDnWNUb798OSoEhIAQEAJCQAgIASHgMgIiuLsMtfMq8g0qq2Xfhu83HnVe4VKSEBACQkAICAEhIASEgFsScGAd7ZZtlUYVEwho3kOzXV9c/HnWOysxbfiYykYzpqNYu7TusL3xxhvYvHmz3Qri4uIQHBxs95wcFAJCQAgIASEgBISAqwikpqYiOzu7UnUGgwG33347Lrrookrn3PWACO7uOjJVtcunA+5nqMfFU4p3SF06FrNWXIYnh8SVuyp59Q9YV/aIfzkbm7JnavV+8uTJMJvN0Ol0la4PCAiA+kJIcl8CJpNJGz9/f3/3baS0rEoC+fn5UOOn18viaZWg3PRkUVERrFYr/Pz83LSF0qyzEcjLy0NgYKDd5+DZrpXzriNQUFAA9cyrmCwWC37//Xds2bKl4im3/SyCu9sOTdUN6zPxNYyfkoh5xdmeGhqPIy98gDuGJQDpe7B04ZuYsdgm2KuNmFTwyGH9WhTnds6LuuHHjh2LBQsWOKdAKcWlBBYtWoRvv/0W//3vf11ar1TmPAItWrTQxrBTp07OK1RKchmB6dOnIy0tDbNmFW+m57KapSJnEVCTrsOHD6NBgwbOKlLKcSGBqKgoGI1GF9Z47lWJ4H7uDOunhIAEvJWxDVHXJWJGseJ93pRRmDelpDmDtZ1TlcBui/g+Gr3blrWNL8knr0JACAgBISAEhIAQEAKeQEAEd08YJUdtjEjA9BX5uG3ND/hh7W4YEYCA8DC069QTF/VtgZWPJCFpVrFUP3kUEgMcFSTHhYAQEAJCQAgIASEgBNydgAju7j5CZ21fADoMGK79lc1qSv6wVGjniQ/uHwQZ7LKE5L0QEAJCQAgIASEgBDyLgHg0edZ4VbO16XjzrlGlecd/imtbi7q9FIi8EwJCQAgIASEgBISA5xEQJaznjdlZW7x90T8xqdhCBhiMn54fSSMa5ycVyUIikjifq6tKjIyMhHJulOS5BJRTqorgJMkzCTRq1Ai+vs6N9uWZJDy31V27dpUIap47fPDx8fG4qE4iuLv0hqvND7QJu1csxqc/7kV4l2G49ZYBiKiizSkrXkTi2JJYM8DcdZ9gSHQVF5zDKRUCq1mzZudQglxanwSGDx8O9SfJcwmoqECSPJfAuHHjPLfx0nKNgAolKMlzCcTExKBJkyYe1QER3F05XDnpxRFeiiuthhxv3L0YHYeOLb5gBnb47cdbI1vbabUR6xdNxYVjS8KKJWLhplUY06MqMd9OMXJICAgBISAEhIAQEAJCwC0JiI27C4bFZDIiM2U3Ppw5u4zgvhRvvbsCKZk53BTAcSOK8srv9LXvwInymU05SF6/DA8OCSwV2pOmYVPaJhHay5OST0JACAgBISAEhIAQ8GgCIrjX9fAZN2OkbyAi4zti1Iyl5Wqbd/dQxEeG0cbxVmzOKXfqzIfQpl1opV6abryknfYhffMyPDdhBHS+YWhzYRJU1Mek8dOwdN1fKFryJHpEy2JKKTV5JwSEgBAQAkJACAgBzycg0l1dj2FADyzhlta1TtFD8EPGX9h28CSCYtuiQ5xtE6Wi08dwJKgnFn5wBzomdEa7tq0RIT5qtcYsFwoBISAEhIAQEAJCwN0JiODu7iPE9vlENEcP/pVNcQMm4K0BZY/IeyEgBISAEBACQkAICAFvJiCmMt48utI3ISAEhIAQEAJCQAgIAa8hIIK71wyldEQICAEhIASEgBAQAkLAmwmI4O7Noyt9EwJCQAgIASEgBISAEPAaAiK4e81QSkeEgBAQAkJACAgBISAEvJmACO7ePLrSNyEgBISAEBACQkAICAGvISCCu9cMpXRECAgBISAEhIAQEAJCwJsJiODuzaMrfRMCQkAICAEhIASEgBDwGgIiuHvNUEpHhIAQEAJCQAgIASEgBLyZgAju3jy60jchIASEgBAQAkJACAgBryEggrvXDKV0RAgIASEgBISAEBACQsCbCYjg7s2jK33zSgImFHhlv6RTQkAICAEhIASEQNUERHCvmo+cFQJuR2AJ/uF2bZIGCQEhIASEgBAQAnVPQAT3umcsNQgBISAEhIAQEAJCQAgIgXMm4HPOJUgBQkAI1DmBbByDGSatHmUqk4nD2ns/BCIYDeu8fqlACAgBISAEhIAQqH8CIrjX/xhIC4TAWQlsw1IYkY0i5CEVu7AeC+GDAMSgHRIx4qzXSwYhIASEgBAQAkLA8wmI4F4PY2jKTMa3y3eg67XD0TzAGQ3IQfLm37H+9z9xhH6Lqsiwhu1w4aCL0CEu1BkVSBn1TKA/7tZasBcrqHv/k1r2SAzA/fXcKqleCAgBISAEhIAQcCUBsXF3Je2cQ/jsxQnwjWyDpFGzcLzo3CtPWf8hRujC0KbnUIy6ewF++30FFkyahLGjhqFjfBhufW4ZzSokeQuB49jBiVkY9e5ZFOB3eEu3pB9CQAgIASEgBIRANQiI4F4NSOecxZiCZbMnQBfWAtdPmVdcXBh8z7HgQ989jvgLR9GIAhg/dzWyrVux5P0l2GrNxuqFk7XSFz+VhMgHlxVbR59jhXJ5vRJQtu0ZOIQEmsZ0xbXYhi9hhaVe2ySVCwEhIASEgBAQAq4jIIJ7HbM27l4EXWA8klYEYfLowc6rLXM9Jg2bYStv/Kd4Y8IAlBrFhGLAmJn4aWqi7fysJCzeneO8uqWkeiGQij2IQisK7sMRi04IorlMMn6pl7ZIpUJACAgBISAEhIDrCYjgXsfMfeIvw/6jGbAumYmZ819GkpPqyzm4XtO0a8V17kJHxcqp+8hxZw5m59kikpw5IG88jsBx7NQE9pKGd8U1dFNdTofV/JJD8ioEhIAQEAJCQAh4MQER3Ot4cH1C49A6LuJMLaVa8TOHavfG1//MdYON6Wfel30TGBRW9qO893ACqRUE9zA0Rjy68ehyD++ZNF8ICAEhIASEgBCoDgER3KtDyR3zFJVue79yytP4LqVyI3f+/FOZg/Z08mVOy1u3JnAKKdDDQHOomHLt7IwrafW+Abk4Ue64fBACQkAICAEhIAS8j4AI7h46pqFNu6DUYn4lhsVPwPoy4WNMh77DP+5ebOvd4Lm4tYfTdP0eSsyzm13RTKakN/4IQXtcojmqlhyTVyEgBISAEBACQsA7CYjg7qnjGj0Ez75QKroD83Bh5Ags252JnORlGNliGFZqfZuMTZ9PQKmxjqd2+PxutyPBXVFpg0E4haNIx/7zG5L0XggIASEgBISAlxMQwd2DB3jAo59gbjlv16VI6hiJsDZJmuPq6Gmf4mjRTPQQqd2DRxl0PjUyFv/fiOYuqfaSga7JCXR73orPGR7Sai+LHBMCQkAICAEhIAS8gIAI7h49iNGYsCQNC8eX1byXdGgwxt89EnF1aNpuNpvx6quvonPnzpX+VqxYUdIQeT1HAmnYjYZoTQt3x5H/m6A7xXc/2ruvP8fa5HIhIASEgBAQAt5F4IknnqgkpyjZJTk52eM6Wodincex8NAGRyPpjstpKWMzjCntxEoMjOmKD7atwi0JdaNy1+v1uOGGG3D77beXVlv8rm3btpWOyYHaETjOoI8qbvvZUldch99oMmUT4kujDp3tOjkvBISAEBACQsCbCdx5550YMWJEpS7efPPNlY65+wER3N19hM7Svu2fPY7E69VGTImY+sJI7JzyVGl8d7osjkqMROG2DIypA+Fdp9OhSZMm6N2791laKafPhcBx7KAD6qVnLSICzTRzmj34ESrajCQhIASEgBAQAkIAaNmypfZXkUVgYGDFQ27/WUxl3H6IHDcw+bMHi4V2YPLSZZj+6JNYkr0N0ypYzoxNvA4r0mUDJsck3fdMFp1ODTSBCaGxTHWS2lU1Gau5JVNWdbJLHiEgBISAEBACQsCDCIjg7kGDVa6pOevx8PWzbIdGL8S04c1t70MT8OSKDHw6taz0vhIPzlxd7nL54BkEKm66dLZWB6IBreEHYjuWnS2rnBcCQkAICAEhIAQ8jIAI7h42YCXNTf7+4zMmMaOHXciNecqmCIyc/gOWlxHet834EcmidC8LySPeH9N2S+1co7aquO7p2KtFoqnRhZJZCAgBISAEhIAQcGsCIri79fA4bpxPSOSZk/0T4s+8L33jg8unzmCQwJK0EyfyS97LqycQKNIMXg7Tbr1mjr4+8KeN+1VaeEhP6Ke0UQgIASEgBISAEKgeARHcq8fJ/XL5lUYNKShyoEoP7YQRpZJ7FcEE3a970iIglWEgo7m9korTXtPUAhfChEIcwZaaXir5hYAQEAJCQAgIATclIIK7SwfGcRxux80wYfeKRXju8ccx+8M1NH8oToWlzocLPnMUuzsHhw8W5x88BC3L29OUlCSvbkqgqt1Sq9NkFR5yOw2qzBThJQkBISAEhIAQEAKeT0AEd1eOYU46AzSWSdWQ4427F6Pj0LF4asYMTBo1EI99ZtssoPlFIzG6uKhtM4bhw+05ZQq2vU1ZsQBPFVc4+d4rUTfR3CtVKwecROBcBXelrQ9HPPajYox/JzVQihECdUzgNDK4bpRXx7VI8UJACAgBzyEggrsLxspk4pb1Kbvx4czZZQT3pXjr3RVIycyBqQqFaFFedrkW7jtwwvY5tAdmb1p45tyoxP54cdlmpOfkIIcThDUfPo74oU9p5xMnf4ppI1ufyStv3J9AFo1cfBGI4GqGgXTUo0Rcgz34CQXIdZRFjgsBtyWwA1/jGPcxkCQEhIAQEAI2AiK41/WdYNyMkb6BiIzviFEzlparbd7dQxEfGQZf31uxubLCXMsb2rQLygZ2vPGSdmfKiOgxBkUZ2zB3sjJk34YpST0RExaGsLAYDBzFTZkSkzB3+S5snTmyQtSZM0XIGzclcK7a9pJuqfjvzXEBRZ9vSg7JqxAQAkJACAgBIeChBGru9eahHa23Zgf0wBKrtfbVRw/BDxl/YdvBkwiKbYsOceUN1X0iEjBh5hKMm5aJo0dTGYcEKCoqQlBYLJo3j66FW2PtmypXOo+AEtw74nKnFNgJw/AdptFwZiDC0NgpZUohQqCuCOQgDSe4jZhKmfgbVv5nKfbTiEdXbkcWVFdVS7lCQAgIAbcnIIK72w8R4BPRHD34V1XyCY1A8w5ixV4VI085p2x6T3HH1IYUtZ2RlMlNRwrvW/ElBuBeZxQpZQiBOiOgzLoycFBzqt5H/wx/rhd2xbVadKVY3skQwb3O2EvBQkAIuD8BMZVx/zGSFp5nBFQYSCW01yYMpCNUrdGf04GTOI5djrLIcSHgFgQaohV64hbo+Q1oynetOd1Uk9keuJlT0AZu0UZphBAQAkKgvgiI4F5f5KVeIeCAQCqF61h0cnC2dod1FIMSqbXcis81w4PalSJXCQHXEFATzHTsQyNq2NWkU5nK/ImvXFO51CIEhIAQcGMCIri78eBI085PAsfpShrLvU+dnRqzzCBqLA/gV2cXLeUJAacRKIIRm/ERemEU150u5upTa24ndgeNx7bQ4n2j0+qRgoSAEBACnkhABHdPHDVps9cSUM54vhSvgxFZJ31UWvedWI4izY25TqqQQoXAORHYRl8MNXGNRlsK7a20kKjKIbUfJmgrRuo7IkkICAEhcL4SEMH9fB156bdbElDRZJRmvK5SOOL4XyINEb6vqyqkXCFQawJp3HVA+XgkYkSlMsIozivb97V4mzr58vtbVMosB4SAEBACXkpABHcvHVjplmcScFb89qp63xlX4i+sw2kG3ZMkBNyFgInbhG2iiUxPOqH6MJaMvRSHBOrg++M3zNeiztjLI8eEgBAQAt5MQAR3bx5d6ZtHEVCRM7K5T6Sy6a3LFMDweu0wlFt2ld8QrC7rlLKFwNkIbOf9GIP2dEjtUGXWDriMhjMRtHj/pMp8clIICAEh4I0ERHD3xlGVPnkkARVNJpoitd4F22a15X68yla4ZKMbjwQmjfYaAunYzynrn3ZNZOx1sjduRRbdVfdihb3TckwICAEh4LUERHD32qGVjnkaAVeYyZQwUTHiE5BEZ78vSg7JqxCoFwImRmnfiA8Yp/1GOmYHVqsNBua8COMpuP8kexNUi5hkEgJCwFsIiODuLSMp/fB4Aq4U3BWsphSV1CY3h7DB49lJBzyXwA58rUWPqWkIVLUZU1/cid/xPnKQ5rkApOVCQAgIgRoQEMG9BrAkqxCoKwLKbEVt7a5sd12Z1FbyamMbpfWUJARcTeAkDuIwXVK74rpaVR2Fllw5Gk5n1XkS4rRWBOUiISAEPI2ACO6eNmLSXq8kcEzbdMm5u6VWB1QkWtCuvo1mclCd/JJHCDiLgJnTRaUtVyYyKk57bVMLbs+kdlhdj0XcFdha22LkOiFQrwQKuG6koiVJEgJnIyCC+9kIyXkh4AICyjE1Fq4X3FXXulBjuR+ruCXTKRf0VKoQAjYCykQmAs20fQXOlUlXXAMLA0T+iWXnWpRcLwTqhYCayGZx/UmSEDgbARHcz0ZIzguBOiZQwIjqrggD6agbyjynFQZoJjOO8shxIeBMAhn0rPibvhXdcL1TitXRW+NC3ME4M3+w3I1OKVMKEQKuJmCh8C5JCJyNgM/ZMsh55xMwZSbj2+U70PXa4WgeUPvyM1MOIbuoutf7olHzOJxDddWtSPLVkEBpGEhDDa90XvYOuBTfYRpDRB6mGN/UeQVLSUKgAgGlWdyIxZrQ7o/gCmdr/1GZ2/TDBPyM2QihAVgkmte+MLlSCLiIwOeYRAMvC72M1JZ4B7g7wQSGDPCjAePF/I6MdFErpBpPIiCCuytHK+cQPpszHddPmcdaB2Nd9jkI7jmbcV18T6ysQfvnbsvGhITQGlwhWV1BwNXRZOz1Se1U2RlXaeEhB/FBIkkI1BWBXViOMDRGE3R3ehVhNDjrhVFYi7e5xdgjVFSEOb0OKVAIOJPAdXhNWyX6A58xyGmQds+q1SPleyRJCNgjIKYy9qg4+5gxBctmT4AurEWx0K4qCOOXtPbp0Pfv10hoB0ajdwsR2mtPvG6uVM50SuPemGJzfSfl5FfE3VuPck9VSUKgLgioFZ2DFKu7O8lExl4b1XepNQZqjn5Kuy9JCLgzgRT+3m7Dl5qpVzDXiZTQvg7vaNGW3Lnd0rb6IyAa9zpmb9y9CIEdxwJJkzF59GDMWlwTHbmjxqXjk+dm2U4mjsa0cb0R4w8UFJTN748w/80Ye7fS7jONT0KiyO02Fm70byZtfZVWUMWkru+kg04Ly7cJH3Ei0cklO7jWd5+lftcRUM6jykRGhSBVoU/rMinTr1Ocgm7mvax2WZUkBNyRQCr2MBjqR/Qwup/PgDA+BZpqmvaLMRG/4E2qUTLQnveyJCFQloAI7mVp1MF7n/jLsP9oBlrHMT63cTMOLu6JpedYT872bzCFStHB05bj2ycvd2y3nrMeSyi4q/qm3tiPe2VKcjcCNjOZ+te2l3CJQTuEU2zfj9V8N6TksLwKgXMmsBvf06K9IePI9DrnsqpTgDKZWYVZDHW6Qu7l6gCTPC4loOzZNzCEaT/uANwA8Vrd/XCX9qpMvobgHxTe51B4z9Rs3ZUDtiQhoAjInVDH94FPaJxNaC+uxxl6pn0rZwKJr+HzqoR21pf8/cfFk4QkJPWOq+OeSvG1IeAO9u0V252AEdiNH6Ci3UgSAs4gcAopSMYaLWa7M8qrThkGGiMqQWgfBffjNEeTJATchYAyGVvLmO19MAZqEzF7Sa3EDsJk5CJd89mQTfLsUTo/j4ng7oHj3uPe9cjeNPEse2zm4MfFxeY0o29AV2fMGDyQlTs3uYA/yWqr9oYMxuhOKRQx1Ir2xk58607NkrZ4KAEVMUNttJTICaGrnUWVCdqFGEcTnff5XUv1UILSbG8ikM1p5K/UpKsVoRgawlSVVNCA/riHMWaCGS3pNSpTcqrKLufOEwIiuHviQPsEIPRsdi/pv+OTYpucqaMucmxO44n995I2Ky2g+uF2xyXQThiGI7QQzhZhx0vutvrrxm78j78/4QzO2KdeGqE0mmqTsd8wj87X+fXSBqlUCCgCKuDjGryh+RI15l1ZnaSeD0rIV/lX4FVN2VOd6ySP9xIQwd1Lxzb556+Ko84MxrA+Es/YHYc5lTrt+tot9Ww8VEzsDvg/LdrB2fLKeSHgiIDaWEztytsTNznK4pLjKmJSLKPNrKdNsYrkJEkIuJpAPvdFXY3/0O3/Crqg9qxx9UqZ0gmXU/M+S4v3XuMC5AKvISCCu9cMZdmO5GBNiZlM0m3oRr9YSe5FQAkPSuMei47u1bAyrWnNWAe5NOVRkQ8kCYGaErCZyCzWtN3uEDVJmepYGdlm+zmHB6gpCcl/vhNQZpGr8bq2qVJL9K01DrVq1Ru3azbvapdgSecngbMZXJyfVDy91zSTea/YTGby6AF1FnjNYrFgw4YNmD9/fiVil112GZo3F01/JTDFBzLwF3XaDdwiDKSjNuq5f58SdrbhC1yCKW5p0uOo7XK8/gnsxU+0zQ2koUrtBRVn9kKZHPRhjOwVeJmGO/E03entzOKlLCFgl4Ayz1pDTXtTGry05caL55oa0bxyAO6j6ddbjDiTxTIHnWuR58X1P//8M/bu3Vupr5mZmWjWrFml4+58QAR3dx6dWrbtUBkzmasvbl3LUs5+mdVqxYEDB7Bq1apKmXv06CGCeyUqpQfcMZpMaetK38VRdN9HUwe1aU4rXFR6Qt4JgSoIKEdQFYZxCHcvdaekTMD6cUt55egXyojZkWjhTs2TtngZARPdSdcwHnsMDQ+VqYuzkgofOQgPFoeLzOCv9DVUrOicVbxXlrN7926sXr26Ut/y8vIqHXP3AyK4u/sI1bh9OVh5xkzmRvSOrnEB1b7AYDDgpptuwmOPPVbtaySjjYAS3NWPrSekrrhO2wxE2WX6ipuzJwxZvbZRmYFtxAe0KL+SsTAi67Ut9ioPQyPN2W8tFmixsgOpf5ckBJxNQO3a+yu14krIViuXzk5BjCs3mML7bwwruR4LuX50G9dIRaRzxHnChAlQfxVTQkJCxUNu/1ls3N1+iGrYwMxSM5nxN1xcZ2YyNWyVZC9DQIX0UtEF3C0MZJkmlnurHjxqG3kV212SEDgbAeWMqqcA0YqB7Nw1qfu5DQZqsbSVgCVJCDiTgPLvWIe3aSgWju640ZlFlyvLlzUMwL38vhloQz9b9t4oR8d7P4jg7mVje2hNSTQZ6nMHtfGy3nlHd5S23V3DQDoi3BlX01zmV044MhxlkeNCgC54J+hy/T012re4PQ21lbzayXUTPnT7tkoDPYeAWnFS0Yt0FKZ749Y6N2FRk+QL6LAaTWv3lXhFUwp5Di1paW0IiOBeG2puew3NZN4p3nRp8Dj0iZNlM3ccKls0mU7u2DSHbeLOAXwsDGFEjiUO88gJIaBMZDoyZJ0SiD0h9cJobWMm5UgrSQg4g4CaCBbRbbQPxlJod52I1YXKlXYYSuF9JtUrh5zRFSnDTQm47q5yUwBe1azMP85Ekxl922Vn2VnVq3ruMZ1RS6ipWhjIzh7T5pKGtqPgrqLhnKTuXZIQqEggmYv1oLaxDS6ueMptPyub4H64iw7YKxmedafbtlMa5hkE/sDnWgjdvhhfL/bmKoBAT652Kdv6Y/jTM6BJK2tMQAT3GiNz3wsOrfmieNOlRFw/WMxk3HGkTmphICPp4hnqjs2rsk0GuqaqHSi38uEkSQiUJaBMqHZiuSY0eFp0CxVjvi/uxO94X9O+l+2XvBcC1SWwA9/QUGw/Ree7OR30q+5lTs+n/Df6sw2b8TEOMKyAJO8jIIK7S8fUtxa1mbB7xSI89/jjmP3hGmQ6LIFmMp8Wm8kkjkLf5mIm4xBVPZ6whYH0PG17CbJmtF5WNpx/M26IJCFQQmATTWSUzXgovTc8MamwkCryx2+YRzOHfE/sgrS5Hgmo0KdHsIWOovdTvRFYjy2xVR2BZlDhIlUo3z+xrN7bIw1wLgER3J3Ls+rSctK5mU2ZVA053rh7MToOHYunZszApFED8dhnyWUKKPNWmckstn1OuncYHVUkuSMBm+DuWfbtFTl2w0jtYWCmiCNJCBzgwry6Fzx9Ixi1K2UstZXKsVCZtEkSAtUhoO5/ZSY2EA/An94d7pKCEcVwkQ9xFSAZG/Au72iJnuQuY3Ou7RDB/VwJVuN6k8mIzJTd+HDm7DKC+1K89e4KpGTmwFTF96koL7tcDfsOnCj3ueTDoTXLi81kgNGXtC05LK9uRMDIhfg8WohHefimL1HcC1P9iUOfG91c9dSUPK4B7sDXNJEZ5VJHvLrqrtK6K6F9O4q3nq6riqRcryCgVh53M4qSEtrdcT8AteHYALbNwqn1Grwhq0lecdfBhS7PXgKsxt0wbsZI30BExnfEqBnlHwbz7h6K+Mgw+Preis059ksObdql3CbJN17Szk7GHHw3a0bx8Wno1zrATh45VN8EjlPEacQd9FwZaaCu+twFSZpDn5qMSDp/CWzCR1q0IbWpkTck9d28EHcghaL7IeopJQkBRwRSqIbbhi8pGN9HPXuUo2z1flw5YKt7WpnPrGC4SDXZluTZBMQQuq7HL6AHllitta8legh+yPgL2w6eRFBsW3SIs+fUGIhrF+7HJSaaLgTGI672tcmVdUhAmckoxyFvSGpHTBXBQNlP9qK2VdL5R+AvbjFTyKjR7RmCzpuSslG+CBNoHTxLs9lX9u+ShEBZAqnYw/j/H2k27aEeMmlVO3UHcYKxEq9q93cDNCnbJXnvQQTEVMYDBssnojl69OjhQGhXHfBBdPPWaN26A1rbFew9oJNe3kRbGMjdtKH1bPv2ssPUHpdpIfSycLTsYXl/HhDIxynNnERN2rxhBanikClhrDdjvK/l7peqr5KEQAmBE4zVsoF+EP0Y8lHtKu1JSe0W3A3Xa2Yzaj8RSZ5JQAR3zxw3abWHEVCxz0PoMuzvgWEgHaH2ZVDLTrhCwkM6AuTFx1WoORWvPdyL1/eUo6rqo4o0YxbHPi++m6vftUwc5mRuPt2Yx2h+PtW/0n1yxjN+klpR2sjwp2rVTJLnERDB3fPGTFrsgQSUfbs3adtLhqAlI2AXcMsRZRMs6fwgcIgRz/ORpYV/9PYel4S4VLthSjq/CWRzffFXzNX2Kojh3e/JSZl/DWLEGeVYuxPfenJXzsu2i+B+Xg67dNrVBNSypDcK7spMoiuu05y0VOQCSd5NQDkjK4c8ZSKj596Q50NSEXNyuN/xHvx4PnRX+miHwGkGVVRRWbriWq4xJdjJ4XmHQtCQgS8e1swdN3IfBvn99pwxFMHdc8ZKWuqhBJSNrPLkj0RzD+1B1c1uRO2T2njHtuV91XnlrGcTUCYyyin5fHJsU1E5+uEu7on5M4WcHZ49gNL6GhNQq0ur8R+aBQ5DU+rbvSn504DzYkzSnMzVakIRjN7UPa/tiwjuXju00jF3IaCiyXhLGEhHTBMYsWA3fuADIM9RFjnu4QQOcxP1XKSjI/7Pw3tS8+YHcqrSF+NoJLRY077XvAS5whMJKDPA1Xhd83VoyembNyYD93rty4lpCJUvPzOSkpqoSHJvAiK4u/f4SOu8gIBtt1TvCAPpaDhUHO+m6CH2ko4AefjxAoZ93IrPtEgremqgz8ek7ILVBk2/4i3ZyOY8uAGKKMKuoaa9KQ3D2pbbTcX7Oq9jbKjujDbTjN9wFS4yG8e8r5Ne1CMR3L1oMKUr7kdAhYFMo3VsLPWU3p46MsKM2kkwhz2W5F0E/sB/aeh1obaJi3f1rGa9ac54IsrGeR3e0XZYrdnVkttTCJjocr8Gb1IH3UEzkfGUdp9rO9txT4YETk5/xmz+iu891+Lk+joiIIJ7HYGVYoWAIqBi/trCQIZ4PRB/7h/YgbHdlfOiJO8hcJQjqmL1q9CfkkDBJokYdKSyRHB4IQEV+lOtqoQzRrtaYTnfklo57Ys7tVj1ShEjyf0IiODufmMiLfIiAt60W2p1hkVt8KHCpom2pjq03D+P8llQ2nYVRUY5aUpSIrueaw9jNUfVQ1gvSLyIgFohXcdNtwIptvfAjV7Us5p1pSFa85d8El2xv9Z8l2p2teSuawIiuNc1YSn/vCbgrfHbHQ2qsn9WWqqt+JymBFZH2eS4hxD4g3btTSjCRKGlh7TYNc30pWinds5UWvcMbmMjyfMJqN+rDXiXEzMDLb1v5avO8zt1Dj1QfksqXOQRbKFb+sdiGnYOLJ19qQjuziYq5QmBYgLKO1+Fgozw0jCQjgY6ntGOlWAju/I5IuQZx49R35bBHX+74GrPaLCLWxlKwUYJeGupoZVIHC6GXwfVqU22CumE3YerKWpVRRK4N3YoBmGyFs5Y7SCsbP8l1T8BuTvrfwykBV5KwBZNpuN5qblRmzKpZVb5offMm1tF1NiCTxi1WpnI+HpmJ1zQarWpWhuKNr9hPrcfM7mgRqmiLghsxRcM/JimhUUUk7DyhH3gz50bJlCID9ecVtUmbJLql4AI7vXLX2r3YgJKYxkL9woDmZZmxXffWSpR/+svK5Yvr3y8UsZqHohgEDUl1KjY7pI8j4ASZFT0lGiKpZKqJtAel2gbkG3i7pOSPI/ADnzD3Qn2UTi9m4Z+/p7XARe0WK1A9MTN/E1IZLjIV2QvAxcwr6oKEdyroiPnhEAtCajto9MZTquRm4WBbNgQeOcdSznhXQntDz9sRmKic206O+MqxtT5RVtmrSVGuaweCBzHLk2Q6YLh9VC7Z1apViZUGNQ9+J9nduA8bfVerNBsuAfgPs287zzFUO1uq83XOuFKat5fY8S05GpfJxmdS0DCBDiXZ7VKM2Um49vlO9D12uFoHlCtS2qcKT15M37+8Uf87xdapi1eql2/cFc2xnQIrXFZckHNCagftTA0pv4muOYX1+EVer0OM2ca8OCDZq2WDh10mtB+//16xMc7V3BXkRmUGcF2LKXd6Jg67JUU7SwCasvzzfiIUWRGi/axBlCVeYVyVl2Bl/m9j+M3331W2qxWOokXFkLnX1mbXLh3L/zatatBT+s2a1EyXURtP03lKtKHAz6NHP8+FVH5YC0sd4n2Qc8ovD5x9q87wKCPhw5vQd/8iTRnDKZ9e6kzvT6I1zWxf50q2HSU8WdOV65Px+e5b7MqrjvG6+xYmuhojebbsorrUnhdrp36/HhdiyquO87rsu1cR8nPt1UV13Fl1mJvA1Wqepu36U0PpjD6dizQNm1qwn9LkvmEFeaMkk/lX/3aOa7PnMnr0svnL/nky0U/HZ9b9pIl2wrTcXtnFE9e5+vgulxel2K7Lq6gGaJz41C41zb+Ps0AfYD96+zX5PqjIri7knnOIXw2ZzqunzKPtQ7GumznC+4pm5fhpX8kYdbK4o4ljsZrHyzF4D690KK5CO2uGm5l3+5u2vaSvisBXQnv48aZkMOHyBVX6HGaD6EVKywI4gMrIYGPsWAdMvljqlIw5x5+frX7IVMbenyP57TIG2rnybpOmzdboWNTu3cv396iIivWr7eicWMdWrcuf66u2+TM8lP4AF+0yIKRI/VoV+ZBmM0H2Pz5FvTrp0PfvrVfSFVRUpR5VwxKhbncr1fDr01P6HhzGH/fCP8OHaALDUFR8gHeGKkIuqif3S4W/W1F0e5SYahspsCLGbPD3/44fH/JakQHd0HzruEwHT4MfUgodA3CsWd1Koyt9mDowiFlizrzPmuWGYW7+NFw5pDtDcc+bIIeAb3sczl27QaYT7SGTyzrS02FLiAQhvAwCmfp8L8wGdGv9K9QoO3jyafMOP2VBYaIkn4Ek9wUpBcdh+6qU4idQmnTTvrtwt/QYF97hCWGwXKKUpXZBENUFLL2n0Ru6BH02dHTzlXAqTlmnJprgW+bkvqKs1HQ1fE7GvuB/cd5zqI8nHg4C4EDo2HJz4fl5An4NG9OtkcASxiaOgjVnfcDN4+bYIZ/jwr1sVol9DRda7++DZM2IHReW4QMDYJBTwHp4AH4cnKQfTQbBbtykXiKkpGdZFxnQertZgQOqjxOxrUWxP/sU4Z1aQHZH+/EiYlRCB4WwrELgHHDBgRccAEF5Bzk/5SP2GVFCOxTvk4Vn3z/nt/R7pr7YBzgy+mqpbRAvstfY0Hc1z52hdv9Hx6AcXwggi4NQkhMyJn68jPzkfNtLnTPZ6Hz5A7lylMfTKlWpFxqQsBFlfuXv9qCRhy/ADus83/7G8dG+LG+QH4XSuuzGo3IW56Dhm9mIXRk5fqUEJ1ySRX1vWsgp8ptUW3d3foYfPv5IqJFJAq2bIFfQgJM/B5lfZGN/HFH0Ou1HgwXeT+nPnO1FdV2GKIuw9GhrO/CymVaTlkReqsewVdWPqeuO9ztMPwSfTnJikHh7t3wiY+Hng+egq0HyCsH0TN7qWyV0vGbzdA3oKAdUv4etZy2sm86NJhY8cfAVsSWLrvgF8S4OQMaY9yxm+CTHYzMl81IWX0QhaE56PN7j0p1udMB+988d2qhN7TFmIJl855F0iQlsJekMOe6fBkPYdHUsRhbIrEnjsfyxU/j8oS4kgrl1YUEUmlu0BO3uLDGmlW1a5cV2ZQZ/KixycwE9uyxIi+PD6x8ICpKh7ZtgQ8/tOCnn6yaUG+i392dd+px8816rFxpwWefWTUhXwn1Smt/0016ZGUpO3nbcTUBUOf69fPTopL8lPI9hviP164JDCz/I1uzlledu2tX4OmnLfjiC+CZZ/QwGHQ4xYfGpElmDB6sR//+zq3bqsDo9dQI2R5I1qIianlszpxWC4UB/ul8nPczGxueh+v//Af++2kPDJ0zDs2eHw6f+V/ihbFbcHP2S0i88jkCqvwQV9QyZpjtarUsfMBHvWxARsxepHLCeRmeKAf55EMJsBasg3+vXijcXgC/ziaYju2COTUPUS92K5e37Idjw00ITiKbgLJHiYSavII/rYh4yP5DtYOlKw6sewm/B1+L7iHboW/eAas+PY7oEwc4qZxQvrAyn/L+x37820DeZQ7yrdKk5X3DB7n9Zz9zdIY+4jEEXX4Zig4dgm+H9ijasxdWi3I2vbt8YWU+mVMpLH9C4Y7fldIUjEN/5uPI/J2IZHQlilulp4rftb6gFzZlvw6j/jSG/IMTpMwM/Pw/I/SBGejR9Z+V8pccUJrF6NcNFMDLCz/mdCvS77Ojpi6+0HwigOPwKwWctQgZORKnly6Ff8+eyP3yO1gy3yopvtKr0n5HvWBA6A3l61MZlYDmKHXgfbL9j1+wc9d8DPr8aeinP4MDF05A6iv/4fi96+gy3lNA+H16u8LW8VHUqPO3iSG6KiWfqA4IvoLjlfcAoqbPxPFRUxF+72vIePppBAyYR2E/ttw1KQziqTaJ65vxEDDCl9dUvg9PPMz5FO9T2ze53OVomtASyX1Zyrpb0X7+vxG6ZyrybluELTc8iFb9XkK7HqWT3rJXWvn76k9hMuatyvVlvsT6qB1XuwRUTIaIpgi8OBXW07cjfOrzKHrgcUT88z2cmDwZQVfMgCHSfn0W8lKTLnv1Zc3kRIL3k6MU0D0Yf26/HbFXTUbztNegnzQT6655Eo173Y2EPn21y8K5sjQYD9EYcg6F9wze7dfBwFURe/XlfGThRNhRbUr735CKgQkIumwEX39B6M03I+f99ynMD4FPU8cme+q3RX0nDJHlueXxGWVcY19poFrR6IJW2LzlaRzMbIItIdNhaUw5ac8WBPjFoNcAx995xz1w7ZkKP3Gurfx8qM24exECO44FkiZj8ujBmLV4pdO7bTy0Ane1GIrFJSWPX4i0t8bQsUxSfRDIQyY1ONl8cDevj+rPWufSpWbcc48Fb72lR48eekyebMYll+hx+eXlH9D33WfAfffZirNYuJRZLBv06qVDI/5A5+XZhP3AQFsepelWGvxUapbUJKCAkcP69ePSKi7AA8/rsTDtJJDXAFQU4Y03DOjYUYfZs83YudMm5Cth/8ordbiQGpvt263YurV0EtCEy9Zduuh4rRXH+cBReUsmBzpVcXFSgvqzz+o14f2ZZyw0CdLhoYcsmtB+++3l+1dyzbm8Kq2e9gC97DKEjhqFo5deiiarViH388+1v+jXXoMh2v430cjVAdvDunwL9JzwBF7soK3mIPhvn4UbsrbgyOX7kK17EIe6ncS4ojwEBr0LS17xYJQvUvuUv8qKhhRsK6ZsavBzvyvEpts+YsT2myuZyPg0CUXEk3qc+s8dFPj84NuxIwwxRxHQfyYs6ZXNL0rK9+HKTsQUPfRBpeOjzp2mE3Qhx9dR8o8ORuLHd2LdmEnY0ywaJ6nxCzZno8frr6FgneP6lMDuy6+cPqx8faYjrMueBFbcAF2gPyKnPoPMf93PfL4wHdmiaTbD738B+T+c/RFZ9v5TRTbmVDWfzo7r8Q76416KYuXH0uBrwMD5D+D7yVOxacaX8NUVwWSNxdAPX0LBG2evzxG3qo6HXD+SzA9yDP8DM2fsppQUNHz5NaSPL9+2qsqoybmE2/sjex09XEZMRYvAFKT++h90++RVBLxUeSJTk3Id5fVt15ZC6h048eCDNNXI0IT2yGefxak3o8pdkkovhE2MST6A4+LPWUBeGfOYchnP8iG6YyyMo5/AnrseQ1tOuPZSaG/08P1ocqrlWa6s3Wn1GxJ+19PIeOIJrX/qNyf8nntgXNu6dgWe5arghvwOPv8qtt30IILCUnEg6TGuaFyJzt1tQnvJ5YFogEF4UAuJqsKiNsOYklM1e6UGKXrmTK4MPcAJUxay+F6tmvi2SULhPse/FTWrpDS3b6APBn7yJH4a/RBaZURAn+MLa2IRBr55N4zL6uY7UVr7ub/T0f7N+VTOvV1eU4IpJwWHcgLROo6qAuNmjAjsSYtflZKodVmCHudqvZK+AkNihtLTuzglzUXakgkuEdrDwsLw+OOP47HHHiupXV5JQNlOKhv3C3Cb2/HYvNmCq64yY/p0PcaMsQlxyvxCaaRfecWAZlXYZ55LZxSPDXiPrk1P0pLBB+pnRwk8J6jtPUl5Xpnq5OdbNTv7FrTZVCsAv/yiJgC2SYAS3EeN0uNvml88/bRZmxioyYH69fqaS9oq3XGHiQ9jI/xD/RFArb7StG/8JR+9BwRBlcm1Xk0DPvj/AtC7tx5rufz+44+2nz9VjjI9USsHRyjovfWWbelcKc25+o4nn7SxeuIJM6hU1+pV1zz0kB6Rqaew5fYXsDekL9rs/wJ72t2EXkUr0G72FPycFYElS6gtZF71p1YE7r3XgGQujZ+42ow/lLKMx31oi3nttTaBc+cMC76mtcShaJ12zYwZBq3906ebceAXI676w4xliWkYnf4s/P74Gaej2+DXpneiUfYQHA+PQtA1ejw6PgvJP+3Fy2+FIC20o8Zn/AYTBr27hqYkBoyZO1CZPWspadsWdLkoGfq5efjmlduhzI3ap36PBvmH0f2+S9BpTgMc6jAXGSvWon3a/5Dj3wgpfcegT6NuyG5wAZavfh+Zgc3wR5ObtFWW9+fkIYsC4p4Z1+G1Aa1gpJmVj9mKF7r8BxEB2fhuwwNI+ysU61rQpOnIlxjYcTsSbrgJPxg74GOu8kz6+TDMurvgGxyPsOOHUWBIwYmwMQgp2Is8v7vw3YW98fJyX+R+lY8lDz7HCaUVu2Knoe9fNPN6WY/Q9XOxdWUO9hTegR87RKDX38BVhXvReNCb2JMxAfMyO7J84OL9O9Ai8k20S30IpoiPsDtlPdqlXcbhWIAc9iem5Q3Ubg/Hwo3BaHP0cVh0RhyOeBXXfu2PaJoA7Rm1A4d930FW4KPYFtcQV1+oQ8fMVTi65TvkHngYs3sbUcCJwMT0HHRp+RSdV2/EvJQk9Dp8Au2P/wK99SH4m5Qg1B1/R3yFcONt/NyO7+ej84gFaP1WEBaMMiFi5SLmXYbI0+/CNDkUF11nwI7bNyPr0PdIC7kEG5t2x9XUDrfrmILcUxOxZfcN2B6n/nS4cUcO+vJac+oOnLA2Q1DBO6xjIvIN7yM4hGZIhvVYPCkM+d9a0PvvT1nPx2ja/nV0/aQZ1t1vhvGnA8j1/wdM+scR0LonrvjeB8nDU3CaZkv7ov/Ajthbsa+9DrOi82mmNAl/bAtFvv5lNM5+GTqrHhF5q+Fj7cR7oDdSQt9Ag7zFONpgI1o2W4TGLWZiw8XNsexz/ibt2I1Q41KEBt2ALgvb4EhjK071ycPRsFHkfhWiCsfiou0+yPgXfTA+m6wWspAa9h8spVnfK+FE+MWXMJrvga7gffha9uBk4A40MMTDT98WWS36YW7DJjhtMOKarfsQGfUEOiY8jJxmg7ByqRVNs3JQpL8Lsaenot0z3RHxsAGrIgphsb6KfL89vLfnoP/PnNxx9XHLC28jL2Mbr5mClPA70dDcCKGn7kCRz1Uo1L+IPN92+Lbjxfi/U0fQptODyCm6Ex+k/R+2chI7/tdcNDq9EY0v2UhzkkfwFSfMpykjtjrxGPveHY0SRqLN2gC8d50J4b9+BKtOjcc8BD3UEG3e/hP5x1bAnP8M/M1fIzNgNiwxRkRnvAJL2/ewNbUrdsZeg81Ndbh9C2PRd5wIS1ECDm6chFcG6zCEq059D65DxIVvIrjB21id749TXFFplLOU9byH5s3mIOHLOHzP75/p5W1ofTKVY/4HCgP2ISK7Db8vnVDgMw4Gyyv8nt+C5Rfp8KqfkVr0yfhjexiOhryADzofwfM/xqBRj1kICf8Dx9e+i1d7+aIZ781Ld21FdNRaRHUdjo2XNsFX2pjv5dhydST6H2iZ0wFFkaNg3PoIAsxfMrCqCdkhHRHbPI0mM//Ejr8eLjfmr3IlwX/dGzi5pjtS/BIw76JgXEEFUO/A3xHT+kWk7nkdfxTE4uc2wLVbDyIs6hG0S3gAOYMG49HvrXj22xzoLJexfq5mmK5GEZ9NYQOomcrtAP/uz6PRghjeVO6bRHB35dhQcL+VgvtirU5nCO7peLFrDKZsK+lEEu3ml6DPuU4GSoo7y6sI7vYBqZjOTam7bEpjGXdLjz5q0uy/b77ZJoiWtE8J79u2WStp3UvOO+N1HTWQDbgPZwcaY9RFOkbHr9zkFJifnYSTQ8bije3/h9t+GIpPk37CHfrZ8D+ejIw7X0AHLgOrCYqKpnPggM0mXrUnJkaHzp11XDWwaft1FO7Un7J8UYK+Shs3WjRhWh1Xjr7tAjjxGFGIotbpsGzdAF1GOqwNY7kk3gfWzUHwm/gHsjs1hr5VW+364LS9CNm+ghrW9shaPRAGasCt6VxCWDgT4Y2CEcnl/UNTabeZyHnGf0dzNpOH+A8WwS8qgqZNtDF94FkULukJa4dX8FdyEVpkrMMpv0YIjvCHf/BkhDx9P0KuY1t/30r7149hik6A//CboWffMi81IvSK16Hzi0CBZSwCqW0tWkcBaf4KZIVtR4tu4xB4L4U4TpgKf9kCQ/PdwI5hKFzti6C7tiL7jSMw79vK5ZFYBN/RDr76OJz+ui2Cpv2Moj9bUbPeBkG0Jc+7uwhBwzbg5L870E42HKEv++DUKDOCEvcjcHAqTjzbB36X0p61G/u49QiC+x9C0cquCLwjFEZO4E6NzIXfuO+xY+5JNDq+D3mGnTC1nopWlxfAvCORbWmIhlcbkPOxCcaAHaB8CGR1gfFjKyIn0nbe/BfyT5hQdLQ5Au/xQwGPm9fkouE/jyLvz3hYe/EHknO9wp9zEJh4HNkPxqPBFAuyV7+G/PeMsIasReCImxHc/GaYDgVAd5keVt+/NUc3a25TRA7WwXwQOP7QaQTcncObJBKG9gwkyAmdz+k8FJwwImtuKAJncfLpNwcddl+Mdp2boyjNH3lcTsn/D+3iE6xY+9mLiNi2jYJtKFI6NcPFk6ai4H0TQl4qQFBeGAIS9Mg+QEGKZerCTTg9LVgzWwmljXT+X5wU+HFJq4CzSqsv8p6yIuZFK/QNTyP7uC/NDWgP3YDtPGSG9YsCmvNwApz2I4xfz6M9vy/8urVE9FNTcWJcJCK+8UEhJ9DWHNYTZoJfXhCCWvvi5OucpNIULOAmWoBn+cMv3A8hTfUo2GfC8TvMCFtgop8C7dhpWheYxe9RUA5yKKQZPw+mzb0Ou47+gvz5ryJWfwRH/Pqj63fPcKYbgtDXChHUsAiGwmBYIgzqFocloxCFq2hmdswXMVP9YeX4ZP3N8mlOpD7kPhSAxjSJ0Ifx/jh5SvsO6n3DoKNts56T4ML1BdBdvAk5L74J84Hf4dOlFyKf+RdOz47jfU4zsPZpWKdbgF5Z1yM2II6TcX/aT/sha5kVgRPZdq0eA8Jps67npP/oBBN8r8qDT4IydQtDuHJw5UQ3Nz2Xdvo0w/gwCKduPoJ9Yx5Bq6LdOGRohrjpM9B4T2f40X8joCvv99B8mIt8kGcJ1Pw5Crfzfp1dhLi5ZpqPhSCX1kYWOklaCmiLP98Hod0C6LbOdAAAQABJREFUEHaDAbknLSjKJhSDieZawfA7xe/UHLbzzr+Q+eSDKNr1F3w6tkH4s9Ng+pKC5oX5MHWliRiXPnV0qrRkmxEaehrmw3qkPUs30gX8jaECxJKfg7AI1dcwnGB5tHSBX3/a0/hwjP2CEBDji8IC3ifHCpBzL7+bj2dg8+1PoKVxI46b2yP4vjvQ3m8w/U1oADbKQHde3jNmjjlNLnW+9EPhmB8dnoa/P5uNfn7jCKsZv0usu9BKXgWsxoyIO/xhCuSYs1prFoFyMuVr4CRiDMf90yIcn/RPmLavpg9NQwTedhd9CEZoZnW6W3LKjXmwL/uRfxopt/ogcAbN1VpQGVRk5aTUCL/AIuT8FIi8DXoEccXPmlUE34B8bczV6lpuAZU6VPIEPJiD1Q+9BPPmb2Ex6BFyzThc+vC9yP2UK5Mvln8+aj/ebvQPvx6SPJXA7g//WUZoB6Yufc1lQrunMqvrdvMxq4WB7MXwcO6UlOPpkCF6TJ1qQMQZZ7rSFsbxwaT+6jIlMLzgT4y60YLbnKgd+ZydlOMpGscjgyYV+y6fiBuvo3lNZ9p2/z0bmVn78X8rXoJvKO1QipPSwmuaeH5WUQ1OTC5Eqg8fqoy+oVmNUrVuOnqUDww+9D5trTlA9aKDYzqXqS00N4iePRtF+4JpNvIHdEfugsmcRi3XCQQ06U0hpyOMIVfDZ/9ptKDGP6DYkbTI4ANjShQ1gVEIpRASwzaYo8JQePv10PuH0kyDTlw8bqC8Evj86xS46Ti3KhR+1/Ehy1WIyKQncZITi1+3d0GHpk9y8vAQwhta8blfOq4OvBPhB2jXSgEyfX4XxC7+NwVrTjT+BB9KOmTl+qDBpEfoEMn+UngMo0lJXgMz9l9sRnzk9QhsHKo5JfspBX37HnwY9qQW1Yq0LWYKWbsQ2G0PdL1Owr9vIicFC+FzyesIu5MGB9cNg/UaCgJMKvpD2Id+fNcfuRSsY1+jsEVTmXBtVaQDj/PPZDOViUjiwzGpOY/xbwhfmJQhhTEhCCuW56Nh+AbE3xwPMzX5G2e8iu2HnkLvbg0RRaFdpdCbKOzQsrYkHfvchKB+NM0Ja10ullNeGwpamSHw69SJfyW5+XqrUtWGI68xtwn7ZT58czl29zSCT8u7kPfVV7CEtubE7WJE0TcCvGvLJn1rco5l3KTWFKyKx9Z2nvf19hAExlsQ3dTACO+jsKrRa3T2vQtRjMVKMRsn/K3Y9PFHsJw4ii7Tr4IuJxOpHxzChpffRO+29yKydeCZqsJaqboZGoXJEm+GHwUzPQWk4M6B7KMtn7JxL/TlubbKHqgBIrm4eyYl+iDzex3NZNYARz5D9GMPIv9//9OcYbNnvUwhdbo25soZvaSekmt9KcD6R/khtBlb3azkKFeg2vtSENIhsoPqTXHSzJPCEdEQyI6zYP/XO5H1yyx0Xfgkgt6nBrRBd2xMmohereYhsmPpd1BdTdkfaBiA3B1+MNEUTscVGtWayBa2/qg8BQGUcpmUE2JESAPtfck/eUpYPZUJ0xuvIPblZ5E+aRIi7hmDnBlT+aV5G6aoHPwZOQcDcRPiIkpvgCJ/i7aaFkmhT3Erm/xZT0h8KAL4/TyT2N2wpqEo4CQlOzcL++54CI0euR9Ry7jqM/Zp/P3YkwgdNA/NQmMQ2ER9B/w0P2n1TqWieK4YsFxDpE3s4tecBaryw5EZwe8Yz6kUEsUxj7KNufqsvoO5ednInTEFDR+eRJOufyHqX08icxpXL5vMgSGUWv8W6j4pTuGq/HBOxKx0wDQjPJzlqj8eK0n+/mb4cGIX0qq0HnXOX415q0Bk0yB/y9jHEDLsMsQdO4XwO5/En3c9g+MXt0Kbq9vzN0qVZyszosz9lusfhfbRV2E1V636hd9Fc9EWWr6cGH8tmo4hgn5Hqh5160Sof2z30CmGBMp8fConL5zgRvZH8PDhyJ4/H/nNY2hq2BcRzcuPj1Z3UCh8Arkixe+ZQeufao+6mUg+wgJLkBUNWB+o1GCN2nH1TzirzGe29Q8v4KTMij8apvOHOB69tm7Fmsc/pWJr5Jm87vpGBHd3HZmztStnPR4bNa801+DXMHW4eghKqk8CJWEg7Tml1Ve73nzTrNmbDxnC3zA7Qrur2hWMhvwZv1DbUVVt5lEXSZnHPPvPfFx8yyRcuGUG8qnRHNjDF1+0ewwvPZmJKa8EoeCn/yF/1SoEDByI4Msv15qRvWA9I0n8jWBqe8PHjtWOmU7k0KlxDfJXDEKREogTbS0OGzcO+lClYbIJIP4XMDzaRc9oNu2F+/fDr317Rsa4lELGcITQmVcJIkWHrXwA0STomxZ0vmuNU+9Qm7nfqhWYPt6fmsPuaHA/tW2fWrRjRfsouF8URSGNAhs17SrpQ3U4TaEvedNJJDSYiXbvPoG0SY+h0TuLcP3UR7D7986whl6EKD7EYhfbftqDryp9oKtoJCoCioEP2mg6o6qUPPArBCZHa2YFwcNsecuGs/PryInFsaMo3LERMXNewYmHHkLQ4F4UEmNx8rH3EHzVGJYSrQnsqjxnpKNrD6JF463o/clM5CxciKDI5uj33kzsGPUO/tgTjqHTKDXbSVbKdkV/8ZHOh3HZpIXtK3+o7Gn2bR+dU7mKkDQWeXTchF8LhNz0Bk7Negf6cKol1WTDTlKaxIINFJrpaFs2qfqsnDypFMrYUr0ZWlOtNg3BwxS1G+DgdzsR1qwtej96PSx7/qTWNReXPHwP7d2/xtFV+xnVR82cKicVRjB7ASc9XAgpm1T0ENVvR8mSSw3kh/5oMPlNGH85xfuOGsg2l8P064/UOtPhpAoHAFWfvbCABVX4KBxcvRd6TtS6T3ob4fv9kJeehH6X3Izdh7sg7ydqkosnHBXbq+515W9hL+yh4gwH0oo5/W/2jxPe2+by+8XIOZkTULCZ37/wtsj5/BR2TFrEbYOuoYI5oVyVKuTf6WWcqJeXXbU8yg8jbFzpd6fshan7U5H/dRHaDHsV8cZmyM1MQ4ujvbiaNAeFXxhxdADNZAaWmekUX6xCPhq5mpVBk7eKKfe/nOhxkmsvmU+lcyJZiJAbXmIEm+a0cefn77rCp8UcOnAW0B/mCC9zUN9aB/Xxd6Zh8W+AvTpzV2Wjed9H0apJJ5zeFIyIDe3QNYkmZIuycLDRXiTeYv87UUSTnPDpF5B3S26+twXxvLdCeUfnfc3jdDx2lAq2nuTv5A0MwdmH36dVzNaRDqvzkPPe3wi6St3wne1eaj5G3+4XLBzr8qeNXEkMoC+Wo3Tsx4NoHDEMLW5qj9OvhEGfGYYBY+7Eobk7kXxgMzXuvR1d6hbHxVTGlcPgRFOZ5A8noE0ZwX3wtA8wuWky3nnvMyxdabOdSRw8GuPuvR9jR/bhl8f5SUxlKjNV0Qp8+WDqCJtAWDmHa4/8+99mUGmMl2n76+8g/J4rW1REt73vGB5ShRJTUQmcmZRDaPqaZGBldxh0BYyacByWVIbma9AAPowaYGnRCE2/6AvLX7StpAOUb5s2MKgdqZhU+DctKsm0yg/PdNr/q4e4fyKFWE4MQNlaPShOf2nVwsWlPfAXNbNfoPEXt+Fg81w0XR+Bk0+8yHCJ9yJmfhwdUCkL0hZXOU4qB9Egml4Y11sY3o8h4BZVlkZU9JeAnjotX0U++b8fxol7T6PxV+xTbCyyqPUPv/9+SqxFSLvrD/h2psZ1SvuKl2mfU4aZEE2n4JKUicP4A/9Fz+/vpz25H8Jus/9gPRhXhAYP8xyfg5ZTpziZoKTjY8DpJdRwX5WDyEdtDEvKLXk9cjHNDVryshKVY/GJgs3Uet2rR9gd9us7+QzDOm6h5jWAArDyiNZx8kNNvum4evgX0VzEplUrqafkNes1++EgLSepefuH43CQp2nfbfy1smCoopiE0q/Cv6t9AaBwJ80K/qduhpIWFL/yUBDD3vlxolSS1EY/h+kWOQhcrTngo4WRtHdd4FDW16X0upLr1auawJ1mdBx7KYD29Y7igBelZFJw4koEJ5uVku+fDCVYPCOtcNJqoqaXZgP2krqfHbVT5c/5hBD4f8XkS3t4eyEPS/LlreJFxZOekmPq1cDVQP/O9rmo8/m/cmVJzQnKpALkYnPMYrTq2o1iZL8yZ0rfqu+hvTjnek5uHYUPVVcrx3J1X1VMeiK2Fw6xJF/BNppt0Xm/YlL3euCAijdSaa4Cfh/UBK1iUmFAA7nK5CipCZY9B3gdFdAVoxOVLUNp+TWn7rIH1XtWFcR71FEqpDLCdNDWzlx6eqldaZXZqJo0BV7ClRSd/TFUcfiLHDihBg7idQ7isat4+up7aC8F0A6/omN8ST4VmrOQY6HS+PHjERMdg+f/9bz2OaAPr9NWFLSPbvmPCO6uHBanCe45WDQiDGOpHALntsAZI3f7vUmcim2/TEeCnd9t+xdU76gI7pU5/YB/UcN2K+MVNKt80sVHlK32v/5lwbRpFCKo9a2PlLdyJQWwAAT2pcBMzWI+Px+/ugGOZa1Ft5WM9XzNNdVqlhLgdHSqVEmFXMycPh1Ff/9NJ6IFZ67PWbyY4fw6MGxaV0ZX+YwPniMo2LkLvo1jKWBehdNfXIBGjF1sb+OREsG9AZ1NVdgy9dBSAnfQUB2FcJuGrNG7Psh6wyZU+1Owzn6bmp5oRup408IQaHSEaxuMrDlvo8E9d8LC0Dmpt+ynFpcC8e3tzrSx5I2KlJD1khkx82omuKsHzpG+XB6mIFoxZb9LU5p/Mlby1ZXPqbxqAqJsalWidSpSsJX3aXP4HYlAzNvkQsc2e0mFUyyimY69FHQFH6qM5GMvmWlS4HBTlVaUxx1cZ68sbzimnLMV+Qtwuzd0x637oIT2VZiFVrgIbTHYrdvqzY07zTCRv+BNLdJSIka4ZVcTGKO+WbNm+Oabb9yyffYaVfmpYS+XHHMvAsZ9WKIJ7apZNqF99AtL8erE4YjmzN3InVm/+M/DGPVUcaZtM5DYPxZpWye6JNqMe8FyXWvUj1QBTte70K4isSjnn7Q0aNFjlBNlfaXA/v1xkpGH8n/6CaFjaHf6MaNWdHwauY8sQtY/phZb75a2zsoYkmaGmfGJs2njVdi6E1OmaLHRG73zzpmMAQMG0K6zxZnP6k3o6NFQS9yn3lxD7favaPTei0i54gq+PqeFidMFvcRczTSzFSWkKq0ZaO6gNGQnn6RA3o+2wDR7sGQyG7XEvhQuleZNLaWrzUNUasAQmSUp/B4DNydpDf9uFgrttuNKaFdJz8mKH8Mm+ra1z15p5vKp5U2lk1TFpLS/wVfY/2lWu0fGfmKA6a+KV9EM6gnaPjsQ2lXuskvxajdbTn+oiexVuaAKR5QNd3k77goZHHw00IbWUNE01UHe8+Gw2tdBbRW/G/+j8c2l50OX66WPalVvDd7QggOI0F4vQ3CmUrrbayZiv+IthkddyF+bW7WoYmcyyJtaERCNe62w1fIiZ2ncy5XDPVin/YQVTw6p0CgTvnu8J4bNKNXGv7A6DY8OoKGtk1IwbXyLqP30VWE3KqRPPvmEYQevqnDUuz8yajFO4i/NprW+eqo2QXrkEVtoR+V86A5JaciV8K5CtBTs2gU9NyQyTx6BvTGbqA+bAP+ONvtF47p1OMmoKsFXXomQGx9AOsPRGRqYNO212jFQXa+SsoVt+FKpAF22j5kzdzK2eCwinqFkzIgOaeN/446SFyHrzTxkv3MCEVMZ4eCXJowZbIDaqdHAaCtKA6+ZS9AuMuospjJl61LvCxkW8Ni1jAQy0ibYlz2fy5BnsR8y2ogDUwulPa+4vK+uV7awVW23XraO2rzPxN/ajoeXcqMl/3JunLUpTa6pCQG1v8NPeInGAzdRC2m772tyveStmgDdjDWhPYpTUmXXLsk9CKigDb/jfU6pTtFoaTz1IvbN3eqytRMmTMBirspWTIWMi3sZ9+EQjXtFMvK5TgncOMKeI4UPLp+6EKNnlISfBD5YvgkPDbjckY9Pjduo1+sxhdrQiRMnVro2PLyCt0ilHN534Bgt+ppRbK+vpGKiq82ULr2U9sPuIrQzIsuJRx+1mcn8+KO28UtQUhL0L3yCGMtBHP5HC7QpFtz9unVD3HffaXaQyklT2RoGX0ljzDIRARTbtLttpitlOSv738L9VJR36ICsbywMhcYwZLSVNUT20bIFXRZIR0KGgevOnSAZbUalsraoSgOubJrt2Utalf+eg+TXgRrwj31o+13ZlCTkWsdCuypOac9dnUoeoN1wvQjtrobP+hjwjzGV7uTE6S1cjIn8FFsPrfDOKs0UDhXXMFpUi9DuXmOsp9TRB2OhVvpW4lVtYzKljXdlevnll/H8889XqnIggxR4WrK/HutpvTjP21tQVHm5XUMSmojrxydi8Tyb1n3bur3cBORymnI4JylHE6V1j3awM6RzavGMUtRD4wT2a/bt9dXiKVPMGEnN74gRlbW/9dUmdY+oKCunaOaio9bcEBUFH94vYVOnIjBWh18af0Ir63zNoVeZl5RNeiplVFSTiskQRQGbdtfKfOMEVxciHtdrIdO06BfM7t+bWvTWtuuiX7f9xGmOgvaV9FrxfnQIVBEtst6gc1zFxCKU2YyjpJxWqSd3dNqtju+ka7CK8tCEm/5Iqh8CakflrrgWv1HIHIJH6kX7WD89r7taaeDGyD0LGBYgnKsZN9ZdRVLyORFIQBJ17ZH0P3hV07y70hcslM7Z6q9i8uEKsKclz2uxpxGui/ZSk8jIYNVIPmjZo6zzqr/TtO3VqPy8yqKE9nAGv6qPJcB0xnGO5i6bY8boMaCKyASuGBArtzTMX70aVjpnloRa9O3cmVFdGjOKyB2ajbs+KIhhFr+hwP04ie3BTizXBBl77bNaGKXgmC1yQN5y2mm/atAcHpXzqBLcVbQXFeIwkPbpKikbd2VKY+KGUpWSg/mtyqfKaLTAu38OVRSZvyguXgLGt5ZUrwSa0do3C0do9/uOpn1kHIt6bY8nV64crTfgXU6d9ZrihO7Sntwdr297awzQwqL+gjmaWWmsmIzVeMzl16LGyNzggsAgRgeuZlKWBmVSFbJLmVzytqYEjlP8bOQg/nJNy6pJ/k2brPj2W5uQWt9Cu2p33g8/IO/bb6mhtqmo81YfxPHrqDo3zUHuR0NornIXBe/pyP3kEhzpv44/2VeCW88wBsSJct02qrjNTDmLKLQzNJl6FoeOtv1c+dBvNWiI7b0yVSmblD25CrmoNPEV/7jHBwzV/uKULdXz39N4CBu5Z3MiNb11sfmV5xNyfQ+U9pHuuwwvsMT1lXtRjZvxETc1Pa2ZYsgEyDMGVoWHvAh38zfpQxykMkFSzQh4t4qpZiw8J7cP955MAuYttTV5xS8HMbGHfQOYcm6j3AmudE8+z+muJ7RUCe59MMalTV3Nrb5nzrRg7twqbEDqsEWWnBxkc4McMFRjgwcf1GoKGjr0jKZdHSjcHo2oZ5sg6HJuSU1tvPV0b8aTVj87fXD8pkLaWfujvfFSbAv4Et1Xj9M2X1EhGM0ZjJHeUsdoLiqGb/X1Cz6M9xz/o/ysaYNR5p/d+IFuqFH0wTh7FJkyl8nbOiSgNMPqN2MFXtH2NFCbk0mqGYGt+IKrz6naqoVB1pNrBq+ecyuTsUF4UAsXmccIV0qJI6l6BKr/RKxeeZLLJQQCcOXDL5ypaemCH5F+5lP5N3nZpUY1o4f1KN5guHwe+XRuBE4zlkwR8rgnYpNzK6gGV++ljffs2Ra8StORRi50cjSpGJPFqXDfPjp/RiKUJjAlSVchwpAyi9EFM0Y4hXC/1gZuYhSqvVfOoLoAAyPGWLnxz0DGGjiKUw0OcxMSijPcKCr4cj1jsTMwzD6bw6hyGi35U5pzSdUncIoR25MZa6O72P5WH5qLcqrN2lSUje1Yxl+Rgy6q1Tuq2Ylv+dzbp2lu6QbuHZ06z3oRwt20B3NH4TSaTKp9DpTzvKSzExDB/eyMnJijnP67muWasHvFIjxHe+DZH67hvNSWogeMxgslG95tm4IvtpcK6KUFp+PHBcVqeS7L3n91h9JT8s5pBI4zmoyr7fS2cde31183oCUFYlck84kTSL3zTmTPm3emuoAePbTY6YZqRhAy51qQdo/thznve5q/0A9U7aoZ+4EPF06T8Gfix9TG2/oTMJChI3/nJkV0Fq345yg2+pmGyZszBJTT3u+aiUyS5rh35oS8cRsCoYjRbLPX4m26aWe5TbvcuSG2nWg301r6Ps2x3Z3bKm2rmoAKSTuQEZZUKM9fMJdKsPyqL5Cz4hHj0nsgJ738HqfVkOONuxej49CxeGrGDEwaNRCPfZZc3OQ4TPzi0zPNv3v0HOrVyqeU7+ZiSnEY99Ef/Bt9KjtUl79APtWKgDKTiUWnWl1b04sWLLBFPbnqKh0aN6650G7OyEAG7yUrwzQWHTyI019/rTUhj6EaTy+n92dxsmRnI//nn0s+wspYtw0Y9jPyn/88c6y6b9R21rlLaCZDp2q15blKait5fRgFd24OpbazVlFOqJenvft67bxtoyEfxLxhqPTX8MX6MQ3SGuZh/6jNfpRNe3MaZUhyXwKx9I9ph6EMZziP3gj8okhySOAAKSVjNYW9+6ln5/4OkjyegDJzUmFSw7i7gdrxViawVQ+paNyr5uOUsyaTEZkpu/HhzNllBPeleOvdFUjJzIGpitWhorzscm3Yd6DUiS+g9UhkbPuADmdM1LrHD3kc321PRgp3m9y+7EXED3tKu3bwtOWYf4to28uBdNIHFQYynRFlGnEvxLpMFkZXefFFM3YpR02mgICaC+3qOmXaYqH2PPPf/0YR7xPj2rVQQvupOXMQWBzPVu1cevyWWxhyca+6REuGho1RsLELNzGyVPor2GprU0lea5Ht84lHzbCa+J7/K7t1nwg9IiY7Frq7YST+xFea5qWkLHmtPYFsHOeduUrb7Kf2pciVriLQjsEhwym4bMQHrqrS4+r5m3R2MaTpQDygRSbxuA5Igx0SUD4f3XAdlK+HivWuTPwk2Scggrt9Ls47yl1OR/oGIjK+I0bNKDFbsRU/7+6hiI8M486jt2KzPUsXZgtt2oU2YKXpxkvalX7gu4iEW7ApbRNeGM9cK2dgWGIbxMfHIzFpCs8OxmtLd3FX1cvFtr0cNed9+H/2zgQg6mr749/ZEBBQUFxAQ8O1FAszrdREbbFFzDR7ij3JUlue+l6L2f9pZb3MNpc2pXr6Em1xSazcnmJlJpbwEjNJRUUFd1AGYYCZ+f3PnYFhhhlgBmZglnPfm/j97u/+7j3ncwc8v/s79xzhY9mSkmsLX1VXlpde0oPsabz+esN/ZVvRirsw3otWrkTZsWMooKQUfr16URhFiqNIRUZ+6e3WrkWLxx83qXRlKcUloayspKjVJ3e48clTKpVQekDClSTjW4Ggh+hPsZLiZrQmP3XyVddkUNZSs49UaurecCBi+obTuuOf2G55gc8cJiBcZEQUmV64n+Im29647nCnfIPLCcTiLxQf5RLEZmIulgTyaNkrE1+Te8zTho3Wllf5zFsIdCW7ReQ5+BHvGXzfvUUvZ+rB4RecSdNWX/6x2EBuCfUu4UOxLf8EMo9fQmC7rugRYe3vogyPxfPLUjH9jTycOE3WHZVyVQg6dYmCIYBHvQfnG+si4Go3GbHSLid3Ej8/4OWXKWa5on4r7ZV6iM2lF59+2hDhRcRb11+5AgXFWBeuM1cpa6mIvS4PsPEQQsOqOskQNNrywUGbr0ez5ZQI6QURWYbcX1rCEFtdjOd/E+XLu4ZCMz5DW46OGY35SjnEz8A7rHXpjZHk3DEf19KWswB6JOJSPwJHaM1KSY/rnWnrIxfPISBcBm7F4xRp5m1DpJn29OjFBRQ35k+k4wsy2p8kd4q2jMTLCUTS2nszmuk02vch9j+xq5/lhLPhbsnDLc+UoVGIpU9dxT80Aj3ow6XxCIiNqQMw2SUDXrkiIStLAi2GY86cml1MHBlc0bo1Wi1YgKKUFGhzcyFCOgbFx6PFjBnkc05O53YUfake5X+CVugp2+hKo0He8m9kpNuIbqNsI0O7lfb/mRHGejS9CBdRNm7GI3ZIw02qE1Ab1qm2G7JyVr/G5+5PwJ8MFuHvKxLU3I4ZdNbO/YV2oYQi2s4vWGGIvtOYkbtcqBJ3bQeB1rR8I77/4vdAhIvsSVnfuRgJWC6fMRUmwATsJiCSBomd8C0p/6ezi8iG+vTTOrRuTaERyUB2VpGKinAuMRHFtLre8vnn0fy++wxZTgs//RRyf/9ahxGr8qIUvK1H0Ro9FOHkqjXH+CdEGek8GbtTbs8LOEx/qk/WKg9ftCYgskgKF5nrcA+5E4RZN+AajyAg3Mb6kL/vz1hGyYUoLqqPFpHt92d8bIh334reH3HxLQLB9HZlKIWLpF179Mblc/rrZv3m1reIGLVlw90XZ511dgoB4SbT3gXpmi9elPDUUzqMJreU6GjnGcRCac3evbQFCGjz8cdQtmtHEV1UqPR512Rk1Mql8GOj4d5isgKtXlXSCj35sJMbj7OLiMl8Pe7Dfqxzdtde399R/EChwhT01mKQ1+vq7QqKZFnCZWAv/u2TBkshOcjspvCAffEwBczs7u3TzfrVQKAZRcUSK+8a2q66mx5kxWKZrxc23H39G8D615uAMX6788NAfvKJHlOmyPHAA8759RShHXUFxgwAqp490YY2pao6dkTALbeQAf4qxVL3MxjvUkmJFQt9EW02Xaoz1AfebTTSle2cb6xXH1j4NGpprTEXv1W/xOc1EBBvgLKwlQydCTW04GpPI9CL9nxQPCZ6iF3vaaI3SN6r9F3+CR9QxLQHEGGMm9ag/vhmzyaghJ/BVSqQ3iKKcJEaWEbb82ztHJfeOZaB4+PyHUzAowmIWMsXKZpwGyeGgRTZUEURK+3DhzvnV1N79izOTZ5sWFkXfas6dDAY7eLYvAjjPeC220xV2nMUAeZX2lRKEbkChsih6ibDlXf1yLtHa/E5cy+FfHTB20sRGky4CuynKBKcTc80LbUepFMYwR64iyJbUxgfLl5BQPwe9MckWnvOIk/vPV6hU11KiBjeP+J9w3dZvHXgwgQEARm9S4yl7M8d6L+peIdM97M+C8b+XWM+i4gVZwLWBIQPtvBDVTkp0OauXXps2iRh/nwFupGR7KxSQjHaQ2fNgjzImKikcAVlIn1HB7/rLMcQxrekAcIp4ZGiDVCyXULAUFrrq0jy5NeDfO1POudhwl7dwtGF9g90oICb39OL8uH23uaT7URCGuH/2YVeKnPxLgLib8xtmEpxghaS00Bbeiy71rsUNNOmFEUGo118j0VkKS5MoDqBHrjDEOL2ByyhwBCPUgjhLtWbeP154/5L7PU4WUFfIWAMA9nTKepu2qTH4sV6/I0iszij6CjEY2Vp/uCDFJaxatVKe0ZC63cUaPel0uLT+i0am2z5y7TxVEYBbILGVxntlX01xU/xqlzEdRf/oHOxTeAq8mm3xWZykRlPU2j5QGb7Dq71NAJBZJ6IKEtp+NQQYcPT5LdHXpHqfhettHekb7KI5c2FCdREQLyJEUZ7Gu3/OIXa92bV1Icn1zvHUvBkAiw7E6gHAaPhfn097rS85exZCSsppOKSJQpERDTc6CrPzsaFp54yDWIzJrvpKiB82HUF5Mf+ntHfpfU7cnKrIfNP1nBZzIap96Fw+4gik+Ugvqt3H95+YzpWG95IiNVYLt5LQGRnFm+eRJQVsf/Dm4rYcCjC/olNqNdhhDepxrq4iIBYab+dMugewAafS9rHhruLvlTcrfcSEHGyKY+oIUFKQ7TMz6fkRBeB9993jtEuZFF/+aXBNcYeua5u1lNyJJ1hhb3lC8Y/BcJod7ci/iEXm1QLccbdRGtyeY5RnAVh9PAKZZNPRaMIIOa5BW3XFPsZvKXo6Bv8M5IoXn17w2ZUb9GL9XA9AfGdGYpnadV9H/6HNT4TfYkNd9d/t3gELyMgVtvb0rpQfYvIhvr22zpoyKf8OuqmVauGGcsiakxlaUmJlJr17l15avOnvlhC6e8SZMHCbYaynVJYR7l/w2SwOZCTKlWUQ7UnGe9ioyqXKgIiKclBfEsvjScYNm5VXeEjbyYQS+ERxdwfoghCnl7Evgzh/iOSTgm9uDABRwmI784Q/J2cKc/R9u1PvO5tlC0ebLjbosJ1TKAWAkY3mfoZ7lqthFde0YOCvRhcY+QNjINe+ttvKHjjDZO08ubNTce2DiR6w17yE6CgwCOBAxW0adUz/gREYyAZK5cojsAhW2r5ZF0GpYAXK7C+nlnT1yZfQeEhb8HjFGVmtyExjafqL5KF/YLPDPsy+mEi78/w1Il0A7lF7o+BeJKCRjanzc1L6B2k2g2kcp0InvGvtuv0556ZgEMEhG/pJRyjFff6JQRZv16CnH7rFixwzq/elaVLEfL443bpoP5KD4kW58uPSLi6Xo8rH+qqPh9R0MXjxnCUdnXWyI1EKLAYjDYkZeLsecAJWqcUG3Y52k4jfxHdZDh/ii9zCx4jl5nVHutClkGZMMvoO9yfNhmK328uTKAhBMR3SLx9bEfp+3biXTLdzzekO7e+l39b3Hp6WDh3I3CBghOG0XZJ8YTvSNFojEaxmhYC5s6l3JaK+rum6IuqIqy0fucdqDp3rlWUskO0tlUmQdESCJsnR0gCjR8us/ioOsvQfoN7R4cVWWoDKEDkcfKI9eVSQhkED2Aju8j48peAdBfhaEWug93kH15G76M8qYiEUiIOt3hzIN4gcGECziIg9kSJfBY/YDEtsh13Vrdu1Q8b7m41HSyMuxOoj5vMxYsSvvzSaLhPnkxRWxoQsaVk926ok5NNmGpzjZHILUcUEbudAs4j8E7yZ28uQ9BYuc2PKrr+DxMmgVx80IdW3Q9iE6W/ss7y6uKh3aZ74SITjUEN3hztNgqxIPUmIMLidcCNhrB4nvIm6g/6/RULIAPxhMMLIPUGxTf6FIFOFCxSuF+JCEy59J7W2wob7t42o6yPSwmcJbOxnQMbU0+dkvDUUzrExDTcKJZKS3Hl/ffR/IEHoKcV/LI/bH/0hUaDPX+uMcRj2CsNe1hwKVAHOxcRNUQKdG/YmOeg6obmJyl6QjHFbe+BO+tzO9/jhQR64X7DqvV+rHN77Y6QE4OIuz0IT9FaQoDby8sCei4BET5VfM9+w1pDEj/P1cRacn5HZc2Ea5iATQJq2rUuVrVECCp7SgHFR585U4epU+W48cb6G+764mLIAwMhSRLafPIJrZo3R/6/dCjZIUHVs1q/WqDskB4dflQh8H7jNXeOGGMPx+ptrse92IZ/0arzQNqKRLtsfaSIDVfCxUCsVJKzk49ozWrWRUAk3boZkygN/NvkGLAHnckBxR2LCF16lBwYhmAmORoaMzm7o5wsk/cQaIlI2r7/D8oR8KFhwUMk9POGJHVsuDfBd1RbkI1Nmw+iz+iRiPJ3jgAFeTkoLLfRl0qFS/s+Rd85LZC/fzr5RXKpLwFHky59/72EZ5+V45Zb6v9iq+SHH6AvKUHzu++mkI1VXxaJXFrDXpMj4NaqvvVqCVpyyzn7oFHDgAaMW19GjXGf2JjXDcOQiRQyUSY3xpBuMUYGvjSkgQ+l3JJcmIA5ARUFVLwNU/E9FtJvR1t6nL3W/HKTH4s3RVkUvvJ2TDfsU2lygVgAnyEQSFaPMN6F28xeLCcXmkc8fl9F1b/6PjONTaioOgdr35wKVVgXxE9YhLO2DO36iHdhC8IiO6FTJxufyEj0jZ+LuMn92WivD1uze4xuMj3Namwf7t5tdFEZNEhWp9Gu/uILXPnoI0jl5SjNzEThZ58ZOr36zTe49NJLuJKURMb5rbYHMqvVX6Xspx/rDcmU/HpUW4U3a+cthyIMYgFO4iKyvUWlWvU4TelFxBufnrTpigsTsEUgCOFklPzVEBddxHl3l5JHj9iZlINhILkt+NIbMnfhz3KILV4B5DbzpOFN5S68RxG5rno0FjbcG2P6NHnYuGQqZCGdMHZWUsWIIWK/oFPKruVv1tFPDJ4f07+ONny5NgIiO+UlCsInUnLXVrZu1ePdd42Ge+vWdRvQwQ8/DJFA6eLzz0N37hyFZDyOyx98gKvffougceOMrjEhIbUNSYa/DoXL9QieQL7sbpj5tFbh63lRRKLojXiD60g9u/CY28Q/Mr9RVkCx2UrOETg8Zt6aQlARplaECBWZSEXo2qYu5ykZfTptpr4N08jFsG1Ti8Pj+zAB8bfzZnqwbU1Olt9TuMirtOwjSngvBQIjdB5Fhl1lXDxdmqwVCOiZCMTPxMyEOCxK3uncEdV78c4s0WcMEqYMQKBV78UIvD4RQyKsLnCFAwTO4zBaoVOtURDWrNFj3To9lixxzP84dNYsFCxYYFhd1+bkQNWpE9r8+9+UHKkOP1DagyrpKMwjPSCISDGiaM8YN6Y6oJrHNu1IuRbFZrcc/EoBOvt5rB51CS6M9iiKdi3C/3FhAnUREG+jrlBqpn1Iptgaj9bV3GXXRSi+vViBWzGFvrvs3uUy0NyxQwR6YSTZSa3IeF9k+G626aOAf7lxsc2hjpqwMRvuLoavjLwTR3PzER1B3uWaDBxP7kueuc4rB9a9b+gvYXkyVk6qPdW980b1vZ6Ef3vbWqLJlJdL+PZbPd5/XwF7VtorCZafOoVzEycaTkt//RUS+bNLCgXy7rsPoc88g+b331/Z1Opn8XbanNpFhuaj617Zt7rZSypuoDjWeyhleiRFtFZS3jxvK8LN4DLF4bgJCd6mGuvjQgKxGEfbQJcYoi81hXvVZZw2+BSLTbOtaLssFybgTgSupXdAIifIT/gIzdvLoTvpTtLVLQsb7nUzalALZXAEooOrujA7rKqs75E2C+8nJtPdcXj6QTba64vRnvuE4S5SKlcvItLLgQNAt27Ae+8pEBLimBGt6tgRHb7/Hpc//JDCwdCrbSWldurbF63feAOyZraTPEn0kCDRm72S78invdpwOnr7p7tUXUrvPQ9DJ8Orz8PYQY9VI7xKUZFU53/4ilZNJ3v8ZiqvmhgPUEa4BYjkRql4i+L9tzeEUG0ssQtpL4YwiPri4XpnmG4sWXkc3yQgXLjEZmmxqbvrfX4oOl5myLYqaPTFX+yOHNdU9NhwbyryThg3Z9Nn5Mkoyk4MCOmD+Cn3YsTtg3Hrbf3RO4rjxzgBsaELkeFPhJCq7qOppQRHr72mx113yeDvL6dP/Ua8snQpyvbvR+icOSj95RfIqKOLL7xQo/FevEVC6PMyBN5l2yUn9Drf2roifN234w1a17uVVlFa1G8S3PAuEX+4A7kD8YqlG06OB4gkoi/dgscMRrTYuGpvGNuGqHaVdgLtwvvkuPlAoz4sNERmvtf3CLSgv6ziOyrKus3fQqEOQMxNxvNAyo3u7sW3/oV399lwSL48fDZnvtkdFBwvaT6mTRiBmE5hkI16FXvzNGbX+bC+BGxlSxWuMbNn6ym2OjBgQLVlbwcGKlqzBjKK0R7yxBNQtGkDRdu2ED7vzXr3xtXNmy16EpFjRBGr7YowOQLjbH+Ubesvj8WAHnIiwn1dSzEDfsc3HiJx3WKeoURf+eQjfD3uq7sxt2ACNRAQ+yJuwBiKoJ7k8kgaJeTU9SNF7OiJu2nUm2qQiKuZQNMTaEbxjcSCiPioT+uhuSg3ndM776YXsA4J2HCvA5C7XtYc+AZzM2uRLmUuBkQGYMmuvFoa8SV7CNgy3JOTJZCNjZdfblhWUmV0NIopgoxfly7wJxeZFtOmGUQKefRRBI0aZSHe5YpoNUGj+NfWAgyd9MAd9IL+EAXBO1X9ksedl6OEXGS+pFe2E7zSb9/jJsTDBe5I36SOuJE2iv7bkEDOFeqUooiM9vcpXsdgeoi+zRVDcJ9MgAlUEGALwEO/Cv69JyM//zxyc48i/cfNWDpvCr36sS4zBkdidRavvFuTsa9GhIHMxwl60UxO7FQuXzauenfqBEqupCAf8/qvbktaLSS1GuHkKlNbBBndJeOYAbfXfyyD8F78H7FKIlanRWZRTy9ChwgKdhmOLp6uCsvvJgSux/20T8KPfj/WOV0i8aC5Cx/Qw0Es/ZUc6vT+uUMm4EoCh74qw8VfPctr3LOkdeXseVzfSoSGhhs+ERHRiB10N6bOfgMZm1YiMX4GxaKoKhOeTMIdqdPJEHBu0ev12Lp1K9RkfFYvCQkJ6Nmz7mRF1e9zt3OxiUW8ThMRS3JzJQr1qMeCBQrEkZtKQ4uMNqIG3H57rd1IegmXF+vRap4CAYMbPmatg3n4xU60jfMovkcuffsjbT7Gur+CZ+mtwQUKcnkHZru/sCyhxxAQe3REDOtUvE0OWD/TX7RbnSK7WNgQG1HD0ZU2h9/jlD65EybgCgLr1q1DRkaGVddnc8+jQ3vPCrXLloDVNHpwhTIUsSOnY39+OmabL7/vnIHPM6yNaw/W1GWib96sx6lTxhVuMUilm8yuXXo89JAW8fHOWfWWdDroKfRjbUWbJ1FyJiBoDP+a1sap8powTvpQeEiRpVFP6Wc8rQgjKAOfG6IaeIKfpafx9XV5RQQNkQjpIL51SsZhHf2OiURPYtNrH4z2dbysPxNoNAK84t5oqBtxoNBYvP5TOk6F9KUUHMaS+usRTI+NdaoQcrmcIqrchRcoAoq3lF69ZJg5U4cnnpBj+HC5wXDP/vYOzJiioxjtctx6a8ONaC1lSL0wdSpav/su1KmdcGWxDqpulg8EUjklUzohoWMGmXAxlte8hbUr9GhDL+tD0I5W3n/0uNf24oGjHa1b1pWd1xXcuE/fIBBEwVPFynsa+bsPxbOUiKZ+0cdoSYH6+JQc1ILJQeZh34DHWno0gQcffBDiU71s3LixepXbnzfcCnF7FX1UwOBY/N9ys6QtpT7KwUG1O3aUYdEiBT76SI+U7Rex95vuSFrcAsuXKzB6tO3wiw4OgZL//hehL74I1bXXQkeZTlsvVqD9OqXp0/odBcJo06sigtaQlWy0O8pXhPnKwjaXR9FwVK7a2ovMvOLtTm9Ybkiu7R6+xgTqQ0A8GHYnZyyxWq4F5Y5wsFAWCfyCzwwhcm/GI4afDnbBzZkAE2gAAV5xbwA8d7+1x50TyNM32cLf3d1ldgf5Ko33u+Ll0OruxHdr5eja1XnPuMHk/19T0V2UUPK9hMC7AXlgTa24vjYCwbRmfQ36kRm8iWJpjK2tqVtcEy4y6VhNK5d/MSQEcQuhWAivJtAVQ3CFdoPso38fBuBRh3TNwBf0jS0yuN3I4Ly/iw4JwY2ZgA8T4N86b578sKoteuQqzcUBAn/+KeHYn/4I8GuGnBwHbmxAU/UaPS6+qEPz+2mlvRmvtDcApSGL6mnyGBdZHN29/I6Nhs197SgCNhcm0FgEYjGO4sFcpu3QW+weUkQ8KsQZ2tr6OGfztZsaN2QCziXAhrtzebpXb/kivoaxDOjVzr1kc2Nptm/X4/0PtIjqnYfPkwMMbjOiriFFhH689PLL0OzbZ7MbkVxJe1KP1v8iF5lWbLTbhORApR957/bAXYaNqg7c1uhNLyLbEAWHN/c1OnqfH1BOsbJuIQNcRJnJM/1LUTOWP7DZEPFoIJ6gO90/SU3NmvAVJuDZBNhw9+z5q1X6nJ+3Vvw5jsPw3m1qbcsXjQSEgS7820dNPoneNxfhuu4qk897Q4x39WefQdGyJfxvss4oKJVJKN4mIYh86BXh/CvprO9iNGVTLcJ5WnP/01ldOrUfHcoNrgpic58KAU7tmztjAvYQ8KfNpcJ4T6doRmIlvaZyBDsptVk6/UY9xd/VmiBxPRNoJALs495IoI3DqOoxmhZZqclYs/0wWvQagYnjBxniABRkH8DhK0C7jl0RFe5v3a82G4vGLjLUJyxfjKHhPNXWkKxrYiiCy1dfKbAi7RgSJhkjLgifd1F36ZJ1e3trRCZUW0VfDIoqI8GfwrnrLogWxlCUekr0VJ5dFZbS1r1cVzsBendBezxG0cPregzHLNpE514PRb/jG4RRRO32lDqKCxNoKgKhlDrpBtoLshvLKNLMc7SW3txCFLEifxQ/YAhm0rUgi2t8wgSYQOMTcK9/yRpf/8YdUX3B8oWkHXa8JisZPYclYu78+ZgxYTBeWJsNbc5GhHWJwYC+MejUJgAT39xIrzDNijYPyxK7wGC2xy/Fu5N6m13kw9oItGkjg0IhQ7vbfsTw2M6mpqJOXHN2CRwhQ7MBgCqKzMpg2pBa8VHSw0L79fyw1VDeEWS6+5Ehchx7GtqVU++/RBKJFcwbMMap/XJnTKA+BETW046UQUCEeBShHv+L+YZuTtI7IeEDPxhP0zuhlvXpmu9hAkzAyQTYcHcyUFvdabUaFORlYfXCJWaGewqW/ScVeQVqkPtzjaW82HJb6ZFjF6EtybdonzwrHm1ko7Bk7Rakrl2GUapITEsG4uelIH/DVKdnTLUY3AtP8q7mIf27nrS21LrB2hVv3w7NL7/Y7EckWJKTq2jYHAWC/yK3+qiinf+gYFMQL68USZn+wHcU+s49YqKKxDX7sIoi3jxEDxUcOsjLv34eo971uM/gu/4b1lHEmTz63wH69+prDMST9Ojb8L+FHgOCBWUCbk6ADXdXT5AmA2NUAQiL7IkJ81MsRkuaNgyRYSFQqSaipsSmwR17Ic7srnHDu8G/x4NImRdvVisOUzBj7AgMGzsNhQnzsOPQeWyYM7Ke6TWqde1jp+u3nUPBHw13X7i6dSvUn3+OZjYSX+nyJZT+JsGPEj7J5Gygu/Ir1hKRlNjoeortvtWVw9jdtwhTKWSKpHyTXJiAuxAQmYf7YxK9vT2MYhQY/N5FplWR0IwLE2AC7kOA38W7ei78Y7FBaoCvcvhQbMs/gczjlxDYrit6RJAvBZWRczag/LkC5OaeQyH5SYM2ukEViHaRUQgP5mkVROpbdqeV4aF7w+t7u+E+SaeD33WUBXPpUkqiZDkfUikZ7fvJr70/ucc0Z6O9QaDtvLkXRlJKptfIo3wgrR6G2XmX85sV4CRysJfS38x2fufcIxNoAIEf8R5t5T5sSMokYrz7kXPMDryJFojg72sDuPKtTMDZBCwtCmf3zv05hYAyNAqx9KlelP6hiIquX8rq6n3xuZHA1bISHD7QHMNf6tggJDKFAqqO1n1IeolcZySDTzuHfWwQYoduFtEzutLWuwPY4HDCGYcGqqWxnkyiXynhjXDd4U1+tYDiS01CYDD+Zhp3LR2PIUOeCxNgAu5HgF1l3G9OWKImJHDw7DE8OOUUggPt2Dlcg5zas2dRduSIzatl+0Er8TKoruWVdpuAXFjZjQz3fJyA2BjaFOUQueqIrK5iIyAXJsAEmAATYAL1IcCGe32o8T1eS0B+zW8YN8oyHJojypYdPowLTzwBRaj1m5DyExSvoYQ2pFpfcmQIbltPAvQOBMJlZj9tvmvschmncYwC7t1I2Sq5MAF3J9AG3dxdRJaPCfgsATbcfXbqWXFbBDZtLUVg4XW2LtVZJ+nJGeLECYR/8AEUrS2jMOguSCj7Q6KNqrwZtU6QLmxwDW6icHcSeZrbzmDriqH10BkSLYnsqMJlhwsTcHcC5m4z7i4ry8cEfI1AE/m4a1FwIRenT53EhfNXUVZBvXnzULQMb4cOkZEI5Q2WvvZdbHJ9D54+g+2f9sPcuyyNbnsFk8nlCLzzTqvmeg0Z7Vm0GfU22ozqzy4yVoAauULETt+L5RTV5QZK0eT6P4FZtC02gOI7iYcGLkyACTABJsAEGkLA9f9qmUmnzjuAb5L/jU9mLaIEyrWXmPgpeDIhAfffNwgRNhKD1n43X2UCjhPYsfcs+lGkF2cWSSeh5AcK+9iFEju1cG7fzpTTl/pqRbFlwtCJ4mfsQE/c5VLVRTzsbFAyL7zg0nG4cybABJgAE/ANAo1iuGsvHMCnr8/AtEV1metV0DNTkjBNfKhq9vIf8dykQRyTvAoPH7mAwM97y/CXkW0c7llfWIi8+H9BGfkPqK6xXK0XLjLN+snQ/C72SnMYrAtv6I1RZLYvIBP+Vpe5r4gMlCLRUm/E04p7Cxdqw10zASbABJiArxBwseGuRcba+eg7dq5NnjExcejcORLBBrdPkUGwGOrcTKTszLRoPz9xMOYnTsGOE4sxNIqX3y3g8IlTCGh0JQiNzsFd/R2P+HF140YoWk1B8MRwyEOqxCnPBuRngKsbJLSYUlXPR01PQMRyvxa34XdsJAeWCS4R6E96NPCjqPGdKAAlFybABJgAE2ACziDgQsP9AlZMHY7EpAojPCYesyeMwOBb+qFnj85oS1E3/GsaXatBwflc/L5vF9avWYhFyaKPJAzrlITl6fmYFMthOZwx+dxHFYGLiiwkTC2g1VfHw0AGk0tX6QEdRZIB/G82rqzrCiTImgGK24CyA1LVQHzkNgS6404K0PgqLlOyGZHJ1JmlEOdwBKkYhued2S33xQSYABNgAj5OwEXv7y9g2cQ2RqM9ZgrWpJ9A+f4NeP35qbh7UCyiwmsx2sWEKP0RGhGNQSMnYeHK/SikVfhV8xIMU5XYNwwrDqh9fNpYfWcT+HF/LjRHb3RKt+XZeqiT9ZRkibpTsl+7U6C6oBMVPaZdh3ucHh5SRK3Zh5W4HvchkB38XDBz3CUTYAJMwHcJuMBw1yL11XGYlgzEzV6D8/uXYUxsVINiNwRH9Mb4OSuRn7kGcTRXibR6n3rBdyeNNXc+gaVvRCBC1dXujiVJwuUlS1Cye7fVPeWnKMlSDG1GbcVGuxUcN6vojFtQiiLaQnrAaZIdoa33SsqNKlxxuDABJsAEmAATcCYBpxvueanvYtjcnYhfsAPbXh+DcCdKG9p7DFLP/0hbvXZi2LglYNvdiXB9uKsDJ3Mhk5ToGWW/C1bR559Dd/48Am6zNM406RK0OUDg7U7/1fLhGXKd6hSgE33wIDLxNW0l1TV4oCL6qyTCP/Z1kd98gwXkDpgAE2ACTMCjCdTkZV5PpdT45u+zgJkp+OL5oQ1aZa9RgPBB+OJoCgK6xOPzjERMj+WEJjWy4gt2Edi+97zDYSCDx4+37Jvc2KVS8oy5VkJgexm0eUa/dlEn6S2b8pl7EWiL7ghCGwrbuAtdMaTewhldZFaRi8w9tCU1rN798I1MgAkwASbABGoi4GTDPRiT9xbir/7B5D3a0KJBXo4aEVHWa/b+0SNRQiH4lMZwNA0diO/3cQJXVTl4aFTvBlHwv1mG81Nog2prGZTXVHUlFdOG1UHsMlNFxD2PYvAAfsAiROFmigQjIlw5Xo5SD4AM0Rjs+M18BxNgAkyACTABOwg42XAX+0qDa1xpz9m7EbvPdcDokbF1Gvba7PWI7DLB4HKz1sbqvT8b7XZMLzepi0AZhSDtNeonCgl4X11NDdc1v/4K6HTwH2AZ4i9ojBziw8UzCYSgLTogFn9gM+VTfdBhJa7iIrnIbKU9OM84fC/fwASYABNgAkzAXgKNaGmokTIlHhPm/IQSO6RTRo/H0ZTZSJk1DM+tpYDYXlS0BdnYuHojcjSuU0okvVq9YgVWb8yAC4dxnQKN1POBs0dx7ueB5Olc9zOsJi0Nl999F359+lhIJ5VLuPSiDmVZHPbRAoyHnYgIMyfxK9Q477Dk+7AaPSi8ZBAsE3A53BHfwASYABNgAkygFgKNaLir0LozSdKqGWURtK9E9xmAGGq66NV13rERVZ2DtW9OhSqsC+InLMLZcvs4ON7qAj4cF4MJiYl2Pyg5PoZ33JH8eQnKc7vXqYyk10MeFoY2//435AHVvsHkwx46Vw6/HuwSUydIN27QjDzThfEtNqo6UoRvvB5adGmAf7wj43FbJsAEmAAT8F0CdViyvJYAAEAASURBVC8zNoBN1q5UnCDj1I/6UKny8VUKHcRk4fu9e9G8jOrFhWpFpaIEOOXluHzuNyyfM43+EaWS+TOOUej2cE/dh6rJw8akVxA/I8lM25B6pPoxu72Ww4wlj2PGzooG9KDk0kmuRQ5PuLQvzQ9PvN2+TlFlcjLMu3Wzaqe7JKForR7BjzTiM7CVFFzhLAJdyD9dGOLncZi2q1rPd/VxriKf3Gs2kck+k7zb+cGtOh8+ZwJMgAkwAecScKlNl7fnNYyYVWlBVgieuQgjBixyUIu2aEH2vCcWTdYKBPRMBOJnYmZCHGWBrcbDyUqpD6xA3xniCYlLXQT2n8iFQq5At44tTU0Lyb1I2bEjAocNQ8lPPxnq/Xr3xtVvvjH4tof89a+mtuJAdw4IelBOq/BstFmA8dAT4TIVg1GGpEzD8UKdxngGuch0o/yoweQjz4UJMAEmwASYgKsJuHSZcOjztOL+49IG6xA3bxy6NDxMTYPlqE8Hysg7cTQ3H9KGhVj48dsUg96FRZOFZ2PoIaGiCDcjLjUTOJp/AglTrlg0CBo7FkVr1uDyBx+gPDsbpfv2IXfQIBRv3UqbT8dYtC0/JUFfKBkiyVhc4BOPJhBJkd1V5NB3Amm16nEcP6OcdpB0w9Ba2/FFJsAEmAATYALOIuDSFXchZNSgqeRDfB2eihwMo6NIDBlLA+wKuBbYKhq3DR+JUUN7eKy7hzI4AtFmLj5mh86aw4p+tNg4e5yB8bxVq3B6wQQkGfyMnDyMF3UXFrsXg3CvhUby5s3R+p13cPGZZ6C/ehXa3Fz4XX892ixdCnGtsug1EjR7JDS/m1faK5l400+RlGk3lqIjRZoRWVCrlxJcxu/4BrdjOq3Ku3T9o/rQfM4EmAATYAI+TMDlhrtgq4wYhGX5aSgOG4DkmCfx8bKpdYaD9OE5qZfqeVvmI34RWeozN2P2Q52QOKFe3fjMTcW6q0jdGoJBd18Lc7tLk56OS7NnQ6KQj6V79kCSyQyhH8888ABazZ8P/759DYz0hZQd9Q4y2ULYcPfGL00omext0ZNCPP4XvWyECk3H54bNqCGoe3+EN/JhnZgAE2ACTKBpCDTeUlFof3x4NA07koZ77Op500yRHaNeSEXCiLnUcAoy598NpbaYQtpxqY3A5j0ncex7Wk2VW26eaBYbi4jvvkPQyJFoRkZ6sxtvRNCoUYY6cU2UssMS1CspykxIbSPwNU8n0Av34xhtVC1GgYUqOdhLDjJqikBzh0U9nzABJsAEmAATcDUBJxvuaizrI0OfN3fZlDs4uj+G9o9uuOFesAtDaSV02QE2T0GBMpeMGwax5XVp+tvoXbEXwHUuOTan1uMqf0hT47b+1hsnZPS9urJsGUp+/hmK9u0R8sgjKPv9dxR+/DHENVH8uskQ+owCMgWvtnvcxDsgcABaGFbVDyAFOvJmL0URGeyFFOlqA/ohgV1kHGDJTZkAE2ACTMA5BJxsuAfj/oXzkDlrMKauyHCOhNV7oQ2YLw4ZTIbqbNzdk83TA8v+YQj9GL84DVNjmUf1r4utcwkS0vf64c4BkVaXr3zyCRQtW0IZGQm/Ll1oVT0ErRctMmxUvTR3LtSf62njqs7qPq7wTgIiYsxFChB5hP7ipFMEmQx8gWgKGdkCEd6pMGvFBJgAE2ACbk3A6T7uEUMp2+nMtYhP7Iviwh34ePpQp/mza3J2YfbIwRCu3GuOzkWU06V367myEk6TtRox05IpNv4CfDi9v9V1V1dIkoS8vDz89ttvVkN17twZLVq0sKp3h4qjF0/hlntPokvkDVbitHjsMYN/e8DQobQ3o8o4ExtWufgeASVloRAuM2LVXUHH4nwAJvseCNaYCTABJuDBBE6ePIn8/HwrDTQaz8st7wLTV4mRCzdiQWonzJoxDMkbZmPz4qcxvHdEvV1ktJRxdNPy100JjOZtPoEx0dZuDlYz4s0V2mzM7il2oMZg8+Z/NMn6n56yia6iCDZbtmyxIv3hhx9i+PDhVvXuUFHe+iD+OkmqURSZQmFhtFc2vLxQB/9bxGZVJ7+oqhyAf7oVAS3KDKvtzShKu/Bzv4zTiMM/DMmZQtCOImOFupW8LAwTYAJMgAnYJiBskvXr11tdPH36NLrZSK5o1dCNKlxguAvtovD83kO43L8n5u+cjxEx88m+TMCCWRMw8ra+6BQZDv/aRtZqUFBwDsez9mP7+jWYtSjZhGzxjhOYPjTKdO6bB1psmTsai0j5mWvW4+6IajApW6150ZqfOPFYQQbuc889hxdeeMGJvbq+qx178jG8ywBKxWv/WCL8Y3CinNxo2K/dfmqe3VJLHu3CRUaUALQkL/dinKU8qeITTYFE2XD37Pll6ZkAE/AdAm+88QbEp3rpTQkWPa1Us/icKL5/D7y+/zxiX30cY+dSJs/MZMyaQJ+KIeLiE9C1c2u0Cggw1JSUlKD44kWcy81Eyk7yhale4mYiLXk++kf4+Eo7cclLpYeh+ZmImZmCt8ZEVydFVoZZpJSQZmR0cKkkkE+x2Ve82gdTUzpVVln8LNr8A4q/+w0tp0831Qujvfg7MtwfkbHhbqLi/Qf+oHCheNKgaB45y5zAHtxKkZu4MAEmwASYABNoKgKuM9wNGoVjzJwNOH/vRvwzMd4iIdDOlOSKtay6VI/BvFVJeG58f6f5ytc1ontfV+Ob10ToR3oWWvRvPFW8BsXF5hIHAuo0mN5RpCzE4xN3GBqo1R3x6hevmyLPmN/lK8c70k/iupgy+KkUNlXOn01hHgMn4PI7etN1fQFtZ6VT3RlapF9iquYDJsAEmAATYAJMgAk0KgEXG+5GXcJjR2LZ/nJyn9mET99fhPnJxtfPtWoal4DFT07BX+4bhHBeZLdEFVJ5moIkYzraygobPzORnFz5BiMes4UbjQ/z/HGvCANZc/Qd/9sGo+VTcvhdZ3SJ0eVLKKe47TJifuX9mv3ibYDnKi8i0IISLXWibalcmAATYAJMgAk0JYFGMdyNCioR3X8kXqfPvA8vIOfEMRw5fop2+RahzM+PstrQKmhQGNp17IDoa7siKrxm46opgbnD2O2vS0BCcCACaXHdZik+h6Rkck8ylBgkTBlA/rjFOFfcDYFmXjQ27/XiShEGUhdyEg8MG26XlpKOXGS2Sgi4XQb9FXELG+52gfPCRs3RGuLDhQkwASbABJhAUxJoRMO9Sk1lcDiie4tP44cwrJLCU4+CMfL1lRhZm/jaAygmwz1ZtIn/Oz5eNsmXF9lNpPLJS3n01KOUyn6Mqc78QHvuHNnmrUxVV7/VQ0ZvJ5QRcpRdYaPdBIYPmAATYAJMgAkwgSYhwHHtGhV7fZa7tchKXYFXX3wRS1bvqpZ8vQbhS8zCyhSWoqSGZr5W/Uv2cVz942abahd9/TUKhd9RRXZUsSG15Hva53s7/4rYBMaVTIAJMAEmwASYQKMTaJQVd61GDbVaA9BKe6gN/+q8jC34dNkq7EzLxKVWrdA5pCtufWgcHn9oKEIbRcJG4q6+QOnSzYoddrwmKxk9hyVW3DQfB/2OYpmtSDJm3aJav96E0FxNR4+TFgfjiYltbd5WduAAgidMQMG7xstyfxnCF9rewGqzA65kAkyACTABJsAEmICLCTjZptNg79r/4IdD53Hm9GEcP5KL4zt3mozVeWn5mNM/1EwlDVLffBjDZlX6YxsvZVK8mZSUJAofSSEg8xfC4hazuz3lUEtx6dXnT2Dz+0tMLECZGJf9JxUvPdQPbYKDoaxhJsqLCy3UPHLsIp3bCAFp0YpPqhPIv6rGyaOBGHJDZPVLhvOwucZIPVKRFgULdCg/JlbbZZBV7CMozyZXGbMXGTY74UomwASYABNgAkyACbiQQA3mYv1HPPXfaZhVLdJJ/OzlmDv5TlwXZW60A3uXWBvtliMvwoAw4Gj5QkQ7XVLLkVx2psnAmIC+ZKZbl6Rpw5A0TdQnIL1wJWJt7McN7tiLsjXCFDpz3PBu1h3VVmOKQFNbI++/tu3XU+h1Q2mNYSArCbR+V4GSn0TsR0AebIwsI67595OhWWzVeWV7/skEmAATYAJMgAkwgcYi4GRz2B9jlp3HgiNtMGunUCEOqzK/xHjaiFq9FOxdggEzbJizMXGI70zr0SmGDui2RXj5q6lYOb5H9S4849w/FhukBmxsDB+KbfknkHn8EgLbdUWPCBvWfXUSNOZKGnNl9XofPj9XegrjxrWzIiCVl6M0PR3Nbr4ZMrkc8paiiQyBd8kgb86GuhUwrmACTIAJMAEmwASajIDzd95dSMeqCqM95cQ2m0Y7NFl4YcCMakrHYXnaCUj7U7FhQyrK8w9hQbyxSfKENcip1tqXTpWhUYiNjbXPaPclMHbqKkGPznelYmgfeiKsVtRffAHNnj0Go11cKssCFBT1j432aqD4lAkwASbABJgAE2hyAk433LO+W2Xw405Y/iFGRtle0N+15ElU86bB8swUTOofZQKiDO2B57/IrEgwno6zatMlPmACDhE4UZiDoz/2ppCY1n5DkkaD4IkTTf0paVHe/xZeaTcB4QMmwASYABNgAkzAbQg42XDXIGNPMikXhynxtl1bNNmrMdjoR2OCkLA8E5N623AB8e+NR+fFGNpVC5RiupcPmEBdBL7cWID833vZbNbi8cdphd2YWOfqVj2K1lGWVDkb7jZhcSUTYAJMgAkwASbQpAScbLiXQ005bIA+sJ349AKSHp9gqXDMArw7qbdlndnZ1dMWARTNrvAhE7CPQNpeHeL6VyVWqumu5nfJ0WKKk38lahqM65kAE2ACTIAJMAEm4CABF1kp+3HBhmvLgRX/xIzKPacVgq76cjqst66aadEhznDCkfjMmPCh3QQuFqlxKjsQg/tEWNyjLyqC8G+X9BRBhkrxTj0KPzUeWzTkEybABJgAE2ACTIAJuAkBJxvuKlBIcio78fRbW6A1UzIn9U3EJFp6tsfM24HxPWxkZKq8T3MAX84lSz9mKLrZ8KSpbMY/mUBNBDJzszH28TyolJbJlNTJydCr1aZNqX7dZQh+hF1kauLI9UyACTABJsAEmEDTE3Cy4e6PIRNmG7TKnD8CfSe+irVb1uLNvw9Fp2Gzqmk7BcnPDa1WZ36qxZZ5CYZNrAlPDoRlBHjzdnzMBGomENg9A395wHJTqlhlV0ZFITghwXCjSK5UnkO+7So23GsmyVeYABNgAkyACTCBpibgZMMdiLh7KuZVaJWZPBdjR4zFrEXV/GPo+uL0N9C7xsV2yqi6JBEj5gv/9hhMGB3b1Jx4fA8kIMJAbk8tRwvNdRbSi3jtzUeMgDwgABLFuy/9nwS/Hmy0W0DiEybABJgAE2ACTMDtCDjdcAeiMCc/HbONwWBsKjxv81FMj7W9hl6QvQsvDg3AsBkiOo0omXjzn8uQY+53Y7zA/2UCtRLY++cp7FrZHy39a/azkkphSLakCGXDvVaYfJEJMAEmwASYABNocgK2A603VKzQWLy+vxBjtqzDylUbsD8XCCFvhc59R+HRyQ+jd4SNpXZtNt4c0wWzbCRT3ZmWhUJhuLtG2oZqy/e7KYHUvRfRv7/ll0Z75gzUq1cj9JlnaGOqhPx/6tHiacqYWrNt76basVhMgAkwASbABJiArxGwtGqcqn0wYu+eZPjY120Arr11HpaO6omu0dciIqIV2rYJo82uwWyv2weQW1UjkLZXj78/ZhkGUr1qFZSRkYaWIl5767ctN61W64JPmQATYAJMgAkwASbgNgRcaLg7qKMyAmOen+PgTdycCdgmUKC5gjZd8ygMZNX+CLEptfm990LVvbtxtX2eHiGT5FB1YjcZ2xS5lgkwASbABJgAE3AnAu5juLsTFZbF4wlc9v8Dj88sgIL+V1nEplS/nj0Np/qrElo8KYeyDRvtlXz4JxNgAkyACTABJuDeBFywOdW9FWbpfIPA7gNnIJ3uU6OyJT9R+Ed+bK2RD19gAkyACTABJsAE3I8AG+7uNycsUQMJ6CUd3pvTBR39u5h6KvvjD1ycZcwlIOK2i6II49V2EyA+YAJMgAkwASbABNyeAK85uv0UsYCOEtiTdQqhYXpEtq4KFaP+6isEDBxo6EremkJARrHR7ihXbs8EmAATYAJMgAk0LQE23JuAv7YgG5s2H0Sf0SMRZSMypsMiaS5g77bvsC3tMPJLSuj2AHTuNxxjRg+FrcibDvfvYTfs3HsJAwZYfrVDX3gBcn9/aNL0KN4pIWx2le+7h6nH4jIBJsAEmAATYAI+SsDSuvFRCI2mtjoHaz96HWNnJdGQcUgrbLjhnrNrGRIHT4N1btr5mEFZZ5enb8ek2PBGU9EdBroiy8UjI260EEUY7aL4D5DTx+ISnzABJsAEmAATYAJMwCMIsI97Y0yTJg8bl0yFLKRThdEuBg2BqoFj52x8EZ0qjfa4BMycOYUeB8xLJhL7jsOuAvM67z4uwWUM+uvP6NWxg0lRPb2FkCQJpf+TcHmRzlTPB0yACTABJsAEmAAT8CQCbLi7eLY0WSsgC4hEfGogZiZYmtUNGlqTgX/Gz6cu4rAqPRdS6kosXLgMqVIh0pbPNOt6J95ZmWF27t2HmWeOoHD/LSjZIeHSXB3OTT6G3LgdKHhVD/UqPbQXyYDPNG5O9W4SrB0TYAJMgAkwASbgbQTYcHfxjCoj78TR3HxIGxZi4cdvI95J42WtX4ZkcoXZfGIbxsdGmPUajP6TFuLHBc4ayaxrDzj85BMJ2tweKPxUD/9bZJDJ9yB4YmeoKHy7ghKm+t8sx5UP9R6gCYvIBJgAE2ACTIAJMAFLAmy4W/Jw+pkyOALREaGmfqvinJiq6nGgxg8LkjBlzXrcHWV7m0K/kaNM/Raajrz7QKvXYv8+f9zZvwNk5Ifkd70MbT6egJZPXQ+ZnwzBYynhUntAHuLdHFg7JsAEmAATYAJMwDsJ2Lb6vFNXL9IqGFPTywFlzdNXXlxq0jfuxo6mY28+2HPoNMLb6BDRqjnOQWtStfyEHs36EK4OMmjPsJuMCQwfMAEmwASYABNgAh5FgFfcPWq6zIStxWgHNPhm2YfGxnGLMW2Qb0SVOXrpJB5K0Bj0pr2oKD98BFJ5OQpe10Ozjw12s28PHzIBJsAEmAATYAIeSIANdw+ctNpF1mLvshmYkJQJxC/F+dTp8A2zHegweDfuv93o76/Ly8PVr78mlxkV2iQpETyG47bX/r3hq0yACTABJsAEmIC7E2DD3d1nyAH51Dm78OooFQZME3HiqRTm4FiOcQXaWOG9/71SXoBfvw9DGKIMSuqLriJw9DgUrdOhaL0OunzJ8JHIwwi8+O69XwTWjAkwASbABJiAFxOo2Unai5X2NtUKDmzBvDkjsCilmmY752NAp/lYmnYeU/s7f91dp9Nh2bJl2LJlS7WBgddeew0DBw60qndVxdepuTie1g8YYhyh+X3dcOUtCVKZBHkLUChIY/x23UWKoP8YP6+6ah64XybABJgAE2AC7kbgjTfesGmrnDhxAtdcc427iVurPGy414rHMy4WXshH5xHLsXzEeezZvApJKeQmY1amDfgH+hWuRKxzQtqYepbL5RgyZAjGjh1rqqs86Nq1a+Vho/z8aW8xBvcnC72ihP1TAd1lCfpLgCpaVlnNP5kAE2ACTIAJMAEfI3DPPfcgJibGSusnn3zSqs7dK9hwd/cZskO+qKHjMX2oseGkqc9jcV4G5iX0xfydlTcnY97q57Fhau/KCqf8lMlk6N69O8QvRFMWrb4c+38NwGt/62DYjFq8dSsC77oLV9cp0Kw/G+1NOTc8NhNgAkyACTCBpiYgjHZbhntwsJNXNBtBUfYZaATIjT2Ef0QsXt90COb5U4/nXDALkNjYErl2vN/zcjDkgdNoF9ocV1NSKDNqpmFTashkOZr1YsPdtfS5dybABJgAE2ACTKCxCLDh3likG3sc/x54bsc806iZab9DbTrzrgN5h9/x6KMVBjqFyWwxZQqK1uih/oozpHrXTLM2TIAJMAEmwAR8mwAb7l48/xH97kV8hX4xfTrB814I2Tc5P/x6CYGF1xsaB40aBUXr1ggYIkPQGF5tt48gt2ICTIAJMAEmwAQ8gQAb7p4wS/WVkWKYVxrrrTp3gDduaDiVn4+Vr/ZHx6AOJkraPAllhyXI5Gy4m6DwARNgAkyACTABJuDxBNhw9/gprFkBzYkDSK64/Ehc40Z5qVkq5175795c3NivDCgpxuX334ek1aI0Q4KyHRvtziXNvTEBJsAEmAATYAJNTcAbF2Gbmmkt46tquVbTJS2yUpOxZvthtOg1AhPHD0KoaKopQN65EgS0jUCov617tdi2bIHxwswUJPSuXHu31dZz63bvLUHcrS3Jp30NoNdDRj7uze/zXH1YcibABJgAE2ACTIAJ1ESADfeayLiiXn0BFhHW7bDjNVnJ6DkssUKa+TjodxTLxrTBiofDkFiRcGnK4s147cm7EW6aTS0yVjyH+EVitJk4NH+kV7rJ6CgNqi7oDO4b2At+f9CnVy8ULtfTqjvQ4nF+meSKrzD3yQSYABNgAkyACTQdAbZuGoG9VqtBQV4WVi9cYma4p2DZf1KRV6AGeXfUWMqLCy2uHTlGqT+plJpVJ80YgTaqoXhxyWrKDLYaL45SoW/iIsTNXI4TJQvRw+aKvEW3HnlyUXYMk549hpaBgfC/6SbI/f0Rkihno90jZ5OFZgJMgAkwASbABOoiwIZ7XYQael2TgTGqAIRF9sSE+RVL5BV9Jk0bhsiwEKhUE5FRQ6zG4I69EGcmw7jh3egsGKPnL7eoB3Zi/owJGDFiAtLaLsCOQ+eRunASorzUaBdI9h07Du2JWBOd8mwJRes4BKQJCB8wASbABJgAE2ACXkXA5FzhVVq5kzL+sdggSfWXKHwotuWfQOZxCnnYrit6RBh91cP7T0KqlICCC+dRUk7dl5ejXBWIsLBwBHuxsW4Ocsm/wjFvkhIXP5qFVvPnQ1cA+N/Km1LNGfExE2ACTIAJMAEm4D0E2HD3gLlUhkYhlj7WRYnQcNqcan3B62tyLubj8kU/dN//A+TduwOSDMr2oA8b7l4/+awgE2ACTIAJMAEfJcCGu49OvKer/d+9p9H3Zi2Cx42DvFUrXN1IbzXozUPQWDbcPX1uWX4mwASYABNgAkzANgE23G1z4Vo3J3Cm+AxGx3eEIjzcIGnQKDcXmMVjAkyACTABJsAEmEADCfDm1AYC5Nsbn4AOWvQe+1/c3quzYfDS3yVc/kDX+ILwiEyACTABJsAEmAATaEQCbLg3ImweyjkEsq9ko2h9W+Q/MtXQobwFEDKRv8rOocu9MAEmwASYABNgAu5KgK0dd50ZlqtGAv/5XA3/tRfQ/IEHIJVJ0OVKkHlnYtgaGfAFJsAEmAATYAJMwPcIsI+77825x2v86y8yxM/9B4J6tEPJj5QptRSQyXhTqsdPLCvABJgAE2ACTIAJ1EqADfda8fBFdyNw/MIlFOb74WYy2kUJGMwvjdxtjlgeJsAEmAATYAJMwDUE2OpxDVfu1UUEMk+dwMSRf5KLTBk0+/S49E/elOoi1NwtE2ACTIAJMAEm4GYE2HB3swlhcSwJXN26Fbr8fEOlJj0d7c6vwD1pq6E9dQq6iz8g7BX+ClsS4zMmwASYABNgAkzAWwmw1eOtM+sleinbtcP5Rx9F6f79KPo2BRdWHkJgh964+H//gi4vlpzbvURRVoMJMAEmwASYABNgAnUQYB/3OgDx5aYl0KxPH1pVfwX5L72EPGUgTp6Mxk2ybLR86j3IAoIhk7Pl3rQzxKMzASbABJgAE2ACjUWAV9wbizSPUy8Cwj3m6oYNULRvj4BvN2Dg0Q1QRkaieMuHUHYqqFeffBMTYAJMgAkwASbABDyRABvunjhrPiSzMiICAUOGQNG2LTTwh18LWmVvNgDlOeMhbx7oQyRYVSbABJgAE2ACTMDXCbDh7uvfADfXX0kr7dpz53Dlf+koD/JH+/97AWWZ/0Hoc4WQBwS4ufQsHhNgAkyACTABJsAEnEeAfdydx9LunrQF2di0+SD6jB6JKH+7b6u5oVaNrD27kfbHYRRSMiKgGSJ69cOwwbEI9fAZvrx0I4rWHoFuxESEXLkGugv9AL/7cf6J99F6oQwB/WNq5sJXmAATYAJMwGcJFGI//sSPyMZvOIfDBg59sRkDEeSzTFhxzyfg4Wadh02AOgdrP3odY2clkeBxSCtsuOGes2sFEgcnYqdNFPFYlf4xxseG27zqCZXq5cPhP/AeHD7xO9r3uQm6cxHk466CssMcXF1bTIa7J2jBMjIBJsAEmEBjESjAFuzAv5BrGrAPrsf/oRtuQBs22k1U+MAzCbDh3hjzpsnDxqRXED9DGOyVJQSqysN6/sxe+3d0GbuolrtTMKFvCi6m5WN6/9Ba2rnvJWUHPzR/XsJzjyqw48tIBJ7xg+oaoORnGTS7gt1XcJaMCTABJsAEGpnAKfyE55BuMtkH0BLZM4iBMdN2IwvDwzEBlxBgH3eXYK3qVJO1gsIWRiI+NRAzE+KqLjT0KG8LRlcY7XFTFiPt0AmcP5+LzB2rkFCt7xkD3kK2tlqlB53u3nsIt4QcROBpPxRv1tPmVA4B6UHTx6IyASbgsQSKcBR74Anxu8rIJSYZ482M9ieQiLfYaPfY7x4LXhMBNtxrIuOkemXknTiamw9pw0Is/PhtxDup39RPZyGT+pq5KhOpy6ajf48ohIdHoPfQ8VhZnovFFgPNx3eZaieN3PjdnFu+AYNaZEOzV0LA7fyVbfwZ4BGZABPwRQK5eAXfkcvJJbdX/kf8h1xhquScTEb7eIS4vdwsIBNwnABbQY4zc+gOZXAEoiOq3FSc4tyhzcaXc8lsn5KCt8b3tpZHGYHpH26mlYaqcuWy5xrupbrLiJ18L2VPlaDqVqUTHzEBJsAEmIBrCGiwGmuRRp23hcI1Qzip14vk0f5/KDb11g33YhIb7SYefOBtBNhw98AZ1RzaDuEtv+bFe1DjJoWI2/B3s1X39CNnPVBTQItSRK5ojejr+iD0WTmFgGQ3GY+cSBaaCTABjyGgI7eTz/FRhbwBbm2452IBRY6pKlF4GV2qTvmICXgdgRrtPq/T1IsU8u/6EI4euh9RUfZP39B+XT2SQGF+MVo/Oh7nA3Tk2w7IAo2Ge1mmhKAH2Yj3yElloZkAE2gEApdpi2YaDmANGbbD8AS5joDCI/5MnuBHcAjldKbCLbgVT1HElZYmeQqxEV+Sb3jVCvZ+itDyHjpSCw3aYwDGoLWpdVMf7MM2w1uBSjkm4m6DpJXn/FOCRAtgGpprznviLd8G+y0/b9HYG/TwD0V0jyr3m5pUMoR0r7gY4qFJRld03I2h/Toj6kQHBE+kFXezjakqXlapaeq5ngkwAR8loKPNpF9jMRntVcEQgUE4Tu9pt2ClBZVyqtlO7XXYQK6VRnNAjV/NjHZj80J8hYOGw0j0cCPD/Rw9YhSaaRSIMPyBt+nx5Huqv2K4okIfCgM5iWK330S5t32vXCXP/5/wAT3QvOR7ynupxmy4e+nEQn0Em1MqlItbivgeTvGub1RaxSXFuHnzO7jlrQ1o2Za/qo0KnwdjAkzAIwkoKPThtWSmafEpJR2qLJ+SiS7KENxMIRLCyFjfQsa4sVyhPCAbDAa5H1W0w6uYgX1Yjr9XGMXCZ3yZwf1ER9ft8Xc/Tiv06XS3PyUDdLQI98hrSYKYOuOtF9GbA+GDL0oL+lyhB47F2GU4r/pPOZnxB0mXg8TkAfKFp2jCXJiARxNga8ijp69m4bO/WYZKu33x/IdQ9/p8zX3VdEWSJBw8eBAbNmywatK/f3+0b9/eqt6Rit2b9+B4n9uBtS1R0luPgMG8JcMRftyWCTABXyTQGbHojF6k+kdkvFeWELyMCeQyI4xz0OpzezKQl5v+lSgyuM6Ia0bDXGWRZ0RRsRpvj9EOFCGHHgrM1/sNQzrwnwu4jwz3PnXckU2Ge2Uxrq63IsN8JBnoIppMGb1jSMdr+KUiYyroUeVrhFO0mSlO3bh6FRfpEaXqEalSoqb+eQV5BhFKoSb5ziIL/zWcN6MHIn+nEnCOpm3Qnb57rjNJMzIycPLkSSthCwvN39lYXXbLCtdRckt1fUQozQG8OcGY7Clu3g6XJV/S6/VIS0vDuXPWf7TatGnTYMP9kL8CHV4ahaCucija+sjcsZpMgAkwAScQ0Fv00Y3W2iuNduOFEFp7DyTD3ejLvg/nMYnMfeeUhhoW9t5vnsQwkMJWJmCwSQE/0uYWelPQHKPojYLRsAe5Cv2M0WTaO89LX+wkOEFvMNypCL/2k+TyJIqe3r0U0cNFBm03FiWE3qmEuuF7h1Y0X6403FNTU7Ft2zYDA/P/FBQUmJ96xLG9vx8eoQwLKQhosWXeDEPUGSQsx7o5Q12GRaFQYPLkyXjhhRdcMkaXe3bi1nNPQXsaULbjjagugcydMgEm4KMEWhi2KxoN9xInMggif/Jd9KlvEdkCHTdNutJ7BuuipJX7f1HOk6dNMd6PkeuMjh5i7Ht7YN1j9ZpIejMgPu5XnjCIJIx29nEHnn32WcOn+jz17m0jpHb1Rm52zr4HbjYhDRUne+1zGDF/J3UzG0eXT3KJi0xDZbTn/nNXcnD+s3KofmkNmfHdrj23cRsmwASYABPwaAKOG+1CXS39z3a5HtcZfOCNV8tByfxsN+RaJuARBOr3G+IRqvmekOoDK9Bl7CJSPAFp+a8j2oNn94fX10P+exGaf8fPlr73TWaNmQATYAJ1ExAhLesuSnKM6UTN9lc09XPaanvdYzd9Cz9yiOqKuKYXhCVwGgEPNu2cxsA7OspLRXxMIukSh5QTH6O/K3ajNiKp478Xot9NDyH/VR3C5jjrpWYjKsBDMQEmwAR8lMBVCsp4hrznFbTFVUSisb8Yo8u3IteTuv8JCzC4+tRna6FjMtkvvTu2FIZ7tJnvvzvKyDI5RoANd8d4uWdr9QFMjRxGG3CA5ZnrMDLKs6PVFpeV4ivpQTwxoxuCg3nF3T2/dCwVE2ACvkEgwEE1i2hb5FTT+raDNxuah9Cm0kRycKm9XIMO1KAyNMIpimUDs0RS5vdaLv0EWUTMMW/Hx0zAEwiwVeQJs1SbjNocvDowxrAZdXEaxQXoXcM6RUEq+siGIkNdW2fucS39xHHcMfoMFLvpuVJyD5lYCibABJiAbxLYT9sbHSs1eZvb20uJVQooW3f608bTh0wXCvFjRdx5U5XpoAxVm29b0V28bcqEhg88kACvuDfqpJkHr7J3YC2yUpOxZvthtOg1AhPHDzJ7hZiHJWM6YW4msGBHLoV9DLfZqebCAbw1bhgyE1bhOg/IwxTk919M7n0tKD4ZbUyV2dSJK5kAE2ACTMB1BKr8x7s5GDzRH30pfnw3Es1ypdteWbUUU8a+NEkhGEvRv7/Cn4auv6KQh4kYYpW46SJdP1wxeDcMMEhmryzcjgm4HwE23BtzTtQXKCyVWbHDjtdkJaPnMOG7Lsp8HPQ7imVjoum4ACsmRmJGiuECZr2WgFXDdiIzJgaVg4hDZGZWnmLBj3d4RMrnwidXov3b76F5f34hZJxd/i8TYAJMwDECcot15QAbRnSx2Tp09b7N/ccPYzfFKb8G/Shi+QJKYnQZY/AWhUCsqShpcamb2QJTTe2cUd8OQ/EcGeZvGTrbTyml+uBvFmPTv5QVhj3QCrMMGWCdMTL3wQSaigBbRo1AXqvVoCAvC6sXLjEZ0aDEF8v+k4q8AjW0tbxXLC+23Hpz5Jh4aVmA1VOHIDHZTPidZLSLUzLUjZY7GexmRjswEw/eYntF3qyXJj/840AW9pwaCOmlvtAXsp9Mk08IC8AEmIDHEdDhFGUM3Wgm937aLnqYsokai44yaf6KxWYOKYcpy+g+03WQmS6WhyrLJTyP9ynwwdeUfbQtHq/FaK+8o/F++lGu1Mcwo8Jv/St8Zojbfpz+lTxLSYjeo3Pj6lYgXibHGvEegAsT8GwCbLi7ev40GRijCkBYZE9MmF+xPF4xZtK0YYgMC4FKNbFG3/Pgjr0sAjmNG94NmgMpmJBkMNPtlj5h6USPCA+5/c9SnJ+UgHZfKCAPYTcZuyeYGzIBJsAEDAT2k7E6ngzxXAsef2IyPqLV6ZO0bfRzcjH5udr1XPydrq+oiHHuT+mMXqZ4JOalBRnzy/CwGxq/zekdwFR6tOhueKTYQoEaHiEGY+lB4ytSIBLXk+vO49Uyx5prxsdMwJMIsKuMq2fLPxYbpAasHIcPxbb8E8g8fgmB7bqiR4RwUp8ESZrkasmbpP+f95bh0WvboTwb8OPFkSaZAx6UCTABTybQhzy9d9WqQEId18XNCjJ0H0d/2ph6gUI6BlAKo3Zu7WqpICeZu/EFuc6cJYnzDfrrEIw26OjWctc6UXyRCdggwIa7DSjuVqUMjUIsfby9FJdpEFnwM/o2nwalfXuTvB0J68cEmAATaEICQbQxNagJx3d8aD96wIikDxcm4K0E2FXGW2fWA/W6lLEWjwSnIGyiH+T+7CbjgVPIIjMBJsAEmAATYAIuJMCGuwvhcteOETj6+yHI8l9B8XcNcC1ybEhuzQSYABNgAkyACTABjyHAhrvHTJX3C/rS9rFQvdoTze/jr6X3zzZryASYABNgAkyACThKgC0kR4lxe5cQOJBzFq2LVbhmf5hL+udOmQATYAJMgAkwASbg6QR4c6qnz6CXyL9r60HEhavgdx37tnvJlLIaTIAJMAEmwASYgJMJ8Iq7k4Fyd/Uj0HbdUvS77RxU0Wy4148g38UEmAATYAJMgAl4OwFecff2GfYA/crK1eh4TSA6Hx3pAdKyiEyACTABJsAEmAATaBoCbLg3DXce1YzA0avHcfTZu3Bz92ZmtXzIBJgAE2ACvkpAWyBh02Y9+oxWIMrfPgpZGXr8niWhqIza+wExsXLE9uC3uPbR41aeQoANd0+ZKS+W8+NPyjAkazD0SyTIA/mPrBdPNavGBJgAE6idgFrC2o90GDvLGBY4rbBuwz0nVYfEYXrsrOg5Lg7YaTjRA/EypH+sRGx47cPyVSbgKQTYx91TZsqL5Sz89hS636Vio92L55hVYwJMgAnUSkAjYeMSLWQhWpPRLtqrar0JyNmiRadKoz1BjhMlKqSmqlByQoEEcW+KhL5ttMhQ19ERX2YCHkKADXcPmShvFfPAT7/ijuzP0O3eNt6qIuvFBJgAE2gyAupsPXYdcO+kdposHWQBWsSnAjMN1raduAr0SBxRqZsMR5dXrc77R8mx/GiliUPG+5M6sO1uJ1du5tYEKr/Vbi0kC+e9BLLTM3BN6xchCZ9ELkyACTABJuA8ArSK/WwXHZ7eXGncOq9rZ/akjJTjaK4S0gYlFn6sQLydnW95S2dyj0kgoz26mvOvMlqB5ZUPAsl6LN/r3hzsVJub+TgBNtx9/AvQ1Oq3nFGCa/8XBEVL9m1v6rng8ZkAE/AuAqsf1yKJVOps5+bOptJeGSxDdETVvwHB9gii1mPp/KqGY+Oq7q+qBeLGVtXPeF8PjflFPmYCHkiADXcPnDRvEblUX4LTi65B8C9dvEUl1oMJMAEm4BYEdr1ZjgnJFaI0qzJe3UI4Jwhx4Tc9Uir7iZMjLqryxPJnZB8ZYiqraNV9P/vLVNLgnx5KgA13D504bxB7E2VLzUkNReAN1d5veoNyrAMTYAJMoCEEyM0la68Ob/69HLKJOsNKsSZPj2UvajG0Tzn6yMoxdKIWqdnV3T9ok+eL5Rg8q2rwlGlavLmE+npVixW7qrevaudJR+nrLfXQ1iC8sq2Z4U5t9h6xvK+G27iaCbgtATbcm2BqtAXZ2Lh6I3Jc8s5Oi+xda7Fxb14TaObYkOr3vsD1kUcg8/O+1SDHSHBrJsAEmICRgJaM87+PImOdNmv2HKDHrEXG+l+36BAQqcO0+RJ2ZgL0f+xMljCsixZbzP7cqymWebyZC0kl11kzqK+5Ej7b4x2Ga87xSs3oZ1cgwOzU4rAcFptSU3/1Dv0tdKx2smuXHs89p8PFi5a6btqkxz//qavWmk89jQAvdTbmjKlzKD7t6xTqSngdxiGtcKTdiSXsETNn71q8PnssknZS7wvSMLJ/hD23NVkb5f5e6PXgsCYbnwdmAkyACbgbAeHvHTdKjuJCveFvucHPg1w8Bgu3F/LjXvVPOTrm0/nYKqNsxCwdSlYqIFzZg2MVkCQFMpaVo+80o3bxixXYMF0OrViWtudffYrW8uY8PS6H1WIQG7u2/m8JUNJOjtk0nl2+6tY92FVjnq4vPlZm0N3mjcRzBO12Tan0qym12cqrKgcNkqOQvj9PUiSdxTT37dvT92aVHtu26bFokcKrdPVFZez5FfZFLs7VWZOHjUmvIH6GMNgrS0id8WkrW9b1My9jI15JjEeSWIKpKCH+dUW/rWzZND+zzuZix4xIjJ/csWkE4FGZABNgAu5IgAzNkZMUuLMvkBRDCYQq/q7HL1Dgi+flFQaqHOd3aNFmWIXxnkvGMulivgdVBfEms8q4F6oq7fwXX31copV+y3vF/fYXHeIT5ejvMstdwuHj9kojg7mRb+9d9rbT6SSU06p+ZVGQXaxSyejhSUKp2UOCjKajWcVeg9JSia5X3iHqARk1KC+XoDNbEFfRP+MKhYzqHB9j+HAZyspkePppHQYOBP73PxiM+KAgQENuWJWlIWM4Uw+hPxf7CNj5a2xfZ9zKmoAmawUCeiZS9raZFJ82DouSd1o3qneNBqsnBhg2IM2cPRNxmYtMobHq3WUj3Sips/GPEFrO4cIEmAATYAJWBMxsQcO1ubSCbW6Yh/emDZmoCIe4U8Jx2nQZ6ixD2QnrPk7owoqJeUW3AXRW8VCT8hMdTzW/2njHGzZI+OQTesCqKDffLMMrryhw9CgwfXqVFe5Pk/f110aT6+GHac+CmavskiUKdO0KvPaaHr/8UmVUP/aYHA8+KENDxsjKkrBpE7B+vRyhoTK89JLO6WNU6t4QPVq3lgzyVfbFP2smwIZ7zWycckUZeSfFp82nUFeh9JibgePJfat2wjd4BCWGvHwU+cujEUozmdHuOPrOqHwf2ODOndrB2Qla6C9RlxW7KjS5kQgODkXuV1qE0qvfwKG83cKpwLkzJsAEvIuAsOTNLXcy0iNNGlYZe6aqBhwE9yZ3m3JaOnZjC6HwSJWCMb2rjhv76MEHhXFt/e9X164ybN5sG2ClAV9dVmHw2yr1HaPSPeaee2RYvlzCDTdIhocKZ45hq6/66GGrH66zTcD2t8p2W66tBwFlcASizVZBzA7r0Vv1W5SIiI42VaqaObd3U8dOONBdANp/TX+U6O9bwYVLyI15DUMPvQ/9L3KU/iaR4e6EQbgLJsAEmAATcA4Bt7YOZAgJqVLTkTj1hVW3efVRpdEufNrFSntQkB4zZlT5vHu18l6unPVjopcrzOo1EQFyX5PRu1N5gAz7Vu1HecRoBLZvDhl/A5toQnhYJsAEmICnEiD/cXstcI0eO8xeRA/o5P2+1Dt26HH6tIQPPjAa7WKW771XjmeekVu49Xjq7Pu63G79TO3rk+Ot+h/8syNaPlvlE+iterJeTIAJMAGPJKCVcCBdQrFwVK/ubG+HQqoWMsT2cKWBLMN1d5MgFVvGUsjPXD2dIurYIVvs9a6Uyw4BGqHJsGFyDBtmPVD//rRhuL91Pdd4FgE23D1rvrxC2jaHFBj8bLhX6MJKMAEmwAS8jYD6kB4xFEO+ISW9RIVYc5/8hnRm494bhovXtRUy0ubcfAp1GWzDotHmSkg23S/DjVGmEz5gAh5JgB0VPHLaPFfoS5ePIOql1bimF23W5cIEmAATYALuR6Aeq+zVlTAPkVj9mjPOg2PkmGnqSMKvuaYTi4OCnKqNu3EL5Ii2Ydxb3MAnTMDNCfBX2M0nyJ3F01HA2QULFmDp0qVWYiYlJeHOO+801UsUZLh4m4RT6/YhSB2JqxUrJbpL1KRhCzumMfiACTABJsAEKglUGayVNfb+DOgqx6FMWtcTrjL1KMJo71RjKtN6dGjrFqUMjy6XYVGiUc8PU/QYQyEzq5c931RxeD7B+nr19nzunQSeffZZrF271kq5s2fP4pprrrGqd+cKNtzdeXbcXDa5XI7ExEQ89thjVpJ27GiZWCn0BTnKDkoo/KYngm4NMRyLmySKZRsylf+YWgHkCibABHyawP+3dy9gUZ13/sC/M8xwU0AwqAEVDDGVJOJfTCq96AZNE20bcVOtrWJWkkbZNOsl28TVjW4Xs7Em21XcPHnEboON6LaJzTp2G202Qio20U1lK7aRJN5IBA0oKCAMzmHm/565noEBRmCYc4bvaQnn8p738jkz+Jt33vMe+cE4nkUnHurj2bKvic4Qr07mTsejR8pjuR1Bq2mVFeXf1+MrBis2JnTg8z0G7F7c/Vhv+emtkyZ3Km+wNsV89M7p2R0ldmqXshqTxYOqCrZK2ChOKBMzppQu0GOW4oHhUrV4ENQ2xxnZBWGYozimzIfroS/wzDPP4PHHH+/S0Jwc8VhdjS0M3DV2wdRUXflJZ6NGjcLdd9/da7WGfVMP88wbeOY9A/7w63GIMPqer7bXjJiAAhSgQIgLSM02/LJI+VWkDQffs2GieBpmpPhXWxJPvtz/svPhS06L3b+04u5lnoc0pUz1BO5yAD9zlGv8iw6nH+0+aA8WrSTGqDfXiXa+0uEVuBf9wop/+q4eo8Sdp12f/KrDhqNhaIjtgByfz062YM8x8XyTMcDVz6zYMNNpmK1HyQZ2EAXr2qqh3KSkJMg/nZdI+clYGlv4StbYBdNydY/+52UssQ0TQXsPXShabiDrTgEKUKC/AmL6wgWxEvKcPcWu7NbOlRBllHCq1oq8KAkLN7uOOH5vy+tA1KwOiA5r+2JIC8PBAueG81dGjg6VDQZMUlusIrfZaEFCsoQlndq1M78DyQkW8Y2DhApX45TNitFjq8WA4nWOnUuyJCSnSsgQQbs8C2TBnjA0lYaha8imzITrFNCOAHvctXOtNF/Tmrq/IG1ZgmjHBM23hQ2gAAUoEBCBSD3223ruU9stju/2o/A5G4xoyrehTsx5HhWrQ5JaJ/Pyo809NleMd1/2ohHfe9aGmi9EStE3JPfOj04R31D0eCIPUkB7AgzctXfNNFvjr763A3c89m+arT8rTgEKUEBrAjGJOsSoNWAfYMxI8YTQNE5YNsCqzE5tAj1/rFdbbVkfzQp8frQC7ebvInbcJM22gRWnAAUoQAEKUIACwRRgj3sw9YdQ2XvO69C8OAN8aNsQuuhsKgUoQAEKUIACAyrAHvcB5ewts77clCmhqnQXNq1fj+17y9HYWxEqPR62Mx4PjRml0tqxWhSgAAUoQAEKUED9AuxxH8xr1FzvNc2VPw+3MFeVIH12nrOWm/GX8DMoWpDms9aWdsUt9xF9+ZDgM9t+7/yioRln2z7Fqkey+50XM6AABShAAQpQgAJDVYA97oNw5SXJjMbaKuzdul0RuJtQ9ItS1DY2Q56/trvF0iqmA1Asn567otiSVyWYmxtRVb4LP1olT37lWEyvvoLSqlqYzT1k7koc4N8f/WI/vhn73wjvOglvgEtm9hSgAAUoQAEKUCB0BBi4B/pamivE/LRRYn7adDE/rSewlovdmT9bzE8bK+anXep7flqRJmbcvVD2Uy968C6vGp8qyhPTfCUgfWYeypRHKndidnoyoqKMmF9UoTwy6OuJZ8y4Z9EDg14uC6QABShAAQpQgAKhJMChMoG+mpGZYk5ex2On+1RU4iy803ABleevInrMRExKEo+PUyyTV+yGTfyodbGJJ/aV/W0z/uZLC9VaRdaLAhSgAAUoQAEKaEKAgbsGLpMhPgWZ4keLy4dll2B+bgFiPxyhxeqzzhSgAAUoQAEKUEA1AgzcVXMpQrMi//uHT2F4WP7GYXxoNpCtogAFKECBARHoEPeCNb1/DO21jnu7dLFJGJY9G8NT/HmqUjNaKz5EW9VnsN4U1QlPQFTmfRg+KWlA6sZMKKAWAQbuarkSIVqP215/A2PXPxKirWOzKEABClCg3wLms6hf9ySub/O6U8uerTxXmn7dHox9cTHCuynIXFqE2tn5sDqP67MzYC2rxHV5O6cAY362DsMTGe50w8fdGhPgzakau2Baqu6V6i8w6sZsTF88W0vVZl0pQAEKUGCwBMxV+DzqTp9Bu6sK1s1L8Nn8IjGHWtfFfGgTLrqC9twdGNtmwx2lJ3HHhcOOGZdNG3F5VB5aFLMld82FeyigHQEG7tq5Vpqr6Y2UakTXXIMxXD1zymsOkRWmAAUo0A+BjrPH0XSqth85BPJUCdcKFqHdXkQ2hpuOYWxdHcadOYERBbneBZvycenAWe99jeWonbvRuW81kotXIDLSsalPmYXxZ950HivB5af2osP7bG5RQJMCDNw1edm0Uenz2yVE/8+XtVFZ1pICFKBAqAmI3uyaO7NQf/Bzdbas/giubq4EMlbj9oZSjJk3HZGJiYhIy8RtG3Zj3JFCr3q3b3tXEXxLaHz5affwGKMI2qM6jYbRpT2MOFf8X7IE9ce1+uxxLwZuDHEBBu5D/AUQqOZbbR34VUkb4tJvD1QRzJcCFKAABboVaMaVJ9Mh36cZFqnObz3bfv8rMWEwEH/gZQzzcf9pxIyVuG2d4kkmV+s8w2WaT+C6HPTblwzEZN/pXFf+ikHMwtXuHS2vHHYH+u6dXKGAxgQYuGvsgmmluh/+uhyz695AytiRWqky60kBClAgRAQkNL20FNdKnM2JiFZhu5rR8upOYLkJCSmdusoVtY39/iLPVuUnsDjHqt/80+89QXz2U4jrJo+IKdnQuXIoKcENjnV3afC3RgUYuGv0wqm92rUl16G/Z67aq8n6UYACFFCngLkRrccP4NKa+TizdJe9p9haW4Ev1q/AuSlTcFY3BeeWrse1s52HfzSiYf1DqFtrcrdLyv8HXNq+HZc2bUJ9ebV7f3BXYhBffAZjf/JNT2Dto0Jyj7x7yf46ouzPIJRw46097t3yilc6xRHd6AnwfCww4cannb0UiUNktfV//gctJhNsHR2wNjWh6fXX7S2TLl7E9f/4jxBp5dBtBgP3oXvtA9ryQ18fjnHbpwa0DGZOAQpQINQEbLXl+Hz+LJyJSkBtVg5ubJMD8Ha0HNqOc8nT0Lx5J6yVlSJQrYS1ZDOu3PkAGms98610VOxGw+bO0yqKgHXVKtzYuBHNH1xWDZkhJQ2R8Z6wuteKJcc4g/w23DzvGiYjzpo4Et0GMxaLV1Bv/vB8r8VoPUHUgw/i5l/+gqtr16KjoQGtv/sdzBUVqH/6aURmZWm9eUO+/rfwjhnyVgTwU6BVfBe57HoHpt0x1s8zmIwCFKAABWQBXYx46ND8RbA1leGmHH9niJ+SfNSViN/ZqzHi+e8hvOH3qFu4VuyQl0oRoL2BuN2L7cFrWOZK3GlbiZai+bic7+h1NxQeQ+rK6bBJIsA3+PHPfmMFLhXsgzUhqsfecEf5nf7b1gbbmJkYs3IOwjod6stm2/sH3acNXzPXHaArA3VD5pfc+92JXSsxExCVAzS7voBwTGHjOhqSv3U6HeLXrUPj5s1o/MlPINXXo7GgAAkvvICIe+8NyTYPpUb58Q4eShxs60AInDn7JzRnXoZeNxB/tgeiRsyDAhSggEYEYtKQsCwNI6YB5zLy5bjcvhi2HMT45+Y4A1Qx+8rhdnw22zkVYk2zfSiNMpjVwT6mxNlox82pOn+CdnFGx/mjoqd/s/Pcvvw6hta8OYhRVqEv2UhVaHB++ED2DtyWGe/MpUH0uCsztCg3Oq0bug/qO6XHqMhaAAAyFUlEQVTsy2bru++iZd8+RH71q4h97DF7Fjc//RTXfvpTGJKTkbBhg32fTfT81//d39nXE//936EzOq5Jgxi+JNXUYMTf/z3CJ060H5eHtpjffx/DFyxAtOg9l5e2I0fQvHcvIu67D3E/+IF9n6W62h6ch912G0aKoNy1fLFiBdpEvcIzMnDz//7Pnr8hJQWXcnIQ+8QTSFi/3p60+Ze/RNt772HYI49g2Le+Zd9nPnYMTbt2IXzyZIz44Q/t+6TLl9Hw4x9DHxuL2156yVUM6sW3OLb2dox88UWEJSTY91/buhU3P/4YscuXIzIz076v5b/+y97rH/3wwxj+139t3yd/A9C0cyfCv/QljFizxp0nV3oXMPSehCkocGsCp/72t4ideRfgeH/e2slMTQEKUIACXsM7xOM/cZvowVYG5uGTv2bftj8ttOwozM0rMLy/gbLL3RjhWuvj79hb76n3UVLrGyIItO/Pxm0lTyjGqkcjPCsDbWLIkLxIR+uAFfbVQf9PxLRpMIwbB31cnLtsw9ix9mBUF6FwFB+a3AGq4gNUzNKl9uBXPse1RD/0ECKnT0fYqFGuXQgX9zWMGD0aesWnIcOYMY5ynB8CXInjn3kGscuWwdrSgkYRVCMsDJFf+Qpin3wS4ZMmuZIhatYsREydCjnwdy3hd99tz1M/fLhrF8JGjnSUo6i3fDBODL2B1WoP6F2Jh8kfNlpb7R9aXPuiZsyAnK+cj2sJv+suR57Rarxx2lVLdf5m4K7O66LZWnVYO5Dw0dcxeYfjk7ZmG8KKU4ACFFCTgNyp7Hy4kL1aMSPsQ1HsgTsGdqqUsMkrcKdFRMJBjBBs1eLG3CVi1hmxxJz4NUYkKStjQMenjqBdPq6b7OqJl7cGdwmLj4f8o1z0UVH2nmTlPnn4ity73HkxpqZ23gU5IIf8o1jCxAcD+Ue5yB8MfOUp77P3aG/ZYu/xl29IDU9PR+uBA4hSjHE3yB8MFB8O5LzlXvVw8aNc5G8HfJbj/IZAmdYoPsR0XuQPBsoPB/Jx+YOBrzw7n8vtrgLKD/Bdj3IPBW5R4P2PavHvC5IwdnLSLZ7J5BSgAAUooBoBZZw82JUSD466mJpj/9YhynQGo91DZFwVMSBMEVveyjz1jg86rnxC83e7GB7TKIbOJPzLv9gDdp3ocZeHx+hFj7c8lIWLtgWC+dbUtpxqay/hbPl+/CX8q5g3ffCD55q3mvE3Y6NUq8OKUYACFKCAmgUa8YV4cJR8D6l8U23yvDQflZXENIfK3T2McTdfQKvJkzYi1TNcw7M3tNbk4S+3v/WWu1Fjdu+2ryeIG1a5aF+Agbv2r6G7BdXH9+HFdQuxU8xEkL3lWFAC97FZv8Vdmd9214krFKAABSigMQGpETdOfAKrfP+kxXETpf8tsEAXNw7DJ/Wl40jCtU3fQXOJGP6yTtyMK2bC8b3EI2pONprL5Gl3xBj3/X9Ch0jrz3QIkfeM9p0l91JAIwIM3DVyoXqqZm3FAfxzXg52eob8ITYIj7hu+qIa4c+X4bZja3qqLo9RgAIUoICKBTpO78alrFX9qGEOxrTtx3DlmHw/crux64e4slEE48v3IPVF75txO58+7MFFYpcjcEdZNSxipsswHxGNreZjePrjVyM65RYr1blgblMgyAIc4x7kC9C/4s3Yu1SH5Gk5iP7WamT3L7N+n/2Hn1ShxvIE9Hoffz37nTszoAAFKECBQRHwRLp9LO48bLeYh/nQJlzKEzej5uzA+KLF3faeN20ST4zdXoGwjAfhmbNlM27UiMjdx2KpPu3eq9/yKKL4z5PbgyvaFOBLWJvXzVlrAx748Rk0FKdBfvhcxZjzmLZKMZhvkNv26xEjMfMnXe8oH+RqsDgKUIACFOjHTDP6iQuQVPkQcKujZJzqNjG8JvIWbnW6ebwIF+duFEF7IcbtX4FwX1dPMuPG2y+jbmMl4k5PFAPgY5BQnCuC/RJ76uumExjZZWiNhJbf7HPmloH43K/4ypn7KKApAQbumrpcnStrQFKa58YdY8RATeLbuZzet6UOCRP3JOOhH3jmfu39LKagAAUoQAFfAjqvudRjxAN7OqVqu4EO5a5Ox/UjJ7iPSqu2oun7xYgxnEZtQgakPaeRstgzn7c7oXNFfnpr9CDNDNZxai8+y8p3lGxahZopP4dVMexTPqATT4+1OedsFzdwIW6S49+6YcteQPTWErSK9NZV63BtQamYNtLZCPHLVr0fDdscmekLXkG815SSnnRco4CWBDhURktXS8V1rag4C2nmhxiTHLwPDyrmYdUoQAEK+C1ga67G1aLXFelL0PReFazO0SA2cy2uvvxP9qelOhKZ0PjL44ptMeX71Pu9zq8bZcRZEbS3YTUSH+0+aFecFPBVSQTtFzKWeJVjtQfocrDt+XEH7WJvxFPfUfTIpyDpaKVzyEwZriTPx5XjVWgXTxS9Ub4X1akLHXlnFyJ5wwyvcrhBAa0KMHDX6pVTWb1jjr6GRyd/oLJasToUoAAFNCZgrkB1bCqub3PeeOms/o256ThnXIEbtRX4LCpZPOre+3h7XhbOzSpy98Lr0h7FyIIcr8brcgpwe8NWRKvi/sxmNG5Y0ukJsV7V9bGRi/iHPd8y2xPETMY4ywXErZPbasK1rHR8Lh5qdGnmEkjIQPSeI5hQulIxHt5HttxFAQ0JcKiMhi6Wmqva8l+TMHrj3WquIutGAQpQQP0CkZlItdl6rOewXo47To5E/Ib9iM2vxs0mSTwRcxQiEtX0jWgMEvfbkNhjS/08aEhB4ov7MfLZWrR/0WYfm68ziCeApiSCvZN+GjKZZgQYuGvmUqm3ohevXsMPR9yHY7PvUW8lWTMKUIACQ1AgLDEFUQMSHasfTx+fhKh49deTNaRAfwQYuPdHb4ifa7VacfToUbR+OgkPtdyO7YXb3SKPPPII0hQ3zroPcIUCFKAABShAAQoMosA777yDjz76qEuJV69exfjx47vsV/MOBu5qvjoaqFtdXR0+a2uGfsxHqPvogrvGDzzwgHudKxSgAAUoQAEKUCBYArW1tT4D9/b29mBVqc/lMnDvMx1P1Ov1mD8vB5lFBzDtF9uQODaZKBSgAAUoQAEKUEBVAsuWLYP803n54APtTarB+zY6X0Vu35LA7Y1mJE1+mEH7LakxMQUoQAEKUIACFLh1AQbut27GMxQC1V9uQ/PrqYo9XKUABShAAQpQgAIUCIQAh8oEQjWE8zw1rhbDk0cgPDoc+/UmRDw+FQl3GXG6sQFNOZ9ieuH0EG49m0YBClCAAhSgAAWCJ8Ae9+DZa7JkY1wETl74HprWfIKrX1qCN8cexEdxL6HW8FtMnDhVk21ipSlAAQpQgAIUoIAWBNjjroWrpKI6xiTFYfyz/4iPl/8D4qRYfOPGf8A8IhOZzy+C/iZfTiq6VKwKBShAAc0L3DjUgdbLQORDYYhJ6rk5rRVWtFXZYL0p0oUDUZl6DJ+k6/kkHqWAxgTY466xCxbs6rbVnYfuf5/BbZMuIfXKjzD6ZiwmZPwBF/e+AGuHJdjVY/kUoAAFKBAiAjfLJVyaa8X1PCtaPu/+abLm0g6c01lQO60DjUus4r4rcY74fTldwpn5ElrqQwSEzaCAEGDgHkIvA0t7s6c1EUbP+gCuhY8YjTErNuBq6xQ0GLfikrEa1qk/QMI3HoVOHzaAJTErClCAAhQYsgLNVtTO9ATrum7+STMfknBxthVWGSpXj7FtRtxRKn4uhMF+ismGy6NE8K7453HImrLhISHAwF3zl1GCubkRVeW78KNVJndrTK++gtKqWpjNknvfQKzoDVH4YPUxSIjHxftq8cncL+Pipv1orkuATseX00AYMw8KUIACAyXQcdaKplOeAHig8g10PvVPdYh/Z3pZGkVwP9fVNh2Si8MQGek4R5+ix/gzrn+TRPAu8uvoJTsepoAWBFyvai3UlXX0IXCqKA9RsQlIn5mHMuXxyp2YnZ6MqCgj5hdVKI/0a/3qhxcR+3kqZq/+F8Rd+ybGRUzDHQteRl3R27h8srZfefNkClCAAhQYQAGzDTV3dqD+oCu4HcC8A5hV614J10t6L6Dx5Q5HT7tIahRBe1Sn26x0aWGIy3XmU2JF/XFtOfQuwBRDUYCBu8av+uQVu2Gz2Xr82b8ic8BaOXFfCu5buRS4EoYDn4+BrmUsxt91J+7d8APcvnbEgJXDjChAAQpQoH8CV56UIN+nGebshe5fboNztq26A5eWiAA7R4cRhT3cWCqG0lzf7KlTTLbvtDELPftbXnEOqfGcxjUKaE6AgbvmLllwKxz9DT1G/F2Y/ecXup/h7NdO2tcTnjUgdvzw4FaOpVOAAhSggF2g6SULrrl6rSM8wau6eWy4NM8KuV884VUDhsV2X9ubf7J6htJk6xGX4jttxBQd3K0Xve43ONbdNxT3akag0xdLmqk3K0oBClCAAhQIXQExzKX1pOhV/qUINq/occducfN/rRjuIXqNb/xWfMtaCehydUj4sehISXOHpsLDhob1EhoUvdFSvpidpV300123wfBAGBJnKNOrh7DpJQmtol3hewxIEFM/3mjvvm433vIe9uK95TlPN1oHOdBxzXl241MbYjLV2X5Prfu3ZvnMhronOmAY1zUffZwOiVs5kURXGe3sYeCunWvFmlKAAhSgQIgL2ERwflHcSNnumWtAzJYCtIj5zOvE1IjKxVZiw5USCbYaI+Kdc5x3iLnMlUG7K/2NVY5z9VtsqgzcpeOifWtFbXP0SF7ce2B987yrZeL3xB6myBMRuzKoN38otkI8cG87bMPwhXpEf6Or4xdLeIuu4pWjyVUG7pq8bKw0BShAAQqEooAuRodh8/WwNVlxs0y0MEP8iCEedSXitxjHPeJ5PcIbxPZCTzh6dW0H4kSPvDz2NSwzDHfawtBSZMHlfLFDLIbCMKSuFHnK07T486++mK3lUoEYD54gevXtOdzCf9pEoDxGjzGiPL/7dcV49ZosxweL0eImU3/OU47zNYhAXLntVVvhGZUDNLs+CPXQi+91nsY3dOK+BuOErldPH6/xhrH6fr2FyUQBClCAAhSgwGAIiEAzYZkY/jINOJchglkxdEReDFvCMP45vTNA1SPysITPZjuD9xrYZ1dRBq+Okd2e4F7OQ+dP0C7SdZy34cY273Pl8/1fxNNO8/SIifHvjCviGwZ5KEv0YQNi/AosbfDqce+xmB6C+h7P8+9g+0nxpNYWG6K+pkezGNYk93LbxB3B5mOi1/uv9WgttcKQpINRfCvQ9DMr4vLD0P5ncU6DOGemOOcNcc4scY7oCDcfFed8R5zznjhnlDgnXZxTZEXsCj0spwGpzoboB/Ro+bUVkV8XV1h8wmktFUN/vqtH2xEr9Ak6RNyrQ1uZFVEiz5viKbI3z4n94TpYxdj+yCxH3eR6xnxPnPMHcWy4OEfcB3Bd1C12mQ6W86IcMdQm+kFRjkmUc58oZ5go521RzmJxzvvinChxzlQdmn5uxfAlOnSI19/NMzYMe1iPG7+xIvz/6RAWJ4Y6HRDniLn1zcfF69igQ+Q0cU6xOGeROOeyOOdjcc5ccc7bor4PiOsU3fWDhn9XYWilUr7Ph1bL2VoKUIACFKCASgU6h823iR5s5T/Y4ZMV22U28TyPAWyIsf95+RuCte2T7DfR6taF4XYRbPq7hGd5UkpHPeuDvSb3bOtEICsvevlmWvHhSP6ApHd+aNFHi+1wsV8k0cc70snbOrFfXuzniABcPkfnnN/Bfk6E87jrHLEt75cXOZ39Q5g4z36+vM9VjrwuAm15kcsJE+tyXeQf+zlyPZw3/cr1lusvL2HOSeHsdXOer5frI9dLvPBc58jBtescvTjH/vgW8XqxpxXJ7XWTXz9y3UTwLi+6SO9z5BeyXI7rHL1cnvLFbT+L/+lOQFwSLhSgAAUoQAEKqFpA7pJ2Bln2eopATMRGznnMO4f5/WtJ2GQx3MYicg9whCBP/VhrH/KjQ1KB/paG5XR86mmjbrJnfbDXwr/kCMblcod90xN9Rj/o2B+Z5dkXI3qa5SX8Lvm3Y33YHM/xYQ87z/myZ5/rHGOaGPrivAlZ7tl2LcPmOM+5z7MvUj5f/N94h+i1v0N+lXgW+Qm0rnpGKsb6y2Pi5cWYKv848oye7clz2Lcd+yJEb7prkb8dkBfjePnHeY6Y4ce1DHvEeY7o0Xct8rcQ8qIfK15eYx37o/7Kc44rHX93LxDgt2X3BfMIBShAAQpQgAIqFQh0dCB5pn6MP2Po8vAkWcUT7ol1o9cWwhRTRd7KPPWOkfQqNR/AalmbxbcwFV0/0NmGyBj/AaRUXVaBfmuqrsGsEAUoQAEKUIACwRXoqLTap36Ua9EspoFsae1UHzH0Q9rpCTxbNkgwi28ZIAJSw3cNMDR1St/dplmU47oxVaSJcPYmd5c8FPZHf0uHK38v5rkX49s7L75mmumchtvqFmDgru7rw9pRgAIUoAAFBldA9IbfOCFuoJTHKstDdG5x0Ym5wodPUvaQ95yBMkDvLqXNZHNXpWOWuOlxjojhyxyppf02dKx0DB3q7nzX/sh7/K+X6xyt/ZZvbB2zm+Gd1q6bv/XllfVXiukoQAEKUIACQ0Cg47SYDtI5PWNfmzumzYjhyjH5nTLSjxQzk+SI2U5Gew+JUSaziplZJOesOjqR1ijS2lpFj7uYpWXYHfK4aGePsrg51yKmugzzEdHYajwBv1xSdIqyBK5TQHsCPl7m2msEa0wBClCAAhSgwAAJ9KGXvXPJts4303ZKoEvRY9z+nm9KbN0loTbPMVxm+CYDRitvQpX0iBCBu2PItviGoEbcu+sjKLdUO86Xi9dv0fscS9+patykgKoFGLir+vKwchSgAAUoQIG+CHgC1ls9Wz9Rj6RKEVTLQ2X6sMhBe2RUH07sdIryRkqbRW6PYpiLmBc8oViHS87A/rqYc3ykmDKz89LyG49DvJhTnAsFtC7AwF3rV5D1pwAFKECBkBOQp+3zLGIebK9tcUQ8odTr4fWdjstDUcTAEnsW0iormr4vHohksKI2oQPSHgNSFiuCYE9B9jX56a3Ryt7tTsfVsjlMPKgqeqtkv8nVuqoD1xboMSLJUzt5usmGbY5tfUEY4hXHPKm4RgFtCfDjp7auF2tLAQpQgAIhLmATM6dcFU/M9Cw2NL0nbhYV47jlxWYWx1/ucI3wtu9rFE/DVJ4RKZ5s6VlsqBtlwVkRtLeJXuvER5XHPKm0tybmfz8aJobMOJYryRZcOW5Duxgec6O8A9WpThExt3jyBoY72ru+rLEvAfa4+1IJwL7m2ip8+Mc/47OGFnvuCeMzcN/9mUiSp7fq72Kux/H3fo/jn9SKnMwwmyMxNuPrmPtgJuJ5hfury/MpQAEKDJ6AmL6wOlb0incq8cZcCedE0H17jR5XkjvcM6y4krXndeDc6zZMKA2zP5hJlxaGkQVWXN3oSiEGmogbPMcUGxDdw02jntTqWuv2o0aMGCtv0aF+o4Trm4FrWeJJrIqqR+8Jw+jFeruJYjdXKaBZAYZ1gb505moUrctD/rYyR0kZ2cioLIPzRnms23MCBYsz+/yAuuryIsybme/MLwM5OSNhMjnLQg5Mp4sxb1J8oFvJ/ClAAQpQYCAEIvVItfXcOzysl+OuasRvMCI234abYs5zfayYxSXRdUQbv4etMODOFX7UVYx3T3zRiJHPit72L0R6MWxIJ6Kb8BSd/ABRLhQIKQG+pgN6OauxaXqqO2gvPHIBtpOlOGlrw5HCXHvJm5dMQ15RRZ9qUbVvDVKdQXvOloNosp3E/v2laKs5AkfuJuSkJ6CoorFP+fMkClCAAhTQtkBYog5RadoL2vuiro8XbRXzx8vtjWTQ3hdCnqMBAQbuAbxI5S/lYaOza335m2ewckaKs7RIzFhZjDeXZ9i3S/KnYVdV8y3VRKreh/SFzrtucoqx+7k5cI26iUyageKag3DkDuRPy0M5Y/db8mViClCAAhSgAAUooDYBBu4BuiJS7QE8vdY1ZCUXT387rVNJBnz76TXufXlPFcP/2NqMt7dtcp9bsPJb7qDdtdOQNAc7t2Q7N014+pVy16EB+22z2SD/cNGmgCRJaG93zIKszRaw1m1tbXwPavhlYLFYcPPmTQ23gFVvbW0lgoYFrFar5v6GMnAP0Auuct9r7nHsGasXIt3HzUCR6TOw2lV+2SocPGt2bfX82/wRXtvmGiWfgwem+h64ePfcRe58KjfuRMWtdeq7z+1uRf6DdebMme4Oc7/KBUpKSrB06VKV15LV60kgPT0dp0+f7ikJj6lY4OWXX8Zzzz2n4hqyar0JjBgxAteuKW+H7e0MHleTwOXLl3H+/Hk1VanXujBw75WoLwnq8e7PTe4Tn1g6w/fNp4Y0LC3Mcad7492P3Os9rUhfXITyZTasm1uMYybe7xzrLudWgnc/8r9Pv6fyeYwCFKAABShAAQpQYPAFGLgHwFyq/gB7XB3iveRvjHCNTAdMvzrq13CZtquX3L356DJIRlmg9xM53j+uDPeV6bhOAQpQgAIUoAAFKKB2AQbuAbhC3oE1cFtc989+tkAxfqWsFJ8oNrutmlc8Xom65s4z/jrPjEzFbE+HfrfZ8QAFKEABClCAAhSggPoFGLgH4BoZvQLrXExK9jHA3VnuyNvv9qqB16leRzwbxmhPLz1E3/vv/ljjOcg1ClCAAhSgAAUoQIGQFGDgHoDL2lBfp8hVdKFbFJudVkdPuKvTnt43I1MyFWPXgW2vlSn77T0ZSDX4wDPU3rOfaxSgAAUoQAEKUIACmhPo5rZGzbVDVRWOSkwXzywVY9b9qJUFfZiOzzAJT4upHktc002a8rCt9CFsmJXkVeLZI+/gmHJPhD/9+coTel4PCwvDa6+9Zv/pOSWPqllAp+v2YeJqrjbr5hS45557aKFxgcLCQo23YGhXPz4+fmgDaLz1d9116x2owWwyA/dA6Lee8yto70/R01cWYvnaDOx0ZrJxdjIubtmDx+dOBuo/hqn4VWwuKbMflR/EJN8rO/erqfbtgfqPPI1SS0uLz+wiIiIgB/ZcKEABClCAAhSgQDAF5OclyM8u8bWMGjXK127V7mPgHoBLY4iOU+SqHI+u2O1cNSLCa2cPo2q80iFyMooaKjHyOxnY7IjPsXPtEvHjSpZtf3KqHLA7JrjJxf0Te66L60x/fyckJED+4UIBClCAAhSgAAUoEHgBBu6BMLYoh79U4mKDhMwY39Q1H59U1OBujOl+AhpFOudq/GS8WNqGx8rfwTsfVMGMSETGxeKuu6fha19JRdmzOcjZ5ozqVy9BRvf3yHbNm3soQAEKUIACFKAABVQl4DuaVFUVtVeZmAlTkS2q7QiZK3HhqrhBNcX3GLjWq1c8DVyeieRbviKRmDRjnv3HkxEgnd3rCdrFgT1PP+D7IVDKk7hOAQpQgAIUoAAFKKBaAc4qE4hLE38vFnnNn95dNG7GxxWOgSxyNZZ/Y+oABdf1ePXJJZ6WLX8Tj6axu90DwjUKUIACFKAABSigPQEG7gG5ZvF4MHe1O+dVu8vg+5aIBpw75grcs5E7O819Tn9WTu16HqucI2Qg+v4Pv7BADKLhQgEKUIACFKAABSigZQEG7gG6emnfftwz1/q213DCxxNRper3sdYZt2esex4zfI6mkVBVugub1q/H9r3laOylvrWlLyEjzzXXDLDj2K8wK7GXk3iYAhSgAAUoQAEKUED1AjqbWFRfS41WsPrQJqTO3WivfXbBYZRumKVoiYQDa6aJcehy5C56xetKfQbY5qpdiErPc5+3/M0zKFrgq2fejOO71iErb5szbQaKT7yHZZk+Pw248+MKBShAAQpQgAIUoIA2BNjjHsDrlDJnAyr3OIbMlG2cjVnr96KqthbVZ09h76YFzqAd2HK4xGfQLlfN0trkVcNPzyluZpWPSM04e/wA1syK8gTtOQU4UXeCQbuXHDcoQAEKUIACFKCAtgXY4z4I16/2+C48lZXX5aFMGbkFeOWF1ZiR0sP86vWiJ37UbOcMNWLoy4kGrBC96PUVB7Cj6DVs3GlytyBneQEef/wxfHN6ygDd5OrOmisUoAAFKEABClCAAkEWYOA+aBfAjNrqGjSJu1SNIqyOTRiNxHj/bhmVGqtRef4qosdMxKQkR5BfW16Ef36rDl+5fwrSJ9+Duyamwc/sBq3FLIgCFKAABShAAQpQYOAEGLgPnCVzogAFKEABClCAAhSgQMAEOMY9YLTMmAIUoAAFKEABClCAAgMnwMB94CyZEwUoQAEKUIACFKAABQImwMA9YLTMmAIUoAAFKEABClCAAgMnwMB94CyZEwUoQAEKUIACFKAABQImwMA9YLTMmAIUoAAFKEABClCAAgMnwMB94CyZEwUoQAEKUIACFKAABQImwMA9YLTMmAIUoAAFKEABClCAAgMnwMB94CyZEwUoQAEKUIACFKAABQImYAhYzsw4JAWaa6vw4R//jM8aWuztSxifgfvuz4Tzga4h2ebQbZSEs+X78Zfwr2Le9KTQbWaItUx+D/7h/WP4pLbJ3rKI2CTcnz0bmSnxIdbSEG2OuR7H3/kt3jn2CRra2kQjozDh/gex4NFZSPLvYdohCqPlZkk4dWg/Tly+ifSHHsV0XkjVX8zG2mo0WXxU02jE1T/+HNM2xKHh5Eqo8q+qjQsF/BFou2DbsTrbJl7mjp+MbFuGa138XrfnhM3iTz5MowqBC8fetC3PdlzL7C3HVFEnVqIXgbYztmLle1Dx/pPfl9nr9tjqesmCh4MrcOHIDlt2p+vm/puKDFvxCV7B4F6hvpVed2SL+9/GLcca+pYJzxo8gbqD7uvlef85Yxvn+zO7UL3/LnKojLhqXHoTqMam6anI31ZmT1h45AJsJ0tx0taGI4W59n2bl0xDXlFFbxnxeJAFaisOYMUUHVKzFmKn43IiNtIY5Fqx+F4FzFVYE3Un8pzvQV/pyzYvwaj5RWj0dZD7gi5QfWA9Umfmw/62y87F6tXLIYJ4xVKJvGmLUM4LqDDRwGrzcTw5c627ovxz6qZQ7Up58Uu91C0Dzy2Y3kua4B3mUJng2Wum5PKX8rCx0lHd5W+ewcoZKc66R2LGymK8+ZdKLNxZiZL8aZj9V01YNilGM20bOhU1Y+/SKCwpAVavW43sym2OAGLoAGi4pRJKCxZhm70F2Sg0bUbOV+6AselzvLd3K5ZsFBfVtZjyUXDgQWydl+baw99qEDBX4PmczaIm2dhzogSLM51D07b+K47v2oisPMfVhXhX/nR3hfi7mqmGWrMOvQo0Y9dTWTD1mo4JVCMgPmj9dK388TkDucuzEN2lYq2IvicPD6h59OjgfTfBkrQoYKkxKYbE5Noq27q2oq2y2CZe+46f7EIbvyjsahT8PRZbzZkztgbneKYThTnua5ZTeCL41WMNuheoO+x4D2astlX6eHPVHCl0X0v7+zB7h62p+9x4JAgCp/csF9cow3bwgu8BhUe28P0YhMvS7yId19V7iEXhCR9v0n6XxAwGSqCyONf+9zK3uHKgshz0fDhUpsunLe5QClTuew3OznZkrF6IdB83T0Wmz8Bq10llq3DwrNm1xd+qETAgKS0N8c7v2IwR/FZENZeml4qc/f2v7O/BNw+8jMk+7pRKmrESh9cpBl1crUNzL3ny8GAKNOP3W3Zi+ZtvYU6K7y+57583310hxy3H7k2uqFRAqj6ARUt2AjkF2FO4XKW1ZLW8BKQqvJInf0OZjae/M9nrkJY2GLhr6WoNel3r8e7PPV8CPrF0Bnz+s2NIw9LCHHft3nj3I/c6VyhAgf4INKP8VREcLDdhfjdBn5z7V7+/yFNI5Se4zMjd4xH0tRisOGFB0YLuhy9ZWtvdtcyeOs69zhW1ClRj87wc+wdq06vrMD22Va0VZb0UAtVvvw7x11QsZciKnYL5K9ajaO8hnKrW1o0lDNwVF5Wr3gJS9QfY4+pu9z7UZUvZg2v61VHeINdFiDso0BeBGOQUn8GFn3zT94dmZ5Zes5plfx0T+YVKX7ADd47BZ5eHszwzflP0qmM9uxD5MxIDVw/mPCACrvu+lu85jXlJBig+dw1I/swkEAK1eH2DfJ+Ja6mEaedm5C+Zi4zUBOjmb8LxWm2MFmDg7rqG/N1FoO3qJfcwGfngbXFRXdK4dliUX86XleIT9vi5aPibAv0SiE9JQ4prjJM/OSXHgPME+QOlhjQSjhetwhJxcz9ydqCudCUYtqvhunRfh8bj2zFTvrkxpxj/unhS9wl5RFUC5lO/cU+y4bNiJnGTeHIUtpfX+jyspp0M3NV0NVRWF/EcAsWSi0nJPga4O1OMvP1uRVowcPDS4AYFAivw6fsH3QUUrpmL7t+p7mRcCbJAc3U5Ns03Iivf8eU9mqpxrlobPX5Bpgte8c0VWJm1SpSfg2PFy8AvtoJ3KW615MjJT6ChoQ41NWdw4shB7ChYLuaV6bqsmpmMvVXqfh8ycO963bjHKdBQX6ewEF3oXt/HKw6J1dET7vLewS0KUGBwBMQNV0X5zntRsndgaaaPO1gHpyYsxQ+BxlOHsGa+DrGpM7HRcwuRGHa7GVmpUSg6Xu9HLkwy+ALN2PvUNMi3NhYcfhXT+TYb/EvQrxINiI9PRFJSGjJnzMGKDUU4aWnACVNhlwB+yVM7oeZ3IQP3fr0QQvvkqMR00a/g32KB5+Yq/85gKgpQYCAEqt7Y6rzhKhuHS55Q5yO6B6KhIZJHU30DJswtRvGOLVie07XPLz/rGVRwqKHqrvbZfRvtz8HIWHcQ62Ylqa5+rFAfBAzxyJy3EicbTmCd8q0oZsf7TxW/CRm49+FaD5lTWs/xwRJD5mKzoVoUcE9JJyq/48SvMUvcKMdF3QIpsxZj5YplWLbiORTtP4m2GhE0KGbzhOjTLdh7St2NGGK1k99njy6UH5K1Gm8VzOnxRvEhRhMazY3PxItHT8DxHHhHk0o//FS1bWPgrtpLE/yKGaLjFJXoeTSfERGKtD2OqvFKxw0KUKCPAuYqPJvqmJJunekMVnCITB8hg3taZJIIGt4+7XkWhqjO+ep6SMGtFkt3CUiuqR8z8OaZl5Hm47Ox8nawCGP3kzi4suRvFQrEZOIfixWhu4oHEfh4CaoQlFUKjoBF+cqtxMUGCZkxvl8yNR+fVNTxbozh3y6FB1cpMNACjSh6Mh1yH2BO4TG8OK/7OcIHumTmFwCByEl49nABts3eaM+88tifxTxdszjsKQDUt5plc6XJORtJJUpe+iFMrZ3mbI8GKneWuLN9dcOTOCr3czU3Y9x3f4IXOfOM20btK5MeWiLGu5d4zaanxjr7jsLUWFPWadAFYiZMFc8Xkx9VIC+VuHBVDLxM8X1HTuvVK/ZU9v8sz0QyX1keD65RYEAFJJRu+g7yRawgj7f95crpA5o7MwuOQNL93xL3FG20D0/MmJLKGUuCcxl6LNW00zkDUA+pKk2ewC97luODWA/JeUhNAgnJ9htV5cfXqPkJxgyv1PSiUVtd4u/FInF3apl75oPuXi5mfFzheVLT8m9M5RhAtV1L1idkBE7t+iFmbxQfp5fvwdEX53Dqx1C5smL+XdeAxJETxvJvqEqua9TIe7E6JxdXRkdDdK77XL44thMm5z+BGSJtlkjb2voFxiV1d4bPbLgz2AINNe7e9qx7xwS7Nt2W310k1u0JPDCUBOLxYO5qwCR/IQ+s2l2GpzLn+fgHpQHnjrkC92zkzubX9kPpVcK2Dp5A9aFNyMgTvX7yw3qKFrsDvc41KN80Bf8UV4zSlZmdD3FbpQLmC6fsUw3K1Xsse6JKazn0qmVImYWt+2f12PCqXa0w5YmvwMTy1KafYcVkPkmhRzCVHqx+/3fOwD0bD04epdJaArw5VbWXRh0VS/v24547rbe9hhM+pimTqt/HWldvw7rnMcP3aBp1NIi1oIBGBeqPFyF1rvjqPacQNftX+H7CpmTGqQObMHNjJR57iMGfai61uRG11bVo7Pa5LhLeKdriqO5qE3Inu/reVdMCVqQHAeXtYO2Wth5S8lCwBBrPnsLxilOoru/mTSidxTb7zEFAbnEhZiWqt1+bgXuwXkVaKTdyMl44WOCsrQnrtpV2qrmEt7dtcu7LxtY1PfdMdDqZm0ESsLQrPoFFKOdECFKFWGyPAs2n9mJUVr4jjWkVcqdMgU7n/TNF3idmtMjIEcF99hZ8axKDvx5RB+1gM3Z9LwHJqclIiNJhxfZDqPeaMkZCxa5nkbNN7v1YjdObfX2rOWiVZUEUCDkBeTrPhDszkDUtA6mjorD0pQPeD1iSalGUd6f9Zn/528x/WzZZ1QYM3FV9edRRuZQ5G1C5RwyZEUvZxtmYtX4vqmprUS0+we7dtMD5Dw6w5XCJ+JSqjjqzFr4EJJibG1FVvgs/WuW+cQGmV19BaVUtzGavaMJXBtwXBIFGEbR/PWOJV8lllXKQ5/1Tad/nSLb6qe/47pH3yoUbgyXQ3uQpaeequRhlnIX12/fi0KG9WD/fiGl525C9uhgX2rZiEkdZeLC4RoEBEJDaGrxyKVmbg1G6+di+7xBK9xVhvjHZfrN/ToEJDd19m+mVQ5A3bFwo4KdAzbFim7hX1SZesl4/GbkFtiMXmvzMhcmCJVC5I9frunW+jvJ2zo4Twaoey/Up0GQrzvF+v/m6bt77cm0n+Hb0qRmsnXXib6eYocvn+y97+Rbb4dN1waoayx0AAeXf1h0nGgYgR2YxsAJNNlNBjs/3n/y3M1vEMFp6D+pkHFFxLhTwU8AsxmrWoEl0zhrFbaqxCaORGM8uIj/xmIwCFBiyAhIa6+vQZhEAFgssxmgkJCQihn8+h+wrgg0fXAFJ3GtSU/MFmuxT8Ys3ongPjklOQWI3z6cZ3Nr5XxoDd/+tmJICFKAABShAAQpQgAJBE+AY96DRs2AKUIACFKAABShAAQr4L8DA3X8rpqQABShAAQpQgAIUoEDQBBi4B42eBVOAAhSgAAUoQAEKUMB/AQbu/lsxJQUoQAEKUIACFKAABYImwMA9aPQsmAIUoAAFKEABClCAAv4LMHD334opKUABClCAAhSgAAUoEDQBBu5Bo2fBFKAABShAAQpQgAIU8F+Agbv/VkxJAQpQgAIUoAAFKECBoAkwcA8aPQumAAUoQAEKUIACFKCA/wIM3P23YkoKUIACFKAABShAAQoETYCBe9DoWTAFKEABClCAAhSgAAX8F2Dg7r8VU1KAAhSgAAUoQAEKUCBoAgzcg0bPgilAAQpQgAIUoAAFKOC/AAN3/62YkgIUoAAFKEABClCAAkETYOAeNHoWTAEKUIACFKAABShAAf8FGLj7b8WUFKAABShAAQpQgAIUCJoAA/eg0bNgClCAAhSgAAUoQAEK+C/AwN1/K6akAAUoQAEKUIACFKBA0AQYuAeNngVTgAIUoAAFKEABClDAfwEG7v5bMSUFKEABClCAAhSgAAWCJsDAPWj0LJgCFKAABShAAQpQgAL+CzBw99+KKSlAAQpQgAIUoAAFKBA0AQbuQaNnwRSgAAUoQAEKUIACFPBfgIG7/1ZMSQEKUIACFKAABShAgaAJMHAPGj0LpgAFKEABClCAAhSggP8CDNz9t2JKClCAAhSgAAUoQAEKBE2AgXvQ6FkwBShAAQpQgAIUoAAF/Bdg4O6/FVNSgAIUoAAFKEABClAgaAIM3INGz4IpQAEKUIACFKAABSjgvwADd/+tmJICFKAABShAAQpQgAJBE2DgHjR6FkwBClCAAhSgAAUoQAH/BRi4+2/FlBSgAAUoQAEKUIACFAiaAAP3oNGzYApQgAIUoAAFKEABCvgvwMDdfyumpAAFKEABClCAAhSgQNAEGLgHjZ4FU4ACFKAABShAAQpQwH8BBu7+WzElBShAAQpQgAIUoAAFgibAwD1o9CyYAhSgAAUoQAEKUIAC/gswcPffiikpQAEKUIACFKAABSgQNAEG7kGjZ8EUoAAFKEABClCAAhTwX4CBu/9WTEkBClCAAhSgAAUoQIGgCTBwDxo9C6YABShAAQpQgAIUoID/Agzc/bdiSgpQgAIUGDSBZhwvLUetedAKZEEUoAAFVC/AwF31l4gVpAAFKDD0BKr2/ghZs5/G55ah13a2mAIUoEB3Agzcu5PhfgpQgAIUCIpA86ldSF+yU5Q9Acag1ICFUoACFFCnAAN3dV4X1ooCFKDAkBSQakuxNCPP2fYYGKOGJAMbTQEKUMCngM4mFp9HuJMCFKAABSgwiAL1p/ZhUcZClCnKzFm3BbNGANcxFo89sxgpBsVBrlKAAhQYYgIM3IfYBWdzKUABCqhVoGrvGjFEZls31cvGsaZSTI/p5jB3U4ACFBgCAgzch8BFZhMpQAEKaEFAkgBD23HMj82CyV7hHBxr2Ifp8YD9mIHd7Vq4jqwjBSgQOAH+FQycLXOmAAUoQIFbELDH5UYjlJ3qRmewzpj9FiCZlAIUCFkB3pwaspeWDaMABShAAQpQgAIUCCUBBu6hdDXZFgpQgAIUoAAFKECBkBVg4B6yl5YNowAFKEABClCAAhQIJQEG7qF0NdkWClCAAhSgAAUoQIGQFWDgHrKXlg2jAAUoQAEKUIACFAglAQbuoXQ12RYKUIACISWgnF8mpBrGxlCAAhTokwAD9z6x8SQKUIACFAi8QAnONQe+FJZAAQpQQCsCDNy1cqVYTwpQgAJDQcACeGL1HNyRMBQazTZSgAIU8E+Agbt/TkxFAQpQgAKDIRAVjdHuckzYurMckvjfqX3rodOtQJV4uioXClCAAkNVQGcTy1BtPNtNAQpQgAJqEzBj39IoLCzpWq/lb55G0YJJXQ9wDwUoQIEhIsAe9yFyodlMClCAAtoQiMT8Fw4i26uyGSh4s5JBu5cJNyhAgaEowB73oXjV2WYKUIACaheQmlFdXScGyURhVEoSYgxqrzDrRwEKUCDwAgzcA2/MEihAAQpQgAIUoAAFKNBvAQ6V6TchM6AABShAAQpQgAIUoEDgBRi4B96YJVCAAhSgAAUoQAEKUKDfAgzc+03IDChAAQpQgAIUoAAFKBB4gf8P6uQF9TVnWloAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 22, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='feuler/sat2.png', width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "**Figure Saturation Time Series:** Plot of the saturation ratio as a function of time using the Forward\n", "Euler method. “nt” is the number of time steps.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> There are two things to notice here, both related to the importance of\n", "the choice of time step $\\Delta t$:\n", "\n", "> - As $\\Delta t$ is reduced, the solution appears to *converge* to one solution\n", " curve, which we would hope is the exact solution to the differential\n", " equation. An important question to ask is: *When will the numerical\n", " method converge to the exact solution as $\\Delta t$ is reduced?*\n", "\n", "> - If $\\Delta t$ is taken too large, however, the numerical solution breaks down.\n", " In the above example, the oscillations that occur for the largest\n", " time step (when $nt=6$) are a sign of *numerical\n", " instability*. The differential problem is stable and exhibits\n", " no such behaviour, but the numerical scheme we have used has\n", " introduced an instability. An obvious question that arises is: *How\n", " can we avoid introducing instabilities in a numerical scheme?*\n", "\n", "> Neither question has an obvious answer, and both issues will be\n", "investigated further in Lab 2." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other Approximations\n", "\n", "\n", "Look again at the ([limit definition of derivative](#lab1:eq:defn-deriv)), and notice that an\n", "equivalent expression for $T^\\prime$ is\n", "\n", "
\n", "$$T^\\prime(t) = \\lim_{\\Delta t\\rightarrow 0} \\frac{T(t)-T(t-\\Delta t)}{\\Delta t}.$$ \n", "
\n", " \n", "From this, we can derive the *backward\n", "difference formula* for the first derivative,\n", "\n", "
\n", "(Backward Difference Formula)\n", "$$T^\\prime(t_i) \\approx \\frac{T_i-T_{i-1}}{\\Delta t},$$ \n", "
\n", "\n", "and similarly the *centered difference formula* \n", "\n", "
\n", "(Centered Difference Formula)\n", "$$T^\\prime(t_i) \\approx \\frac{T_{i+1}-T_{i-1}}{2 \\Delta t}.$$\n", "
\n", "\n", "The corresponding limit formulas are equivalent from a mathemtaical standpoint, **but the discrete formulas are not!** In particular, teh accuracy and stability of numerical schemes derived from the three difference formulas: ([Forward Difference Formula](#lab1:eq:forward-diff')), ([Backward Difference Formula](#lab1:eq:backward-diff')) and ([Centered Difference Formula](#lab1:eq:centered-diff))\n", " are quite different. More will said on this in the next Lab." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Summary\n", "\n", "This section introduces the use of the forward difference formula to\n", "discretize the derivatives in a first order differential equation. The\n", "resulting numerical scheme is called the forward Euler method. We also\n", "introduced the backward and centered difference formulas for the first\n", "derivative, which were also obtained from the definition of derivative.\n", "\n", "You saw how the choice of grid spacing affected the accuracy of the\n", "solution, and were introduced to the concepts of convergence and\n", "stability of a numerical scheme. More will be said about these topics in\n", "the succeeding lab, as well as other methods for discretizing\n", "derivatives." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generalizations\n", "\n", "\n", "The idea of discretization introduced in the previous section can be\n", "generalized in several ways, some of which are:\n", "\n", "- problems with higher derivatives,\n", "\n", "- systems of ordinary differential equations,\n", "\n", "- boundary value problems, and\n", "\n", "- partial differential equations.\n", "\n", "### Higher Derivatives\n", "\n", "\n", "Many problems in physics involve derivatives of second order and higher.\n", "Discretization of these derivatives is no more difficult than the first\n", "derivative in the previous section. The difference formula for the\n", "second derivative, which will be derived in Lab \\#2, is given by\n", "\n", "
\n", "(Centered Second Derivative)\n", "$$y^{\\prime\\prime}(t_i) \\approx \n", " \\frac{y(t_{i+1})-2y(t_i)+y(t_{i-1})}{(\\Delta t)^2} ,$$\n", "
\n", "\n", "and is called the *second-order\n", "centered difference formula* for the second derivative (“centered”,\n", "because it involves the three points centered about $t_i$, and\n", "“second-order” for reasons we will see in the next Lab). We will apply\n", "this formula in the following example …" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### *Example Eight*\n", "\n", "[lab1:exm:balloon]: <#Example-Eight>\n", "\n", "A weather balloon, filled with helium, climbs\n", "vertically until it reaches its level of neutral buoyancy, at which\n", "point it begins to oscillate about this equilibrium height. We can\n", "derive a DE describing the motion of the balloon by applying Newton’s\n", "second law: $$mass \\; \\times \\; acceleration = force$$\n", "$$m \\frac{d^2 y}{d t^2} = \n", " \\underbrace{- \\beta \\frac{dy}{dt}}_{\\mbox{air resistance}} \n", " \\underbrace{- \\gamma y}_{\\mbox{buoyant force}},$$ where\n", "\n", "- $y(t)$ is the displacement of the balloon vertically from its\n", " equilibrium level, $y=0$;\n", "\n", "- $m$ is the mass of the balloon and payload;\n", "\n", "- the oscillations are assumed small, so that we can assume a linear\n", " functional form for the buoyant force, $-\\gamma y$.\n", "\n", "This problem also requires initial values for both the initial\n", "displacement and velocity:\n", "$$y(0) = y_0 \\;\\; \\mbox{and} \\;\\; \\frac{dy}{dt}(0) = v_0.$$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAEZCAYAAACNT88xAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAAAxdElEQVR4Ae3dDXSV1Z3v8V9CQhJsQLCAQCkgakFLtFAFqzIGtIPTarxVpx2JdwmdJrbjSGinMOEK02JXmTC9SpjaAVpNVyHOakO7iLctzl2SdEBbLI3aAxVFXkvD1VCCJNQEEnjufs77efJCXk5Ozk6+Z62Q87zt/d+ffcj5n/3s5zkpjnmIBwIWCZw54+jf/q1V3/tei5qb69TUVGui/yAOLUhTaupYjRjxEc2ePVRPPZWh6dNT4lAuRSCAAAII9JVAColMX9FSbl8I/PjHF/T44+fV2HjSJDCHTBWtfVGNSWjGKzt7shYuTDdJU7qGDSOh6RNoCkUAAQR6KUAi00tADk+MQH29oy996bxeeqlJDQ1/MJXGYwTmUrEPMQnMVF155Rht2ZKhW25JvdQBbEcAAQQQSLAAiUyCwamu+wJvveXo7rubdeJErc6fP2oKSPTZ0FG6/PJp/lNNixaldb8BHIEAAggg0GcCJDJ9RkvB8RB44w1H8+c36/Tp/XKcU/EosodlDDXHfUqrVknf/GZ6D8vgMAQQQACBeAuQyMRblPLiJvDqqxc1Z84FU97r5udM3MrteUFpysycqcWLh+mZZ0hmeu7IkQgggED8BDjpHz9LSoqjwK5dF7VgQbMp0Wd+kiGJcRvXaq6SqtHmzQ362tda3BU8EEAAAQT6WYARmX7uAKpvK3DggKNbb23Wn//8htl4tu0O/b4mVcOHzzSjMtnKz2fOTL93BwEggMCgFiCRGdTdn3yNP3vW0axZ5/TOO2+bOTF1yRdgOKIMc7+ZWfrFL7JM0sXAZpiFJwgggECCBfgLnGBwqutcYPHi8/rjH08keRLjtuGczpzZpwcfPGdGjhJ9FVXnhmxFAAEEBpMAicxg6u0kb+svf3lR//Vf58w8lMNJHmkovAbV1/8/LVlyPrSC3wgggAACCRbg1FKCwamufYGGBsd8HYB7r5hknRfTftxSijnFdLN+8pMP6dOf5nNBR0qsRwABBPpKgL+8fSVLud0SKClpNfeKcefEJOPk3s6a4phTTG/rH/7hnC5e5BRTZ1JsQwABBPpCgESmL1Qps1sC777rmC+AbDXfnXS0W8clz87v6733zupHP7qYPCERCQIIIDBIBEhkBklHJ3Mzv/WtFn3wwZ9MiPbONWlsPKAnnjiv1lZGZZL5tUZsCCAw8ARIZAZen1rVosZGR+XlF8x3KNVaFXfbYD/Q2bNn9cILJDJtbViDAAII9J0AiUzf2VJyFwQ2b75oRjHqzZ723yn3zJnjWrv2XBdazS4IIIAAAvESIJGJlyTl9Ejg3//9vBnJON6jY5PvoFN6++0Lcu9MzAMBBBBAIDECJDKJcaaWdgSOHHHM5dbuBNnGdrbauaqp6aS2bXO/6JIHAggggEAiBEhkEqFMHe0K/Oxn7tyYZP4agnbD7nTluXN15ksl7T9N1mkj2YgAAggkkQCJTBJ1xmALZevWFnMX35MDrNkN5isWHNXVcXppgHUszUEAgSQVIJFJ0o4Z6GG5lym/+WaKaaZtN8C7dM+kpjbqt78lkbm0FHsggAACvRcgkem9ISX0QMDnk4YMaTZHDrz5JGfO1GvXroHXrh50M4cggAACfS5AItPnxFTQnsDrrzs6d+799jZZv85xGkwi02p9O2gAAgggYIMAiYwNvTQAYzxw4IK5m+8HA7BlbpPOmXkyA7RpNAsBBBBIMoG0RMazdetWHTp0KJFVUlc/CPz93/+9rrjiik5r3rfPPfXinloaiI9z5gswU9TS4ig93Z0HxAMBBBBAoK8ErByR+eY3v6l//ud/7isTyk2AwLFj7mTYpgTU1D9VZGWd1/GBcp+//iGkVgQQQKBLAimOeXRpzyTaacKECXr//ff1l7/8JYmiIpTuCEye3KRjx35nDhmYozKjRt2kX/1qhGbMYESmO68L9kUAAQS6K2DdiMx7771n7j3SrBEjRmjfvn3dbS/7J4mA6ULzGLhX9qSkXDBfvWDdZ4QkeXUQBgIIINB1AesSmZdffllXXXWVPvrRj8p9zsNOgeZmd6Ri4CYyjuNOZrazb4gaAQQQsEnAykRm6tSpmjhxIomMTa80T6xpae5ohXUvP08rOltM1dChnW1nGwIIIIBAPASseyeJHpF55ZVX4mFAGf0gkJnpVjqkH2pOTJUpKUM0bBjzYxKjTS0IIDCYBaxKZNz5MadOndK4ceN02WWXafTo0cyTsfTVm5U1sEdkHCfVvEYt7RzCRgABBCwSsCqRcUdjbr311jDvbbfdxumlsIZdT8aMcUcrBu65lwsX0kyibVefEC0CCCBgo4B1iYybvIQeJDIhCft+X3ut+9Lzn1+yL/hLRuyeMhtibgrIqaVLUrEDAggg0EsB6xMZ5sn08hXQT4dff32a+dLIrH6qva+rzdT48Vx63dfKlI8AAgi4AtYkMqH5Mddff32458aMGcM8mbCGXU8+9rEUDR+ebVfQXY52mK6/3pr/Wl1uFTsigAACyShgzV9b7/yYEKY7Z4ZRmZCGPb9vvjlFra3D7Qm4G5FmZV2u+fMT+jVm3YiOXRFAAIGBJWBVIhM9PybUDcyTCUnY9Xvs2BRdfrk7h2TgnV5yE5nZs635r2XXC4doEUAAAY+ANX9t3RGZjhIZRmQ8vWrJYm6u+/IbYUm0XQ3THYnJUE5OV/dnPwQQQACB3ghYkci0Nz8m1OixY8eaq0Ou0B/+8IfQKn5bIvD5z6ebUZkrLYm2q2F+WH/916lmIjNXLHVVjP0QQACB3ghYcSLfTVYOHz7cYTv37NnT4TY2JK/A/Pnum/2HzI/7MmxN3kC7EZmbmD30UHo3jmBXBBBAAIHeCFgxItObBnJs8gpkZKTob/4mVSkpA+XOcUPNSMyHdOedjMYk76uOyBBAYKAJkMgMtB61rD1Ll6aby7AnWRZ1++EOHTpBjzySpsxMEpn2hViLAAIIxF+ARCb+ppTYDYFPfjJVU6a4p5Yu78ZRybhriklgxukf/9GKs7XJCEhMCCCAQI8ESGR6xMZB8RT4xjcyNGLE1HgWmfCyhgyZoLvuStOkSYzGJByfChFAYFALkMgM6u5Pjsbn5aXqqquGmWA+nBwBdTuKIeabridp7dqB+yWY3SbhAAQQQCBBAiQyCYKmms4FnnpqqLWjMhkZk/R3f5dmkjFGYzrvZbYigAAC8RcgkYm/KSX2QOCOO1L12c9mKCPDtlNM2Ro5crz+9V+55LoH3c4hCCCAQK8FSGR6TUgB8RL47neHmqRgnCnOli+TdL/48jr94AcZwa9biJcE5SCAAAIIdFWARKarUuzX5wLudy/96EfuxF/3G86Tf4Rj2LBpuv/+TH3mM/w36vMXBxUggAACHQjwF7gDGFb3j8Bdd6Xqn/4pS9nZHzcBJO+ck7S0CZo27cP6j/9I/oSrf3qSWhFAAIHECJDIJMaZWrohsGLFEM2bl22uBPpYN45K3K4pKVdo7Ngp+tnP3Dk9yZtsJU6EmhBAAIH+EyCR6T97au5AIDU1RRUVQ3XrrWOUlXVdB3v11+qxZj7MdaqqyuSeMf3VBdSLAAIIRAmQyERh8DR5BNLTU/Tznw9VTo57b5k7zE//v1RTU8f7R4kOH87QtdcyEpM8rxYiQQCBwSzQ/+8Og1mftncq4CYzu3dnaNEix1wd9Amzb//dcC4zc4pJXqbqzTeHcoVSp73GRgQQQCCxAiQyifWmth4IPPfcUP3Lvww3VzPdZI5O9DdlZ5qJx7N0xx0T9eqrGfroRxmJ6UEXcggCCCDQZwIkMn1GS8HxFPjqV9O0a1eWpk+fpg99yJ03kxnP4tspK1VDhkzUqFGzVFo6Qr/85VAzKkQS0w4UqxBAAIF+FSCR6Vd+Ku+OwIwZKXrjjQytWDHWJBifNN82fZU5PN6nm9xkZYxJWmbrc5+botdfzzKntoYoJYUkpjt9xb4IIIBAogRIZBIlTT1xERg6NEXFxWl6551MffnLHzV3Ar45eM+ZEab83iQbwzR06BSTwHzKfIv1x/SrX12mn/yEU0lx6TQKQQABBPpQIK0Py6ZoBPpMYNSoFD31VLq+9a00k3CM0TPPXK633zapTMoZNTScMvV+YH7Omp/WdmJw83f327aHmcu7h5sEZrSZfzNE+flpKixMYx5MO2KsQgABBJJVgEQmWXuGuLokMGxYih55ZIj5ydL77zvasSPDzKW5Qnv2tJpRG6mxMVXp6RfNzwW1tqaqpcVdlklWHN14Y6puuSXNjMCk6pprejOa06VQ2QkBBBBAoA8ESGT6AJUi+0fA/a6m++93f9wRl8hXBzQ0OCahkRl9kRl5kZnES9LSPz1ErQgggED8BZgjE39TSkwygQsXzC317jiv3/7WIYlJsr4hHAQQQKC3AiQyvRXk+KQWOHzY0YwZzTp8+Ii+853zSR0rwSGAAAIIdF+ARKb7ZhxhiYCbxMyd26wTJw7o4sU/6Xe/azFzZy5aEj1hIoAAAgh0RYBEpitK7GOdwIEDjj75yXMmiTksxzln4h+uM2eO66tfZVTGus4kYAQQQKATASb7doLDJnsFjh93dPXV7pyYq/yNOHz4sCZOnKCpU1PMxF/H3HuGCb/29i6RI4AAAhEBEpmIBc8GkMD8+almcq+5TCn4mDXrf5r7zVToqqsCiU1oPb8RQAABBOwW4NSS3f1H9AgggAACCAxqARKZQd39NB4BBBBAAAG7BUhk7O4/okcAAQQQQGBQC5DIDOrup/EIIIAAAgjYLUAiY3f/ET0CCCCAAAKDWoBEZlB3P41HAAEEEEDAbgESGbv7j+gRQAABBBAY1AIkMoO6+2k8AggggAACdguQyNjdf0SPAAIIIIDAoBYgkRnU3U/jEUAAAQQQsFuARMbu/iN6BBBAAAEEBrUAicyg7n4ajwACCCCAgN0CJDJ29x/RI4AAAgggMKgFSGQGdffTeAQQQAABBOwWIJGxu/+IHgEEEEAAgUEtQCIzqLufxiOAAAIIIGC3AImM3f1H9AgggAACCAxqARKZQd39NB4BBBBAAAG7BUhk7O4/okcAAQQQQGBQC5DIDOrup/EIIIAAAgjYLUAiY3f/ET0CCCCAAAKDWoBEZlB3P41HAAEEEEDAbgESGbv7j+gRQAABBBAY1AIkMoO6+2k8AggggAACdguQyNjdf0SPAAIIIIDAoBYgkRnU3U/jEUAAAQQQsFuARMbu/iN6BBBAAAEEBrUAicyg7n4ajwACCCCAgN0CJDJ29x/RI4AAAgggMKgF0gZ162l8UgucP39eW7dujUuM9fX1euGFFzRmzJgel3fdddfpxhtv7PHxHIgAAgggEH8BEpn4m1JinASeeOIJPfPMM/rEJz7R6xLHjRuniooKpaSk9LisV155RU1NTcrMzOxxGRyIAAIIIBBfARKZ+HpSWhwFzp07p3nz5mnmzJlxLLXnRe3fv18XL17seQEciQACCCAQdwHmyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7AIlM3EkpEAEEEEAAAQQSJUAikyhp6kEAAQQQQACBuAuQyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7AIlM3EkpEAEEEEAAAQQSJUAikyhp6kEAAQQQQACBuAuQyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7AIlM3EkpEAEEEEAAAQQSJUAikyhp6kEAAQQQQACBuAuQyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7AIlM3EkpEAEEEEAAAQQSJUAikyhp6kEAAQQQQACBuAuQyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7AIlM3EkpEAEEEEAAAQQSJUAikyhp6kEAAQQQQACBuAuQyMSdlAIRQAABBBBAIFECJDKJkqYeBBBAAAEEEIi7QFrcS6RABOIkcPPNN2v9+vWqrq6OU4m9L2bo0KG9L4QSEEAAAQTiJkAiEzdKCoq3wMKFC+X+8EAAAQQQQKAjAU4tdSTDegQQQAABBBBIegESmaTvIgJEAAEEEEAAgY4ESGQ6kmE9AggggAACCCS9AIlM0ncRASKAAAIIIIBARwIkMh3JsB4BBBBAAAEEkl6ARCbpu4gAEUAAAQQQQKAjARKZjmRYjwACCCCAAAJJL9CrRKb5WJWWPrxCbzV33M63tq5Q4foqdbJLxwezBQEEEEAAAQQQ6ESgx4nMsar1ypo8X0dm3KnJmR3XMPlTedKS+cq6b6NOdLwbWxBAAAEEEEAAgW4L9CiROVG1VpPnL1Fe6U5tWzZP0XnMoRefV9WxyPhL5vjZ2tiwW3mVj2rCwz/U6W6HyAEIIIAAAggggED7At1OZJoPbdWE+culvA0qe/z2mFLdbVffvVC/O9UUs17Zs/W97aulLYt0/9pdsdtYQgABBBBAAAEEeijQzUTmpDZ96UF/VRWlX9TI6EobX9OSqwPbRgzLit7ifz5+wRdVkiNVL5+rrYciIzZtdmQFAggggAACCCDQRYG0FU8+qVDa8ac/ZWhp6TJNM+eKGt96QWs27lbWKKk+Y45WL7tXeu1nWuJ+EXFuqeZPivq+yca9Khw+S5uClT46/Qt6q2CKcpet0b1TQyeexiu/pFjL716jB7/7f9Xy9L2KKqGL4bIbAggggAACCCAQEUjdvWqVVvl/qnVX4efDE3fTx16va/ULs22Nxn3yBmWb647+z9OP+o/Mu++22NEYDdddJUXhUvOKZmnUFaM0NLwm8GT87DuV6z5dt1K/PNbq2coiAggggAACCCDQPYHUsopQAlKt8yPGhifuZo4co3O/90n5FfrqvElS61Ht2RIofN5tU2JryZ6kB766WPnBtXcv/rpWfnulFoRHY4IbssfrGv9Tn46+2xhbBksIIIAAAggggEA3BVIn3VeoguBBC9f+XKFxktZj1XrUnEYqeWx+4BRQ0wc60lnhrS3BrXm68SOh00meA9Im6BZzNbb7qHq109ICO/EvAggggAACCCDQiUCq0qbpsbLgWMqmJ/XSiUAq43vxOXNYke6fFZzSmy5zeqlrj3Qmv3QNir0QQAABBBBAoFcC/quWZtz/mAIDJT6tfbbGFHhSWx+tVE7JFzSVpKRXwByMAAIIIIAAAn0nELj82tzn5Wsl/mm4ql71nF7c9QutMXWu/PysSM3mzFE8Z7U0RErmGQIIIIAAAggg0COB8H1kbl+0TOY2L+axSXfPXeS/4V3MJdZZw+SZ4ttBhQ16v8PbxLTqXPCoGyaP6OB4ViOAAAIIIIAAAl0TCCcyGn2nSooCqYx7aFH+nbGXWJuJujeEJuru6WyibrV+dzgwdnNo76HYUZzGI9peGQjs1hsmdS1C9kIAAQQQQAABBDoQiCQy5tqkOx9bGdwtT1/466meQ7L1ma+V+NdVbvfFJijBPUOnnpYXr9LaFfN0dc5a1YUugzL7NL7zsvx5TE6p/ir6hnqemlhEAAEEEEAAAQS6IhCVyEhpU//K/zUCKlisWe1cojT69vzA9sqn9Urw6qZwJZkztaoseCF39TotX3ONdtY9EzNZeM/WZ/27F5c8oNHhA3mCAAIIIIAAAgj0TCAmkWk99hstN/fAKy28vYOvDxivL5dtMDX5tPzZnW1qnPnIRtXX1qqurl4tzkbdPjpyyVPrsRe0dI0p3HzZ5NcXjG9zLCsQQAABBBBAAIHuCkQlMq365Tp3Ekyx8mbGfB1kTJnZMwtVY+4741s1X2t3nYzZ5i6MHD9eo0ePjE2EWg9p1eQ8k/7kq2ZzYezcmzYlsAIBBBBAAAEEEOiaQNoNKSm6Iq9Iudf9WavWmUm+lYW61DTcmY+UaUddo+bPHaMRu2tVOLuTEZbmQ1r7N1eby7nztbO2TDPbOWXVtVDZCwEEEEAAAQQQiBVIMyd7pMp1qnZn4eaUaMW9l0pj3APSNG/ZNvmmPamcOV/RTU3bNLODbyV4bdOXtHzCBh1tMglSB/u4JfJAAAEEEEAAAQS6K5BWkJur3adOacqcL+pfv/N4tybhzrh3pRyn8ypnPl6lS+zSeQFsRQABBBBAAAEEOhBI21hV1cEmViOAAAIIIIAAAsktEDXZN7kDJToEEEAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaARIZa7qKQBFAAAEEEEDAK0Ai4xVhGQEEEEAAAQSsESCRsaarCBQBBBBAAAEEvAIkMl4RlhFAAAEEEEDAGgESGWu6ikARQAABBBBAwCtAIuMVYRkBBBBAAAEErBEgkbGmqwgUAQQQQAABBLwCJDJeEZYRQAABBBBAwBoBEhlruopAEUAAAQQQQMArQCLjFWEZAQQQQAABBKwRIJGxpqsIFAEEEEAAAQS8AiQyXhGWEUAAAQQQQMAaASsSmffff1/79u3rEPXtt9/WyZMnO9zOBgQQQAABBBAYmAJWJDLp6elasGCBzp8/324v3HPPPTp37ly721iJAAIIIIAAAgNXwIpE5rLLLtP06dO1Z8+eNj1x4MABDRs2TB/5yEfabGMFAggggAACCAxsASsSGbcLbrvtNr388sttesNd527jgQACCCCAAAKDT4BEZvD1OS1GAAEEEEBgwAhYk8jMmTNHr7/+ept5MozIDJjXIg1BAAEEEECg2wLWJDLtzZNhfky3+5sDEEAAAQQQGFAC1iQyrrp3ngyjMQPqtUhjEEAAAQQQ6LYAiUy3yTgAAQQQQAABBJJFwKpEJjRPprW11e/HiEyyvIyIAwEEEEAAgf4RsCqRCc2T+eMf/6hTp05x/5j+ec1QKwIIJJvAyVe1dF6KUuYt1aunAx/01NqoY2+9qufXr9C8lBStf+10VNSteu2HS5Vi1i/94WvB9a06feKQqp5fr/tuKNRrjVG79+hpe3X0qKABelAPfNrr5wGqIzXrrV0vaO2TK7S0sFBLV6zXrkPtvyitSmTc/nLnyRw6dEhuMsP9YwbsK5iGIYBANwQaj/+31lWbA6rX6b8PuH/sG/XDB4Zr8vQ5WrhkjdxNsY9Gvfz0Ov+qdU+/JDfFeev5f9CoCVdr/sIlqvS9F7t7j5ba1tGjYgbsQd33advPAxSn9ZjWzsvS9Ll5Wn7gct161/X6/Zolmnv1cK3fdaJNo61LZG699VYdOXJEx48fJ5Fp052sQACBwSiQPfEWFeSYlucU6Jarss2TbD2yzZFTv1N57YJk6xNfLPBvKfjKX5m9pWkPbVSDr6zdvXu2sm0dPStnoB7Vuc+hF59X1bHmmMa37eeYzQNkoVUvrrpXy93su6BcTZuX6YEHHldV3Q7lmlVL5t6tF44FRx2DLU5xzMOm1p89e1YTJ070D4n6fD6+msCmziNWBBBIrEDza3o4a5a2mFpLa+r1+MyRndffvNfsn2P2z1NNwzbNdDMcHgkXaD60VVlXP6gS02fLLtVnCY+ubytsPfaC0icH0u+y/U16ZFpmuMJdT87T3FUmw8l3E5yHFNqSFt6jF08uXLjQ6bdT96Lodg91v1upoaHBP0/GnSvDAwEEEHAFxowZo3HjxoHRY4GWHh/JgXESaHxNS0wS4z5GDMuKU6H2FLP/xYpgsMXKjUpi3JUf//R9kpvIbPmB9qx/SLeH8nJ3RKa3j7q6OndUhx8MeA3wGujX18DXv/713v456+HxLc7+7Ruc/Nwc0/4cJzcv3ykp3+k0tFNanW+7U5yfG3bKLVjtVG6vdIrNsRtq6p2j20ucvLwCp6ioyCkoKHF8wUJ2byhy8vIj6/c3RRXeVO/4dlY4Rbm5poyoWptqnPzga9KMyEQd4Dj1R31ORWmRk5tfFokzvH+BU1N71KksMdtzcpwc85NXVOr46lvallFS4OQWlDt1dTVOcZ7brhxndeV+/37eOnrStqb6o86O8tVOflGF02Qi3Vle4uTn5Tm5pq0FJZVOoFV1zo6y0HoTa7GJJybS9haanKO+nc6G1flOblG5c/Tobmd1QZ5jztD52+CW3V4Zbv+5+wXe80xd+cVO+c6DbSqo91Wa/gi9L+Y4RcXFTtHqyoi1OcLr4zT4HHPCL/zakPKcooIip/JgsLM76me39pY6Z/uG1U5eTuD4nNw8p7ik3Dno6TPXc2dlmVNg/Mr3Nzh1NRVOgek3t49zTVt218b2sbdhO00dxatXO6uDP+5rNPRabNhvXsdFxWabaavxi3oleovpYLnBKcsLtj93Q9vj63c7ZqzG77N6R224jLiMyGRkZOi++0ymxAMBBBDoR4GPf/zj/VB7o7YuvU0PrvOpoLRcFZ/fpwcfNRNsK7do+Q9KVVv1uMYHo9r7/FLlLDSTbHOLtfPgFk3TIT39ubnK2xTYodT8mnDHl7Xq7BrNenCNf+X1hV/SDHN64dp7HtPic99Q3hJ35zwt/o75ZcbW33q+UNMXBgswq0oVO3/AX0j0P+b0UaE5fRQ+IndD9Nbg802aNSG8h3+dz2cmAa+r0s66rbo9+6ApY3qkDPNsTNTuq/7XJh3Oe1o/DJUcrKN7bWvW84VZimqafFWSmVGgHJNtuL+rq6u1aW+xCnxrtClqvaoX6oiu1O+/PS8UQezv8Cm00OotmhyY+xxc4dOm5Xna9OsNqt9WqMAH/1a9unGR5jxqTtTlFGl7jU+XHd6muQ+uUuWWNSopKNNLGx/RaFOCe2poVI4ZVcnfoIP1DyntwE81ec4i0+8btGqlu0NHfTBcd5UUmboDweQVzdIoMygz1BzSWT+3ntylRWPm+k8hFm3YLt+nLtO2lXO1anml1iwvUVnNS3pk5mg17t2o4TmPBtsobZo+PPzc/8SgzvFdrtrfLwu/ZmN3kKbeNFW7Zy0MTiDPVUVNmSYHz/Gkj71e12qlFq3yqWTHUTP3qlUnDx3UqS4O9GVdkaHjRwI15twwSW3Go7LS/fO53D2q972rlfPGB3YOpzQ8QQABBBDotsDB8gL/J8SSnZHP7/U7S8OfqosqAp/WG2o2BNcVOfujP/TW7XDMJEb/tvCoiRkZCX3yDK8zkTXtLwuWkeeEBl6a6hvMJ/vtbctwWxIeYZETKafJqW+od3aUBEeFoj/5Ru2v3BKn5mi909JU51SuDo1AmDjz3ZGRJjMCc9ApL3BHoIKfoEt3ODXbS00cZvShfE+ndXStbS1OvRnt91WujtRRUOYc9X/Mb3IqiqLqzt/gHPSvbzHtCsVaEOsc07MtTktLQ9S+coorfKZVhqzO56wOj6TIWb0j0K91O0JxxPZf7fbQejm5pbv9tdSU5vtjzq2MvCZqtxc5yikNjjJ00gctvvAo2gZfZNit436udUqCozAF5YGRsEBTjzqrg+vdkZ3dwQG5lrqd4fLd0bPymsDIxsHK4qBzjrP9EqMyRytMW4L9Xh4aLfJX2uBscO3Ma8T/Ejevp9BrO7R/p7/nrnA+Eyw3b4Mv0Izof6Nen3mlNeEtcRmRMYHxQAABBAafQOshfdc/ZJCjzPdq9OIL53V+6Ic09N0/hC2qXntHrQ+M0vOrA5+E88sWa1r0X97syzUhvHfkSXvzbFtazkV2CD7LHJmtzKwx7ZbRZmf/ikyNzM7U6BHt1Ro6IkfbtyzTzOAH3ntXblb5geFaaAYjtGWL3vz+A5o5eqpm3mKGRvxDIat19PF5mqR5qnIeDxXSYR1da1uaRo4erawpY4LlmQnIpY9okv/Tf6Y+u/gr0jrX1Kz/fqGm+tenae79fyuZkQjpPZ1pMr/aq0xpSkvLNvEFN5qRkuIHZgQmj46eoZWVu1UzfI7cUra+tNd88p+hsm+tMkumttKHY/pv/IIileWt0iKzc/WS72pvwWylZwTud1K98glV3fAdzZuUrfF3PGyuLNvjL8MdSuuwD1pDwxd5uvEj/kb5j+mon09WPavlZjTKP0p3z7Rg+e6vSSraYkaA/CMwlfpu5V7NfmSG0kbfqPkmk9xi4s3bsEUPBTt56qf/TvlaY0Z1fDpwvFELxo+MKiv26aT7ClWgdf4RuYVrf66/3fiAEZVaj1Xr0WqpZPd8/7I0TLl5eZqQ3W4nxBZqbhmgsSN0emdw9bmQg2e3dhaj/zu1s5lVCCCAAAIdCbTW/UHmbIf/UWXeNELP3RX5+QXmpp0f6AOdVVPjAf3YfVc0j5tyJvt/J/c/ORoT896TrbsfKzHvfstN2Ef0p/eaNdNkFOG8yiQbo/qoQTFvZ+5C8L29o/VpE2aYN2QTqvlJ72pMnjMsyp6tx4tzVbmmWr7d+3S68TK9aN6g3ce826YEnoT/zVbu4iKZ825mzRbtPfp93XOTe0rLdLhvk+ZP3qT81eX6xmMPaePmmeGjuvIkvQvv0Mf31QSKyr1b18b0mcnhpt8pE5lJOUxkv3lb3zeJTCQ1MitjkoUo0UvBpU3TY2X52rTIKG96Ui/9y30m8UmT78XnTKFFun9WMAnKnKaV27aZdV18NL+lwv/tvsbMI+NSQQR2c/+17j4ykdB5hgACCPSzQPpYzXFDyP2iNps/2NuifjZv3qiNGzdr87cfUHb2RN2Xb0YvzOPd92PvDeJfmXT/tL2DataI0MiIT0dPuUMdUY+GqOf9/jTqDbmrsbQT/+hJEyJHZ1+nIpPYuI+M4FhDZKMZSJgSGQn58wdNyp75Fe0uC9ynx91vy6qFunqUubtyOzdziy6nJ8/TM4LZi0nG2uQ9aWN0gxl98T/eOSVPr/WkuvAxM+5/zIyFuQ+f1j7rJlMntfXRSuWUfEFT2wTi3/HS/2RO0C3BeCtfe9vc29f7iCQ3n5o9Mbyxp9WFC+AJAgggMFgFWk8d0m638dXP6pWTj2uBO9PT82g+fdp8NG7SmVqff8uVl9v5ZzdzwnT/G1el+Xf2NR2fdvA03/rFnBsmK7vxHT1nRmfcx8u+oyqcOSOmXY0n3wovZ/iHUdLMaZyNqpv1P/TtJXcH7rps9lgyd4I+fLBJDwXOg4WP6d2TYNJZ+bKONhdqRsyQS6MOBEcCNby9FKwXNZtRq6+VmFErc+e66lXP6cU7bjEnpmQmu8+KKvSkfrjiCf3m1DAzOhm1up2nH3zwZ11xy1f08dCokkm83JQ0ujnNtW+bMa/AIzM9ssXO/1HtILAKAQQQSLRA5oSpck80+NxPpWW7tGDZ7bEhnKxS1pj52nnCzLkInpp4duvr5sZ0UVfTpEU+ZcYeHFgKvDEGnqenZ7S3S0LWNb7zqn/OiBl/0IjOQ+5yPMnSNnlPLZkvbfj1jwNvmXNuvV5pWS2m1YHHlm2/1vfMKZrQ+627NnP0DcGtebppcrb2bnxY/3nNU/r2vAV6uqpFi19Yoxwzj8Z9/OSld0wiE5sIBQ/2/GqQf/AuuiLPHu7isOxwZKp+83vmCrfoA7J1rTvCYZKZvHk5MTG3U1S3V92+aJlyTCJjrvHS3XM3uZNuNH9SVFrReFhPr9lktnfxsWmGDuxY7Q5hmQ8Hr5nETDGJWdOJw8GCivSZnEg7ObXURV92QwABBNoIZF+ru4ND4dXL56pwY5VC39l4+lCVHjZJjAoqdNO4ifpU4MySfGvma33VsXBRx37z67Z/6M1H0dDJnbfergvue1o//1FovkGD/hJzlXUks4hODqJnicSuN0WGciLzSb3dR6RIs7lZ/7XxWf9uBeXL5LlPmdomAsESQ0VH19HNtqWHA42NMhKeeUOLLEhNLUE7z/rYw2OXjpyJOY3RvLfSP2nVzHRS4WenmnM2Zk7IhmBHVz6qn+4N9U6gmDe3B/ulaLH876/narWm7L+DF8Knaca9K+UrDRzfED0vpT2fcGTV+t3hQD2H9h4KtinS0FB/Tr2nMHiKx4z4PP3T8OvGX8zpN/Sj4IhMft51wZJbzQ1lw5VEPYkqu+1Jqqj9op6OvlMlRcEXtlldlH9n8FL14D5Z1+nHNTXmUnmT6l/yp0Y1+/M1Ze5D/nk9ZvKN/vNXJ6Iqa9WuLeX+5fxyM7k7Kl9S+PolniCAAAIIdFvAfD+RY/66Rv2YG4uFL3vND1/2WrezJGofc6muubldftRlvm4Z4UukWw46RVFl5pubqZm3wZjj3f2LKwKX2zbsrwjeyE1O/obAJcBuQ+qj1heVR1/O2uBUFgUvv1aBs7sueD14Q+Ry2XxzQ7ODdfVOQ32tuTFe4HJi8903wRvQuaWbMopDZeQ5O2ojlwq7W/3b26ujm22LXBaca+qIXLd+NHzZc45TFnWzv9rwZdJmvS/2JoCBuCL/+jYE22Us80x7axsanFpzg7iQdfRN15yW6MuZ852dwVjqfeVB+0hfh8otKqsJXIbcUuuYubH+/iszN6ELPDroA3OJcah+5RY5JX7jAuegaXpH/RyxMP1fujNQp+mp8uAl6nnBy8LdeltqI5f755bsDMZiXivhdpjXVeXR8PpLPWk5WBF8XZpLvENNu9RBl9ge+T+V61T43EvYW5yD5kaRgf9nqx1vdCQylwBlMwIIIHApgbqa8jb3y8jJN3fl9byPRv4Yh5KSAqdiR3n4jSucyJgK632RN1T/H/A8U97BwD1A3LsBV+yoMW+8jSYhibqfSjjZ+aKz/ivtrS9w9rwRSXoCbwyBWArK3ESnxdy3pTR8d9jIdnO33vLd/vus+C2avHegDbYnP3CX4Cbz5mY+p7dJvAJ1dL1tMfeKCZZXXLHTqShu27Yi//pQYhWpO9/fLn/Ubf4JJRyRdoaOM3dZ3uF9uzSHm4SkvDh0n5rQvuZ33mqnJuoOujWl7eyjXKd0R+CeQpfyqSkL3JsoEFeBs7Ouo34uCN/5uXZ35HUU3Z7VFZH7rTQdLG/TJzJ3Nd4ZdV+Y0LGducVC1gXuY1NQGUygYrf2dKne3CU4dFfqUEy5RWVOzG1rgoVb96WRpkE8EEAAgeQTaG3Usdp6f1zpw0Zp/OjIOfyYYJsbdaLenDJIz9KY0SOV1mq+qDHd/aLG9r7YsVknT5p908x9X8z9YsydOtRoFrOzo8fVY0qP24I7SbmxtVUt5lTQqDGjlRn3KvuvbSEkdy5Ljnun3rwyNWzLV+vJOnNmytw91rS3M+Lmk8d09N0G/2TU9OFXatqk2Fnera1mcofpszTzmjh5utnsl6ZRpq8j01NDEXT8+/SJE2o1r5GR7muk4908W5p17NBRNXzgTpMdpiuvmarR3anUU1pXFkNf8miS8Et/KWlXCozZp1mnzevfPYualjnS3HunfYn/D7sfbYIZJK4SAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 23, "metadata": { "image/png": { "width": "60%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='balloon/balloon.png', width='60%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">
\n", "**Figure Weather Balloon:** A weather balloon oscillating about its level of neutral\n", "buoyancy.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Problem One\n", "\n", "\n", "a\\) Using the centered difference formula ([Centered Second Derivative](#lab1:eq:centered-diff2)) for the second derivative, and\n", " the forward difference formula ([Forward Difference Formula](#lab1:eq:forward-diff')) for the first derivative at the point\n", " $t_i$, derive a difference scheme for $y_{i+1}$, the vertical\n", " displacement of the weather balloon.\n", "\n", "b\\) What is the difference between this scheme and the forward Euler\n", " scheme from [Example Seven](#Example-Seven] , *Fix Link* related to the initial\n", " conditions? (**Hint:** think about starting values …)\n", "\n", "c\\) Given the initial values above, explain how to start the numerical\n", " integration.\n", " \n", "*Note*: There are a number of problems in the text of each lab. See the syllabus for which problems you are assigned as part of your course. That is, you don't have to do them all!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Systems of First-order ODE's\n", "\n", "\n", "Discretization extends in a simple way to first-order systems of ODE’s,\n", "which arise in many problems, as we will see in some of the later labs.\n", "For now, though, we can see:\n", "\n", "#### Example 9\n", "\n", "\n", "The second order DE for the weather balloon problem from\n", "Example [Eight](#Example-Eight) can be rewritten by letting $u=dy/dt$. Then,\n", "\n", "\\begin{align}\n", "\\frac{dy}{dt} &= u\\\\\n", "\\frac{du}{dt} &= -\\frac{\\beta}{m} u - \\frac{\\gamma}{m} y\n", "\\end{align}\n", "\n", "which is a\n", "system of first order ODE’s in $u$ and $y$. This set of differential\n", "equations can be discretized to obtain another numerical scheme for the\n", "weather balloon problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Problem Two\n", "\n", "\n", "a\\) Derive a difference scheme for the problem based on the above system\n", " of two ODE’s using the forward difference formula for the first\n", " derivative.\n", "\n", "b\\) By combining the discretized equations into one equation for y, show\n", " that the difference between this scheme and the scheme obtained in\n", " problem one is the difference formula for the second derivative." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Boundary Value Problem\n", "\n", "[lab1:sec:bvp]: (#6.3-Boundary-Value-Problems)\n", "\n", "\n", "So far, we’ve been dealing with *initial value problems* or *IVP’s*\n", "(such as the problem of heat conduction in a rock in\n", "Example [One](#Example-One)): a differential equation is given for an\n", "unknown function, along with its initial value. There is another class\n", "of problems, called *boundary value problems* (or *BVP’s*),\n", "where the independent variables are restricted to a *closed domain* (as\n", "opposed to an *open domain*) and the solution (or its derivative) is\n", "specified at every point along the boundary of the domain. Contrast this\n", "to initial value problems, where the solution is *not given* at the end\n", "time.\n", "\n", "A simple example of a boundary value problem is the steady state heat\n", "diffusion equation problem for the rod in\n", "Example [Three](#Example-Three). By *steady state*, we mean simply that\n", "the rod has reached a state where its temperature no longer changes in\n", "time; that is, $\\partial u/\\partial t = 0$. The corresponding problem\n", "has a temperature, $u(x)$, that depends on position only, and obeys the\n", "following equation and boundary conditions: $$u_{xx} = 0,$$\n", "$$u(0) = u(1) = 0.$$ This problem is known as an *initial-boundary value\n", "problem* (or *IBVP*), since it has a mix of both initial and boundary\n", "values.\n", "\n", "The structure of initial and boundary value problems are quite different\n", "mathematically: IVP’s involve a time variable which is unknown at the\n", "end time of the integration (and hence the solution is known on an open\n", "domain or interval), whereas BVP’s specify the solution value on a\n", "closed domain or interval. The numerical methods corresponding to these\n", "problems are also quite different, and this can be best illustrated by\n", "an example.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example 10\n", "\n", "[lab1:exm:steady-diffusion]: (#Example-Ten)\n", "\n", "We can discretize the steady state diffusion\n", "equation using the centered difference formula for the second\n", "derivative to obtain: $$u_{i+1}-2u_i+u_{i-1} = 0$$ where\n", "$u_i\\approx u(i/N)$ and $i=0,1,\\ldots,N$ (and the factor of\n", "$(\\Delta x)^2 = {1}/{N^2}$ has been multiplied out). The boundary values\n", "$u_0$ and $u_N$ are both known to be zero, so the above expression\n", "represents a system of $N-1$ equations in $N-1$ unknown values $u_i$\n", "that must be solved for *simultaneously*. The solution of such systems\n", "of linear equations will be covered in more detail in Lab \\#3 in fact, this\n", "equation forms the basis for a Problem in the Linear Algebra Lab.\n", "\n", "Compare this to the initial value problems discretized using the forward\n", "Euler method, where the resulting numerical scheme is a step-by-step,\n", "marching process (that is, the solution at one grid point can be\n", "computed using an explicit formula using only the value at the previous\n", "grid point).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Partial Differential Equations\n", "\n", "\n", "So far, the examples have been confined to ordinary differential\n", "equations, but the procedure we’ve set out for ODE’s extends with only\n", "minor modifications to problems involving PDE’s.\n", "\n", "#### Example 11\n", "\n", "To illustrate the process, let us go back to the heat diffusion problem\n", "from Example [Three](#Example-Three), an initial-boundary value problem\n", "in the temperature $u(x,t)$: $$u_{t} = \\alpha^2 u_{xx},$$ along with\n", "initial values $$u(x,0) = u_0(x),$$ and boundary values\n", "$$u(0,t) = u(1,t) = 0.$$\n", "\n", "As for ODE’s, the steps in the process of discretization remain the\n", "same:\n", "\n", "1) First, replace the independent variables by discrete values\n", " $$x_i = i \\Delta x = \\frac{i}{M}, \\;\\; \\mbox{where $i=0, 1,\n", " \\ldots, M$, and}$$\n", " $$t_n = n \\Delta t, \\;\\; \\mbox{where $n=0, 1,\n", " \\ldots$}$$ In this example, the set of discrete points define\n", " a two-dimensional grid of points, as pictured in\n", " Figure [PDE Grid](#lab1:fig:pde-grid).\n", "\n", " " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAH0CAYAAABLk5VoAAABL2lDQ1BJQ0MgUHJvZmlsZQAAKBVjYGAycHRxcmUSYGDIzSspCnJ3UoiIjFJgv8DAwcDNIMxgzGCdmFxc4BgQ4MMABHn5eakgGhV8u8bACBK5rAsyC1WOII8ruaCoBKjqDxAbpaQWJzMwMBoA2dnlJQVAccY5QLZIUjaYvQHELgoJcgaKHwGy+dIh7CsgdhKE/QTELgJ6AqjmC0h9OpjNxAFiJ0HYMiB2SWoFyF4G5/yCyqLM9IwSBSMDAwMFx5T8pFSF4MriktTcYgXPvOT8ooL8osSS1BSgWoj7QLoYBCEKQSGmYWhpaaEJFqUiAYoHiHGfA8Hhyyh2BiGGsCi5tKgMymNkMmZgIMRHmDFHgoHBfykDA8sfhJhJLwPDAh0GBv6pCDE1QwYGAX0Ghn1zAMOvUG/sJay0AAAACXBIWXMAABcSAAAXEgFnn9JSAAA/yElEQVR4Ae3dDXRU5b3v8f/kPUACCYIKakhDLaiEJSzxDW0DtpXbA6EerV2CPaW9BU59Q2tFuLe5XdgW6fVcwbo8gKsHKy/3uuixhnVc4LkCFcWCLqIGLVyFAtagJkIkAfIyk8zdzyR7Zk9msvckmYE9z/4OK8ze+3lm7/18nnn5zX4bX9C4CTcEEEAAAQQQ8JRAhqdaS2MRQAABBBBAICRAAOCJgAACCCCAgAcFCAAe7HSajAACCCCAAAGA5wACCCCAAAIeFCAAeLDTaTICCCCAAAIEAJ4DCCCAAAIIeFCAAODBTqfJCCCAAAIIEAB4DiCAAAIIIOBBAQKABzudJiOAAAIIIEAA4DmAAAIIIICABwUIAB7sdJqMAAIIIIAAAYDnAAIIIIAAAh4UIAB4sNNpMgIIIIAAAt4LAK2N0tDQKAH6HgEEEEAAAQ8LeCwAHJOl+cUycuQ/yr5mD/c6TUcAAQQQ8LyAhwJAQHY8Nk+Wh7q8ULI93/UAIIAAAgh4WcAzAeDYtiqZXrXTy31N2xFAAAEEEAgLeCIANO9/TsbM6PruH245AwgggAACCHhYQPsA0Hxwk0wtnxfTxf6YKUxAAAEEEEDAOwJaB4Dmg3+UqePnSG2c/szmIIA4KkxCAAEEEPCKgC9o3HRsbGPNGimevLDXplVUVkqhKm1qktL/ukqevGtCr3UpQAABBBBAQDeBLN0aZLbnw1efMQfj3u+srg5PL7/1bHiYAQQQQAABBLwgoO0WgOZjB+WjEw3yx4dvluUxB/9XyLpdT8jkwSJ+41/28MtlQkmRF/qbNiKAAAIIIBAS0HYLQEHJOJlUMkZqQ9v5e/Z2oZRfM0km5PWczjgCCCCAAALeEND6IED1/b7Xm01Rr4+hAAEEEEAAAU0ENA8AmvQSzUAAAQQQQCDJAgSAJIMyOwQQQAABBNJBgACQDr3EOiKAAAIIIJBkAQJAkkGZHQIIIIAAAukgQABIh15iHRFAAAEEEEiyAAEgyaDMDgEEEEAAgXQQIACkQy+xjggggAACCCRZgACQZFBmhwACCCCAQDoIaB8A2uL2QoGI+WuArYflqQcfk20HG+PWZCICCCCAAAI6CmgeALLl4tLyOP22QWo/ajamt8qWZT+RB1ZWyZ8+bIpTj0kIIIAAAgjoKaDtbwF0dVeelI4rNQZrY3pvXvlUeb6iVnaqHwoqXyH/Y1ZJTB0mIIAAAgggoKuA5lsARC65ZkYvfdf94S/lUr3lfhnVSy0mI4AAAgggoKOA9gGgaNICqd24JH7fVSySXXV7ZVYJPwsYH4ipCCCAAAK6CviCxk3XxlnbFWg+LrXvHpRPGk8bk3PkwtLxMnlCiWi+D8RKwDACCCCAAAJhAc8EgHCLGUAAAQQQQAAB0X4XAH2MAAIIIIAAArECBIBYE6YggAACCCCgvQABQPsupoEIIIAAAgjEChAAYk2YggACCCCAgPYCBADtu5gGIoAAAgggECtAAIg1YQoCCCCAAALaCxAAtO9iGogAAggggECsAAEg1oQpCCCAAAIIaC9AANC+i2kgAggggAACsQIEgFgTpiCAAAIIIKC9AAFA+y6mgQgggAACCMQKEABiTZiCAAIIIICA9gIEAO27mAYigAACCCAQK0AAiDVhCgIIIIAAAtoLEAC072IaiAACCCCAQKwAASDWhCkIIIAAAghoL+DpAHD11VfLv//7v2vfyTQQAQQQ0EHg4MGDcvHFF+vQFFe0wbMBoLW1Vd5991155ZVXXNERrAQCCCCAgL3A9u3b5bPPPpMjR47YV6Q0IQHPBoC33npLhg4dKvv3708IikoIIIAAAudXYO/evTJkyBB54403zu+KaLJ0zwYA9QQaMWKEHD58WFpaWjTpTpqBAAII6CugvrgRAJLXv54OAMXFxTJ27FhRTypuCCCAAALuFTh69KgEg0EZNGgQWwCS1E2eDABq/39tbW1oF8DEiRN5MiXpycRsEEAAgVQJqK22U6ZMkZycHPH5fBwHkARoTwYA9Y1/woQJkpmZKQSAJDyLmAUCCCCQYgEVAK699trQUqZOncoXtyR4ezIAqCeSegKp2xVXXBE6EJDjAJLwbGIWCCCAQIoEzC0AavYEgOQgez4A5ObmSnl5OccBJOf5xFwQQACBpAuY+/9LSkpC8yYAJIfYcwHA3P+v9iWZN55MpgT3CCCAgPsErFtt1dqNGTOG4wCS0E2eCwDm/v/8/PwwHwEgTMEAAggg4DqBngFArSDv2wPvJs8FgHhPJLU1QF0QiOMABv6EYg4IIIBAsgXivW8TAAauTAAwDPPy8jgOYODPJeaAAAIIJF3A3P9fWloaNW8CQBRHv0Y8FQDi7f831XgymRLcI4AAAu4RiPftX60dxwEMvI88FQDi7f83CQkApgT3CCCAgHsEegsAag153x5YP3kqAGRkZMjSpUvjit14443yzW9+M24ZExFAAAEEzo+AuljbzJkz4y78nnvukaKiorhlTHQWyHKuok8NlRZ7u6mrAj700EO9FTMdAQQQQOA8CPzzP/9zr0tVV3RVf9z6J+CpLQD9I+JRCCCAAAII6CdAANCvT2kRAggggAACjgIEAEciKiCAAAIIIKCfAAFAvz6lRQgggAACCDgKEAAciaiAAAIIIICAfgIEAP36lBYhgAACCCDgKEAAcCSiAgIIIIAAAvoJEAD061NahAACCCCAgKMAAcCRiAoIIIAAAgjoJ0AA0K9PaRECCCCAAAKOAgQARyIqIIAAAgggoJ8AAUC/PqVFCCCAAAIIOAoQAByJqIAAAggggIB+AgQA/fqUFiGAAAIIIOAoQABwJKICAggggAAC+gkQAPTrU1qEAAIIIICAowABwJGICggggAACCOgnQADQr09pEQIIIIAAAo4CBABHIioggAACCCCgnwABQL8+pUUIIIAAAgg4ChAAHImogAACCCCAgH4CBAD9+pQWIYAAAggg4ChAAHAkogICCCCAAAL6CRAA9OtTWoQAAggggICjAAHAkYgKCCCAAAII6CdAANCvT2kRAggggAACjgIEAEciKiCAAAIIIKCfAAFAvz6lRQgggAACCDgKEAAciaiAAAIIIICAfgIEAP36lBYhgAACCCDgKEAAcCSiAgIIIIAAAvoJEAD061NahAACCCCAgKMAAcCRiAoIIIAAAgjoJ0AA0K9PaRECCCCAAAKOAgQARyIqIIAAAgggoJ8AAUC/PqVFCCCAAAIIOAoQAByJqIAAAggggIB+AgQA/fqUFiGAAAIIIOAoQABwJKICAggggAAC+gkQAPTrU1qEAAIIIICAowABwJGICggggAACCOgnQADQr09pEQIIIIAAAo4CBABHIioggAACCCCgnwABQL8+pUUIIIAAAgg4ChAAHImogAACCCCAgH4CBAD9+pQWIYAAAggg4ChAAHAkogICCCCAAAL6CRAA9OtTWoQAAggggICjAAHAkYgKCCCAAAII6CdAANCvT2kRAggggAACjgIEAEciKiCAAAIIIKCfAAFAvz6lRQgggAACCDgKEAAciaiAAAIIIICAfgIEAP36lBYhgAACCCDgKEAAcCSiAgIIIIAAAvoJEAD061NahAACCCCAgKMAAcCRiAoIIIAAAgjoJ0AA0K9PaRECCCCAAAKOAgQARyIqIIAAAgggoJ8AAUC/PqVFCCCAAAIIOAoQAByJqIAAAggggIB+AgQA/fqUFiGAAAIIIOAoQABwJKICAggggAAC+gkQAPTrU1qEAAIIIICAowABwJGICggggAACCOgnQADQr09pEQIIIIAAAo4CBABHIioggAACCCCgnwABQL8+pUUIIIAAAgg4ChAAHImogAACCCCAgH4CBAD9+pQWIYAAAggg4ChAAHAkogICCCCAAAL6CRAA9OtTWoQAAggggICjAAHAkYgKCCCAAAII6CdAANCvT2kRAggggAACjgIEAEciKiCAAAIIIKCfAAFAvz6lRQgggAACCDgKZDnW0LiC3++Xw4cPS2lpqVxwwQWSkUEe0ri7Pd+0v/71r9LZ2SkFBQWhvyFDhkhOTo7nXQBAwKsCng8ACxYskJEjR8qXX34pw4YNCw2rcfPvwgsvlBEjRoh5r6arccKCV18y6dnuDz74QK666qrQB39JSYmcPn069Kdao4KA+issLAzdq4Cgxs2goKZbp5ll5r1ZlpubG8ZpbAzKokUd8oc/ePotJuzBAAJuFPD0q3Pw4MGyfv16mTJligSDQTl58qR88cUX4T81fuTIEdm3b19o2okTJ0L3jY2NMnTo0KhQoIKBGRLUvRkUVFjIzMx0Y9+zTh4SuPLKK2X37t0yZ84ceeyxx0LPedV8tRVMhYGzZ89Kc3OznDlzJvynpqtxNf3TTz8N1VHjqq4ZINS4WU9tXTBDQW7uZXLgwO+Msp+Hp6mgoF43Zh11bw6bYcMct4YJD3UTTUXgnAp4OgBYpX0+nwwfPjz097Wvfc1aFDOswoIKAQ0NDWKGAnV/7Ngxeeedd8IBQk1TIUJ9gzLDgXXLgjlshgV1T1iI4WZCkgRuuOEG2bhxYygEPPnkk6EQkJ2dLUVFRaG/gS4mEAiEw8DHH7fJAw8UyR133BEODGaY+Oyzz0LBQgUJa5gwg4S6N8OEGQjMrQzmvXpNxdtioer3nJ6XlzfQpvF4BLQUIAD0o1tVWCguLg79JfJwc8uCNSz8/e9/l3fffTcqQKhy9QYXLyxYp6mtCiosZGXRfYn4UyciYIaAu+66S1atWiXXXHNNpHCAQ+r5qHajqb+cHJ+oD96bb765X3O1hgnrVgY1bB2vr68PhwkVHKxbMsxAoebVW5AwA4MKDWa4sN5bh1Xd/Pz8frWHByHgRgE+Qc5Br/QlLKgtC2o3hDUs1NXVyXvvvRfeRWGWqTcn69YDc9dDvLCgvulxQ0AJmCFg7ty5snLlyqSGgGQJW8PEQOfZ0dERtcvCDBAqLKhhc9eH2qJnTusZNMww0d7eHgoT5lYGM1iY92q6WWaGB7NMjZvT1D1hYqA9y+MHKkAAGKhgkh9vbo796le/6jhnFRZUGDADgQoOal/t/v37Y8KCOt6hZ1gwA4O5RUHdq2mEBUf6tK9w4403yoYNG8TNISBZyGq3mjr2QP0N9KZ2TagwoEKDGRbMcGAGCzWuXotqvGcds666V2FCvS57BgYzJFiPlzCnqXvzTwULM1wMGjRooE3j8R4UIACkcaebYWHs2LGOrVBnOag3JXN3hBkW3n///fA0FSTUJlUzLJiBQYWCeGHhoosuIiw4yru3gpdCQLJ6QZ39Y37LH+g8zTChwoAKCtZwoMbNLRMq6JthwlrHupWira0t9Lq1hgMzNKiQYIaJeGHDrGfeq9c/N28IEAC80c/hfbOJNPfUqVPh3RDm1oXPP/9c1HnkZoBQ09U09c1DBYVEwgLnnCeif27rEALOrbd1aakIE2YoUPdmWLAOf/zxx+GtEmZds55539LSEt6yYN3KYG5tUCEiXtCIFy4IE9Yed98wAcB9fXLe18jcXFpWVua4Lk1NTTFhQe1LPXjwYExYUPs8rbsb1BYEa3gwh9XWBk4Dc6RPWgVCQNIoz9uMkhkm1FlOKgyYgaDn1gkzUHzyySfhMGHW71lXjZvBoee9GSKs92Ydc5oaN6epe27JFSAAJNcz7ebW2iry5z/nyK23tvdr3c3NoV/5ylccH6/CgrlFQW1JME+j/PDDD8NhQe2aULshVABwCgvmbolzdZpXa2tQtm0LyuzZ+l0xkhDg+PRNWYWBvgaTvWLqLCfzAzgZ8zbDgbnFwQwQ5rgqP378eHg3h7nrwyw366swobYiqtc9t+QIEACS45i2c2lu9slvfjO43wGgLw03w4K69LLTTb0JmGHBev/RRx+FwoKapgKE+lMHLfYWFqy7JtTwQI68NvaMyJIlHVoGANUfhACnZ2Vqys/lazA1LbCfq/kt3r5WYqXq9Gl1Ciu35AgQAJLjyFySLGB+AxkzZozjnNU3CGtIUFsR1Lj6nQd1b25tUGFBHRFuhgUVCMytCObuB1VmTvPikdWEAMenGxXOo4Da1TGQEH8eV92ViyYAuLJbWKm+CJjfMNQ17p1uanOiGRbMoKDG1SWfe4YFtSnUGhaGDCkz6twjv//9y+FjF8wtDDrtnyQEOD2LKEdADwECgB79SCsSFFBHJau/yy67zPERap+jNSwcOXJGOjo65e233w5NV2XmcQzqYjPmVgRzy4LakmANEGZYUFs33H4jBLi9h1g/BAYuQAAYuCFz0FRA7QJQf5deemmohQ0NPuPiOcOkqqoqpsXq1ClrWDC3LqjTrqzT1bC6NK11V4MZGOKFBXXcxPm6EQLOlzzLReDcCBAAzo0zS9FcQO2XvOSSS0J/Tk1tNQ77NrcemEFBjasfkuoZFtTV4qxbFqxhwbqFQYWHZFzprue6EwJ6ijCOgD4CBAB9+pKWpImAOm1x9OjRoT+nVVZXeFMhwfxTAUH9qd+GMMODea+CRSJhQdXpS1ggBDj1EuUIpKcAASA9+4219oiAuh5ComFBbS0wj0kwQ4EKC+q3IXbu3Bm1dcEMC9bdDuYWBfPeDBPq1/0IAR55wtFMTwkQADzV3TRWZwF1kZS+hgXrpZ1VWPjggw/ktddeiwoL6mBIFQZUWFA/UjV79mx56aWXXPkrgjr3L21DINkCBIBkizI/BNJAoC9hwe/3h7csqJAwc+ZMPvzToI9ZRQScBAgATkKUI+BxAXWlxVGjRoX+PE5B8xHQSkC/i5pr1T00BgEEEEAAgdQIEABS48pcEUAAAQQQcLUAAcDV3cPKIYAAAgggkBoBAkBqXJkrAggggAACrhYgALi6e1g5BBBAAAEEUiNAAEiNK3NFAAEEEEDA1QIEAFd3DyuHAAIIIIBAagQIAKlxZa4IIIAAAgi4WoAA4OruYeUQQAABBBBIjQABIDWuzBUBBBBAAAFXCxAAXN09rBwCCCCAAAKpESAApMaVuSKAAAIIIOBqAQKAq7uHlUMAAQQQQCA1AgSA1LgyVwQQQAABBFwtQABwdfewcggggAACCKRGgACQGlfmigACCCCAgKsFsly9dileuebmElm27BoZOnRoipfk3tm3t4t8+mmmzJnjXYNEewerRKVEsMIqcYHEa7a15crp09cm/gBq2gp4OgDk59fLzJkfyRVXXGGLpHNhY6NPli4tkJ/97IzOzUxK27BKnBErrBIXSLxmQ0ODrFjx/xJ/ADVtBTwdALKyWuTyy7+USZMCtkg6FzY0+CQ3N+hpg0T7F6tEpUSwwipxgcRr1tWdlaysLxN/ADVtBTgGwJaHQgQQQAABBPQUIADo2a+0CgEEEEAAAVsBAoAtD4UIIIAAAgjoKUAA0LNfaRUCCCCAAAK2AgQAWx4KEUAAAQQQ0FOAAKBnv9IqBBBAAAEEbAUIALY8FCKAAAIIIKCnAAFAz36lVQgggAACCNgKEABseShEAAEEEEBATwECgJ79SqsQQAABBBCwFSAA2PJQiAACCCCAgJ4CBAA9+5VWIYAAAgggYCtAALDloRABBBBAAAE9BQgAevYrrUIAAQQQQMBWgABgy0MhAggggAACegoQAPTsV1qFAAIIIICArQABwJaHQgQQQAABBPQUIADo2a+0CgEEEEAAAVsBAoAtD4UIIIAAAgjoKUAA0LNfaRUCCCCAAAK2AgQAWx4KEUAAAQQQ0FOAAKBnv9IqBBBAAAEEbAUIALY8FCKAAAIIIKCnAAFAz36lVQgggAACCNgKEABseShEAAEEEEBATwECgJ79SqsQQAABBBCwFSAA2PJQiAACCCCAgJ4CBAA9+5VWIYAAAgggYCtAALDloRABBBBAAAE9BQgAevYrrUIAAQQQQMBWgABgy0MhAggggAACegoQAPTsV1qFAAIIIICArQABwJaHQgQQQAABBPQUIADo2a+0CgEEEEAAAVsBAoAtD4UIIIAAAgjoKUAA0LNfaRUCCCCAAAK2AgQAWx4KEUAAAQQQ0FOAAKBnv9IqBBBAAAEEbAUIALY8FCKAAAIIIKCnAAFAz36lVQgggAACCNgKEABseShEAAEEEEBATwECgJ79SqsQQAABBBCwFSAA2PJQiAACCCCAgJ4CBAA9+5VWIYAAAgggYCtAALDloRABBBBAAAE9BQgAevYrrUIAAQQQQMBWgABgy0MhAggggAACegoQAPTsV1qFAAIIIICArQABwJaHQgQQQAABBPQUIADo2a+0CgEEEEAAAVsBAoAtD4UIIIAAAgjoKUAA0LNfaRUCCCCAAAK2AgQAWx4KEUAgFQKtn+fJ4z+6QF44GHkL+nxvoYwePSL09/u9WalYbMw8TxjLvOVHw6Tmc19MGRMQ0F0g8urTvaW0DwEEXCFQt7tQyiYVyO8+DsjESzu71ylD/vOJ3PD6Va0ZJGfCY6kbGDymXaZ+nC0zJ10g5yp0pK41zBmBvgkQAPrmRW0EEBiAwKGXi2TK94wP+hvapebVL2XcYHNmQbnwSnPYuL8sIJE4YJme5MG8C1vll9u+lP92g0jVbUXy5O7sJC+B2SHgXoFzs53Nve1nzRBA4BwJ1P15mHx9vnrLCcj29afkwqjlBuVbPz8la8vy5DPplOm3nZVz9uaU5ZefPtckxy4vlCe+N0xGbT8pd47riFo7RhDQUYAtADr2Km1CwGUCrYeGyJQ5Xd+un37N+OafF2cFB7fLd+5ukh/ffVrGhLcMxKmXikmD26RqW1tozg9NN44JOJWKhTBPBNwlQABwV3+wNghoKJAl/7owP9Su8Q+fke+ODbqyjYMnnJb/9W21ahky8zdDpNWVa8lKIZA8AQJA8iyZEwIIxBH4fPcQeeJAV8E9322JUyN6UuBUthw8mG3sKOjHrTVTDu3PlVPmg43xowfzpKYmTw7VZTrMsFNuWdDeVWdDvmw9xJkBDmAUp7kAASDNO5DVR8DdApnyHyvNA+v8MmVML9/+A8YHd81geeaXw6XkimEy/d78hM8CCBgf8gf3qscWy+iyYvn6rQXyacAnh14eFhq/cXqBzJxZIF+fUiy3/HKI7XyHT2yV27pB790wqH8hxN0dwtohEBYgAIQpGEAAgWQLBOrypOrNrrmOv69dRsdZwKE/GR/cJcYH98xB8utnu9+SLpMEDwLMkD/8Q7Fx0KB6rPkN3yf33j3cOOBQBY+g3DA+stADz+bLspdzIhN6DuX5ZWpoN4BR8GyeHDgX5yL2XAfGEThHAgSAcwTNYhDwosDnH5jf/kWmTvLHJbj4htNS8+EJ2f60ud3eqNYct2qciZ3yT9u+kMM1p2WupfTAmz55eG2zfFj3hWx+9YRsfNi83oDIhufypPdj/DrlihvNuhny1t/MUGGZOYMIaCJAANCkI2kGAm4UOPpB5GS+ssvin1o3+MJ2uXBwp4yZYAkAfWhMVlZQ1Pn8k8xv7sZj79v4pTz4nVbpOpmgU77xo7NinOofvtktqeAiMwCI7H4rEmDCD2YAAU0ECACadCTNQMB9Aj75m/FN3Ly1+yPD5jTrfYex377/t+jHjh7eI2zkBuUic+ZvZssxm037F5XZxQNzJtwjkP4CBID070NagIBLBYKSU3B+Vq1dogNBz7Ww+17fYXnsK9tybHYX9Jwr4wiklwABIL36i7VFAAEEEEAgKQIEgKQwMhMEENBSoCCY4NkIWraeRmkuQADQvINpHgJuEcjJ7uUaAG5Zwe71CJyNrNC3K/zdBxJGpjGEgC4CBABdepJ2IOBCgYkVkYPx3j8QOSPAhasaXqWPLacuNndfGDBcyAACGgmkxytSI3CagoCXBC69Rh1R33Uu/d9OJuP7RobUvDxE9hwTGT62XSq/1SrxfldoIMbZxsWDzNutU+Jfu8As5x6BdBYgAKRz77HuCLhcYPDYVuMCPbmywVjPN9UR9T9ulaG9rHPUJXeMfe9R492POWpc3nfmfLMkV569L0O2Pdr108HWL+uxuxuClksAByXbnEXMumTK7i1mYUCmT4hswYipygQE0lwgGZE8zQlYfQQQSJlAVrvcuaz7wjpv5sj7J+IvqfVUjlSvs1yi95Vcqa6J/UGg5s+iT+878Lt8qT3jk7q9Q+TRVyLz3rI1P/KDQMbvDOzdPFgixZmyY09O/Ov8n8iV/9196eJvL2uRMZFZMoSAdgIEAO26lAYh4C6BSd8/I10X6fPJll2WD/nu1Tz4QrGUXTFUHtpg/XD3yUMzh0nJ6GLZb7loz2VXx26S3111gUy5LTeq0W8+MUiuMH5f4FAgQ/40v1hue9T8Vt9V7ddzhkrJjwotWwW6ph/dZVz/PzQYlAW384PAUaiMaCfALgDtupQGIeAygcGtUrU2X16ZnyUb7h0k9383+keBxt15UuruTGydh05qkmMfZhof3D7ZsaxI7jX2LXxjWYPc9y+9P37svzXId3svjpQEcuS5e7uCwtynm+Ta3vZVRB7BEAJpLeDKLQDblvrlqZrIgThpLczKI4CAjPnOKXl6roLIlsfXD+ywvazBHTL0dI5sMj78x9/XIhO6Lvg/QGWf7P5doTyr5nJbi1QZIYUbAroLuC4AHN8RkBnLdWenfQh4TaBTvvvrL+Vh46d5X3y0QH6/N3qTfF80Wj/Pl/smDZY3jb34qxdZTtrvy0x61D368lD53hPGLojxfnnrydOc+9/Dh1E9BVwVAALHOmTGdPObv3V/oJ74tAoBTwlk+eXB/zgl9xkhoOq2Yllf0489kK25cvekIfLiDX557cNGGTuwjQkh/qP/OUxunG/8OsC322X3f3wpo/uxWp7qRxqrjYBrnuqB451y+5hOqe2mbT1jBAHj18FajdOI85LwItemx2gIAukskNcuj25rlNJfDTMO8iuS9u0n5MfjIj+/69i0vDZZ/VajDB4dSMr5/0dfLjY+/DPltmVn5PEfn+Wbv2MHUEEnAXdsAWg0PvxHd0i1RXbxzQHxZfslP18dD2ApYBABBNJbICsgd/7yC6l57ZTMNkJ/X2/Dk/Thr5Y75htN8tpbJ+V3fPj3tRuor4GAO7YAFPjkZ9UZMnlzp1Rt6FKduyxDKo1Nhe2nRcrCP+StgThNQACBkMCFxpX8zvttcEDGJuUgwvPeElYAgT4LuCMAZPnkplmZMuJk0AgAXccATJ2dKbdP6HN7eAACCCCAAAIIJCDgjgDQvaL+tsgat/lVEEjtgYBtbYXyxhsXy6efRl9EJLIW+g81Nfnk9GmfVFd71yDRXsYqUSkRrLBKXCDxmo2Nw6S9/eLEH0BNWwFXBQDbNU1BYSAwWN5/f7jU1xtHAHv01tIi0tLik7/8xbsGiXY9VolKqecUz6tEtbBKVErkzJkhEghckPgDqGkr4OkAMHjwpzJ//vsyZcoUWySdCxsafPLOO8bFWR43DrbgZiuAlS1PVCFWURy2I1jZ8kQV1tXVybx5+6OmMdJ/AXecBdD/9eeRCCCAAAIIINAPAQJAP9B4CAIIIIAAAukuQABI9x5k/RFAAAEEEOiHgIsDQGrPAOiHFQ9BAAEEEEBAGwHXBoDQpYC1YaYhCCCAAAIIuEvAVQHA32b+EJDI4n/plEbDqvlgh0zzBaSm1V1wrA0CCCCAAALpLOCq0wAvulxt9u8OAdWdUuzrvk74ogy5gh8ESufnGeuOAAIIIOAyAVdtARh1a5ZUL4oWUr8JcPLJzKT88lf0nBlDAAEEEEDAuwKu2gKgumHWk9ly9N6gGL8CLIUjfTKiwLudQ8sRQAABBBBIlYDrAoBqaEmZ8xkAgeag1LX6pKQoKAcPBCX/ogwpGZEqJuaLAAIIIICAXgKu2gWQKO2WpX7JLgzImJF+mZgdkPHlHaHhHQ2JzoF6CCCAAAIIeFsgLQPArKosWRLqN59saMqWYF2mlBvjL/zfyFkE3u5WWo8AAggggIC9gCt3AdivslGa55PLK0Qq7syQCeoYAeOH7EqNu4++SP1PCDuuGxUQQAABBBBIA4G03AKgXNvC/6WBMquIAAIIIICAywTSNgDkugyS1UEAAQQQQCCdBNI0AATlw50W5u4dGYWkAgsKgwgggAACCPQukJbHAOz4bUCWqzY90CFPjRHJ3dkh1Wp8YYdsuTVDZpWoEW4IIIAAAggg0JtAWgaAaY8YR/4/YmnSrAxZ8KRlnEEEEEAAAQQQsBVI010Atm2iEAEEEEAAAQQcBAgADkAUI4AAAgggoKMAAUDHXqVNCCCAAAIIOAgQAByAKEYAAQQQQEBHAQKAjr1KmxBAAAEEEHAQIAA4AFGMAAIIIICAjgIEAB17lTYhgAACCCDgIEAAcACiGAEEEEAAAR0FCAA69iptQgABBBBAwEGAAOAARDECCCCAAAI6ChAAdOxV2oQAAggggICDAAHAAYhiBBBAAAEEdBQgAOjYq7QJAQQQQAABBwECgAMQxQgggAACCOgoQADQsVdpEwIIIIAAAg4CBAAHIIoRQAABBBDQUYAAoGOv0iYEEEAAAQQcBAgADkAUI4AAAgggoKMAAUDHXqVNCCCAAAIIOAgQAByAKEYAAQQQQEBHAQKAjr1KmxBAAAEEEHAQIAA4AFGMAAIIIICAjgIEAB17lTYhgAACCCDgIEAAcACiGAEEEEAAAR0FCAA69iptQgABBBBAwEGAAOAARDECCCCAAAI6ChAAdOxV2oQAAggggICDAAHAAYhiBBBAAAEEdBQgAOjYq7QJAQQQQAABBwECgAMQxQgggAACCOgoQADQsVdpEwIIIIAAAg4CBAAHIIoRQAABBBDQUYAAoGOv0iYEEEAAAQQcBAgADkAUI4AAAgggoKMAAUDHXqVNCCCAAAIIOAgQAByAKEYAAQQQQEBHAQKAjr1KmxBAAAEEEHAQIAA4AFGMAAIIIICAjgIEAB17lTYhgAACCCDgIEAAcACiGAEEEEAAAR0FCAA69iptQgABBBBAwEGAAOAARDECCCCAAAI6ChAAdOxV2oQAAggggICDAAHAAYhiBBBAAAEEdBQgAOjYq7QJAQQQQAABBwECgAMQxQgggAACCOgoQADQsVdpEwIIIIAAAg4CBAAHIIoRQAABBBDQUYAAoGOv0iYEEEAAAQQcBAgADkAUI4AAAgggoKMAAUDHXqVNCCCAAAIIOAgQAByAKEYAAQQQQEBHAQKAjr1KmxBAAAEEEHAQIAA4AFGMAAIIIICAjgIEAB17lTYhgAACCCDgIEAAcACiGAEEEEAAAR0FCAA69iptQgABBBBAwEGAAOAARDECCCCAAAI6ChAAdOxV2oQAAggggICDAAHAAYhiBBBAAAEEdBQgAOjYq7QJAQQQQAABBwECgAMQxQgggAACCOgoQADQsVdpEwIIIIAAAg4CBAAHIIoRQAABBBDQUYAAoGOv0iYEEEAAAQQcBAgADkAUI4AAAgggoKMAAUDHXqVNCCCAAAIIOAgQAByAKEYAAQQQQEBHAQKAjr1KmxBAAAEEEHAQIAA4AFGMAAIIIICAjgIEAB17lTYhgAACCCDgIEAAcACiGAEEEEAAAR0FCAA69iptQgABBBBAwEEgy6Fc6+IzZy6W1auvkhdfHKJ1O+0a19Ii0tCQIY8+6l0DOx9rGVZWDfthrOx9rKVYWTXsh8+cuUTOnp1gX4nShAU8HQCyss7IVVedkLKyooTBdKvY1OST11/Pkeuv9+vWtKS3B6vESbHCKnGBxGs2Np6W/fu/SPwB1LQV8HQAyM1tkqlTP5UpUy61RdK5sKHBJ88+my+VlW06NzMpbcMqcUassEpcIPGadXVfyqZNnyb+AGraCnAMgC0PhQgggAACCOgpQADQs19pFQIIIIAAArYCBABbHgoRQAABBBDQU4AAoGe/0ioEEEAAAQRsBQgAtjwUIoAAAgggoKcAAUDPfqVVCCCAAAII2AoQAGx5KEQAAQQQQEBPAQKAnv1KqxBAAAEEELAVIADY8lCIAAIIIICAngIEAD37lVYhgAACCCBgK0AAsOWhEAEEEEAAAT0FCAB69iutQgABBBBAwFaAAGDLQyECCCCAAAJ6ChAA9OxXWoUAAggggICtAAHAlodCBBBAAAEE9BQgAOjZr7QKAQQQQAABWwECgC0PhQgggAACCOgpQADQs19pFQIIIIAAArYCBABbHgoRQAABBBDQU4AAoGe/0ioEEEAAAQRsBQgAtjwUIoAAAgggoKcAAUDPfqVVCCCAAAII2AoQAGx5KEQAAQQQQEBPAQKAnv1KqxBAAAEEELAVIADY8lCIAAIIIICAngIEAD37lVYhgAACCCBgK0AAsOWhEAEEEEAAAT0FCAB69iutQgABBBBAwFaAAGDLQyECCCCAAAJ6ChAA9OxXWoUAAggggICtAAHAlodCBBBAAAEE9BQgAOjZr7QKAQQQQAABWwECgC0PhQgggAACCOgpQADQs19pFQIIIIAAArYCBABbHgoRQAABBBDQU4AAoGe/0ioEEEAAAQRsBQgAtjwUIoAAAgggoKcAAUDPfqVVCCCAAAII2AoQAGx5KEQAAQQQQEBPAQKAnv1KqxBAAAEEELAVIADY8lCIAAIIIICAngIEAD37lVYhgAACCCBgK0AAsOWhEAEEEEAAAT0FCAB69iutQgABBBBAwFaAAGDLQyECCCCAAAJ6ChAA9OxXWoUAAggggICtAAHAlodCBBBAAAEE9BQgAOjZr7QKAQQQQAABWwECgC0PhQgggAACCOgpQADQs19pFQIIIIAAArYCBABbHgoRQAABBBDQU4AAoGe/0ioEEEAAAQRsBQgAtjwUIoAAAgggoKcAAUDPfqVVCCCAAAII2AoQAGx5KEQAAQQQQEBPAQKAnv1KqxBAAAEEELAVIADY8lCIAAIIIICAngIEAD37lVYhgAACCCBgK0AAsOWhEAEEEEAAAT0FCAB69iutQgABBBBAwFaAAGDLQyECCCCAAAJ6ChAA9OxXWoUAAggggICtQJZtaZILGw/XyNaXX5W3jxyWs2cHySVl4+TGGTNl2oRRSV4Ss0MAAQQQQAABO4FztAWgQTY9OE2Kx06WOQ8slvfODpdLhn8hVYsXyvTy0TJxwRo5HrBbTcoQQAABBBBAIJkC52ALQKtseXCkzFnZtdorth+VR6aVhEYW/aBSKsffITvXLpTRZwukaf1dUpDM1jEvBBBAAAEEEIgr0LUF4Pg2mT17jTTGrTKwiQ2vPyWV3R/+5cu2hz/81VwLxt0uz26c37WADXOkasuxgS2MRyOAAAIIIIBAQgJGADgmj82YIdVNIsnfHHBcVt+7OLwii++6ITxsDpTNmCsV3SMrjaRwmF0BJg33CCCAAAIIpEwgY9vSWVJVa8y/MPnLaD385655h2a9RG4sy4tdSNE1smhReff0lfJybSq2Q8QulikIIIAAAgh4WSBjxnL16W/cmk5JcyAgra2t0pqkb+Efvb61a97G/xXLZkjXnv/wpO6BPCmdaAYAkZdefr9nBcYRQAABBBBAIMkCkbMAdi6W0dnZkp+fL/mT10jzgBfULG++tCE8l8KRg8PDPQf8bZGl7dz51yQsu+cSGEcAAQQQQAABq0CW+u4d2gZQPl/W/eKbMqS9XdqHjJNsaZWG4yfFb4SCbOsjHIf94vdny8hReZJrrdtmHYkeLr1mmjGhumvizjfko+YFMonTAaKRGEMAAQQQQCCJApEAUHq9fP/228XcS9+8f42MLF/Y70Wtrv2btBkHFpo3y6A5KXyflW2NCs3iD5cwgAACCCCAAAKpEIjsAmhqi/7g9dt8ZU9gTU59cUh27IxUvG7M8MiIw1Dftjg4zIxiBBBAAAEEEIgR6PXMv/zS78iu7VdLH7f/dy3A+Ao/6qoi+dSyuPyiQZYxBhFAAAEEEEDgfAr0GgCyisrkpmllA1i3ZplYaTzc3LX/zt/lFzeNSGh+7AJIiIlKCCCAAAIeFah57kF5+PkjUmhzCv+RI6WyYd+TctFfnpI7731JCkujK/caAJJhat2JEL3Y6LlnWw8XLJ8sF3EAYDQQYwgggAACCIQFWqW+/gvZubP7G3Z4umWgvELmXlcqhcanvN+fK18tL5S1G6Lr2wSAgDQ3Nkv/LgmQJQVF2VJg/SC3HudnWUc1+PmR9yJTrhsvoyNjDCGAAAIIIIBAlECe3PrIemmaMV0Ky+dFlZgjlT9+QtbfP6lrdNoCWTPte1JWWyyLQ6f9zZXtR5+RyEGA5qO671v3/14Ki4uluF9/hbJhv1++MWdJeK5HjtX3GiY+O3okXG/+N69OwSWJw7NnAAEEEEAAAS0ECib8UPatUvvaY2/VDzws2yw/s7v/ufu7P/zLpfroOplWUmAJAD220fsHeBZA/dmAjLrR+LW/7vWqXf4nOdAau5JiXPbn3R3mZoly+e7XB3LcQbz5Mw0BBBBAAIHkCHz/+98X9ff000/Lu+++K52dncmZcT/nMun+VRL5qm2dyU6ZMfeZ0I/8tdaskfJ5G0KFK3a9KrNKujb+R3YBHDllXPrH+IW+7sfnX/ot2VptXMo3xzrDBIfbRUZ/xZhTwWRZuMRIG6HLDa+VrW//Sib0PBCw8V1jOd3znf+Y3JLYcYIJrgjVEEAAAQQQSJ7A2rVr5bXXXpM33nhD7rnnHvnkk0/k+uuvl6lTp4b+ysvLJSOj143ryVuR8JxKpOrAOlk+Ps6ugJ0PyLwHPxNZuTxUe+7qffKI5TM4K3wR3trF8mLNT2SBsctgy9J/lH8rWSUvLbg1vIj+Dtz687VSufy60MkAi+9dJ3Pfe0RGWWa2d/2/dJ8oYASFpf+Fzf8WGwYRQAABBNwlUGgcdj9z5szQn1qzkydPyu7du89rIMgb90PZteJ5uXmx5eI73WzV3R/+5fM3y7PqA95yy5psjJhfwBdOLhbz2n+bD42xVBvAYNG18n8ObZZrx94htUbIGD27TfasulcmFgfkzU3/XaY/0LX0RZtfDG+WGMDS+vTQpqYmUX9vvfVWnx6nU+Uvv8wxfgDqek8bJNqfWCUqJYIVVokLJF6zra1Nzpw5I3v37k38Qeeg5siRI+W2224L/Z06dcr4rKsNraPaWlBfXy8TJkyQK6+8Un7yk5+E7lOxSjc99KwsWjxWVvYy8yefiFzp16ziazm0ORj6cDanyFypPvCUzBpXFJ6SjIFAQ40s/8k8qaoOHYIYmWXFIqletVRmTTj32/43bdokf/jDHyQzMzOyPh4b6uzMNEJQqQwbdshjLe97c7FK3AwrrBIXSLym3++XnJyc877fPZE1bjd+V6exsTG0haChoUHOnj0rjz/+uCxevDiRh/erTrOxr79wsvk1PnoW89fVypofToia6Asat0DjMTn0eUDyjU0bo0eNSOlm+MaGY3KySZ1cmGUsr1hGjTCPOohaL0YQQAABBBBIG4ETJ06EdwWo4wPq6urkhhtuiDo2wOfzpbw9r/92trErwNyub12csZu9bp/MGhU59C8UAKxVGEYAAQQQQAABewG3fOD3XMv9z90dPuK/Z5lUrJaTOxaIuX2fABAjxAQEEEAAAQTiC6xevVqef/758/YNP/5adU1t3v9crxcGMh83f/MhWXN71+n2BABThXsEEEAAAQQcBF566SUpLS0Vdbrfudik77A6keLmGrm7cLKos/0XbdwjMz9ZLtPj7gqokO31O2SacdgdASDCxxACCCCAAAJpKNAoa2YbZ/GpXf9zN0rT+rukIHBYlmaPla4rAPRo0tx1Rp0fEgB6sDCKAAIIIIBAGgkEZMdvv2V821fXAJgvtS1rZEJe1+o37zfOCiiPf1bAkuqjBIA06mVWFQEEEEAAAYtAQF5/ap7c/IDa8G9s+jc+1J+cVWIpNy7sd7dPKruKo6aLcaH+c3m9wh4LZxQBBBBAAAEE+i4QkIM7NsmDs7PDH/5qHu+9/Lxs2vK6NKgz7QMN8vqW52Rz3A9/VbuaLQCKgRsCCCCAAALpI9Asm+4ulDlxP9wrZE/TDrk2u0am5U+W2IsDR1rJQYARC4YQQAABBBDwjAC7ADzT1TQUAQQQQACBiAABIGLBEAIIIIAAAp4RIAB4pqtpKAIIIIAAAhEBAkDEgiEEEEAAAQQ8I0AA8ExX01AEEEAAAQQiAgSAiAVDCCCAAAIIeEYgyzMtTVVDA41S8+pWeXXX23L4xFkZNPwSGTfpGzLzH26SUd2XY0zVopkvAggggMBABZqlZss6efnTq2XJgpvESx+KbAEYwHOnoWaTTMsulskz5sji5e/J8LJL5IuXq2ThHTfL6PyJsub14wOYOw9FAAEEEEidQKvs37ZGZvsKZXLlA1L1wjvSnLqFuXLOBIB+dkvr4T/KyMlzuq6yVLlKjvp3yG8e+YWsf69JNi+pMOZaKwtvHi3P7ffaU6qfoDwMAQQQOCcCXR/803z5Uj5joXFBXPOW66lv/6rVBACz7/t03yBP3XZH9yOM31Z+9n4pCW83KpDblz1j/CZT121e+XI51qd5UxkBBBBAIFUCzTVrjQ/+rfKDrdtl9SL1Zc27NwJAP/q+YcdqWVzb/cC5P5UbRvSYSdY4+dEK84m1XFb+8XCPCowigAACCJwPgYJJ90sw+JL88NZp8k8L7jwfq+CaZRIA+twVrfLaC1XhRy264xqJd6zf5Dt/KuXdtVY+86o0hh/BAAIIIICAGwT8fjesxflbBwJAX+1bP5LqteaDKmTm9dG/vWyWZF34tXAAkJ0vyDsNZgn3CCCAAAIInH+BtAwAx7YsFZ/PF+fvbtnf3CBrZseWralJzsF4zR+9KZFfYCyUYfG+/qt+NaJlZIk75f2/sw3g/D/dWYNkCRzbEjBef/44fwHjNRg0XoOxZWtqkrV05pN2AoHDsjTue7ZPZj93UBpr1sS+n89eY3kPTbsWp8UKhw9dS4u17V7Jklm/Ef/JH8jyfxwvVeEfO66QXfXrZUKByIT1++SNwsmhD+r5q7fLr/7pZhmRZza1VRqOnxR/drZk96nRfuMzPVsGJfqYglKZUSlS3X2I6dtvfyIyqSjRR1MPAVcLlMzKMl6DQeM1GLC8BsV4DWZ1vwYzjddgR/drMNN4DWYYr0FXN4mVS6VAVpn8JuiXH2xZLuMrI7tQK5btkpd+OM5Y8jipXVcj5fPU5tX5sv3Ar2TauMjBVQHji119s1+yjfftvtz8xhex7IKRMqLAfP/vy6M9UDeYzrf67UHjULug0U2hv/nrakOtqV03PzResWx7TOuaaleH65uP68v9in/9meXxlcE9TTGL6J7QFFxXGVm3ylX7eqvIdATSV6C+w3gNthuvia6/+es6Qm2pXecPTatY1jWevg1kzZMtsGtZheU9dH6wtsVYQktt0DhzypheEdxe33OJTcHVFZH30r68X4fqVqwL9vY2HfV5ULG613o910iX8bTcBWB0atdtxDR5dvMic0zWzvuFbNrynDwQSpFLZN0vpoXLwgP+tvBgfwZaiq6T+ebRfXKFXJDfn7nwGAQ0ERiRYbwGfeHGrJ3XYbwGO4zXoHqP9xmvwfR+iwk3jIGkCdy05FmxvGvLA/9zk2xa9oCo7/5LqtfJtMgX//Ay206EB/s+cKJJAn1/lCcekfbbRcpur5LVlStlYWhTe7XMqVQD5bLxQJWUxOnC/NLvyK7tV0sft/93zUkdMXpyu9xsngJYebmMTHvBOEhMQqAPAmW3ZxqvwUD3a1CM12Bn6NEbD2TFfQ32YdZU1VHA2B2wbN9qWTl5Yah1O6u6LqhWPn+zVM2K+64t31m3S64+00+MnFFi7BnmFkdAg4+vIlnwzFZ5oXpG11X5VCOXPCl3jYu/wzGrqExumlYWhyKxSa37/xqpWP2h1BvRMpHdS02RRzGEgGYCPuM1mGm8Bjssr8FM4zWoWTNpTtIECiYtkO3LXpDp4YO4ymXFr26Pe0q1GNfnK5t0k/T/XTtpq63djPTYPjfqVlm1yrzwjtFHy9fJ3hQddB992uhf5YuWxJ4T110+PLGK1EIgHQVGZRivQcuKL+9M2WvQshQG01hg2pJVEnnXrpWNL3KayLnuTg22ACiyRnlzx06L3Qa57tFKaVkTL1EGpLmxuZ/7hLKMo1CtG5MKet+TEKiXD0O7JbpWa9JXL7SsH4MI6CYQNF6D1jYFjddgh/EazOzlW521LsNeFGisfTOyxcgA2LBwssy4pUXuKovdehtobZbmlv7tyc/KL5CC8FlgXpS2abMORzMe6D7q32imOvIo/Ldse11M81oGeBbAutoPgkssy1h3QB3CGud2ck/QOAuwe10WBQ/549RhEgKaCBzoPurfPBvAvF+2vVOTFtKMpAqEj/o33yO778uXBWPftaPPqLK+xyc0XMlZAL31XdrvAggc2yJ3ho76XyRHg0ExTjExnhNdt6rpi6Xn9X/8AzwLoP7sxVK5yvho7779peaoORh13/zJu+FfmSpfMlPKNNnWEtVIRhAwBALHOozXoMq6PuM1mG28BiMsVdM7Yl6DkVKGvCkQkC1L5oaO+l9UXSfBpu2Rq6bWVslP41wxqunIAKSOcBZAb3o+lQx6K3T/9OPy24mjQz/Ms2rPSbn/2iLj3eigPJg9XlaaK28cWeo3dgWYn7+BhoPy6l+OiuSYFfpw3y4y+vpbZIL/VZk4eobxg7/GrXyF1L/3iPQ8c2Xvb2fLdYu79gFsPuqX2yM/F9iHBVIVAbcLBI3XYKD7NZhlvAaNUwIDQeM1GLC8BjOM12Bm+DXo9haxfqkVaNjxmIycblwMqGKVnNxxvxjv2nL4jw/K2DvC79qy+VCL3B7eFRCQg6+/Kkf7exbA4DFyy03j4j7/mvevkcLyrrMRpGK1NO1Y4K0zBnrbNJAO0/esqgxtYi9fsjVo3cJ+cs+q0HTjeRW6j7crYKDtM5etlhEz/5O7Ipv/F0Wv20CXy+MRcJPAnlVdFwAqX9LR4zVopADLBYLYFeCmXjuP69Jk7hotD1Yftb5r1weN47gj79vlK+LsCkj+ejfts3xWGLsKetmhm/wFu2SOxs8ipuHN3xSs3bys+8minkg9us1/NLis3PJkkvLguj11UW9QA291U7B6SXn4Cbts857gyZaWYP2h7UHjQkFd08uXBHs7RGDgy2cOCJxHAeO9u3Zz19X+1Ad9tbH/Lerm7zReg5ErBKo66/Z0Jvk1GLVERlwu0FS/L2jsoe16b1xUHfNcOLrVfE/vqlO+aGOwrsUaEpLXQL9fvVfviaxP6Mvi3GB1bV2wxZ+aZSZv7ZM3pzQMAPEOCKkM7gtf69G4bKTlErzmVgB1n/zL8fqD+zYuCxoXBgwHAXN5i1ZtDdZ753mUvGckc0oLgXWV0R/u6gM+8hoMGq/B2HJVp3JVnEsDG2Fh4wp/cOsBDhhMi87vx0pGXXK3+/3S+n4cr7zrvdT63t6PBcd5SO/LiryPV672xqXb0/wYAOMp4oZba6McqzsZOrUwKytfikcbV54yDzpww/qxDgi4WaChU3wjO0RWZErwkbQ/LtnN0qwbAlECBIAoDkYQQOB8CBw/HJT8Ep8UEZzPBz/L9KgAcdujHU+zEXCTwKgSkaZ6N60R64KA/gIEAP37mBYi4F4B42SBNQ/6xWecNjhrQ9ePCLl3ZVkzBPQSIADo1Z+0BoH0EsjyyV0/zxR1aa3S2CvApldbWFsE0kyAAJBmHcbqIqCbQEFxV4v4xUzdepb2uF2AAOD2HmL9EEAAAQQQSIEAASAFqMwSAQQQQAABtwsQANzeQ6wfAroLdJ/6V5ire0NpHwLuEiAAuKs/WBsEvCVgnAXw1D0doV/OrF7YIb/dpi6qyQ0BBM6FABcCOhfKLAMBBBBAAAGXCfx/sEULYqrd8QUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 24, "metadata": { "image/png": { "width": "40%" } }, "output_type": "execute_result" } ], "source": [ "Image(filename='pdes/pde-grid.png', width='40%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", " **Figure PDE Grid:** The computational grid for the heat diffusion problem, with\n", " discrete points $(x_i,t_n)$.\n", "
\n", "\n", "2) Replace the dependent variables (in this example, just the\n", " temperature $u(x,t)$) with approximations defined at the grid\n", " points: $$U_i^n \\approx u(x_i,t_n).$$ The boundary and initial\n", " values for the discrete temperatures can then be written in terms of\n", " the given information.\n", "\n", "3) Approximate all of the derivatives appearing in the problem with\n", " finite difference approximations. If we use the centered difference\n", " approximation ([Centered Second Derivative](#lab1:eq:centered-diff2)) for the second derivative in $x$, and\n", " the forward difference formula ([Forward Difference Formula](#lab1:eq:forward-diff')) for the time derivative (while evaluating the\n", " terms on the right hand side at the previous time level), we obtain\n", " the following numerical scheme:\n", "\\begin{equation} \n", " U_i^{n+1} = U_i^n + \\frac{\\alpha^2 \\Delta t}{(\\Delta x)^2} \\left(\n", " U_{i+1}^n - 2 U_i^n + U_{i-1}^n \\right)\n", "\\end{equation}\n", "\n", "Given the initial values, $U_i^0=u_0(x_i)$, and boundary values\n", "$U_0^n=U_M^n=0$, this difference formula allows us to compute values of\n", "temperature at any time, based on values at the previous time.\n", "\n", "There are, of course, other ways of discretizing this problem, but the\n", "above is one of the simplest." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mathematical Notes\n", "\n", "\n", "\n", "### Solution to the Heat Conduction Equation\n", "\n", "\n", "\n", "In Example [One](#Example-One), we had the equation\n", "$$\\frac{dT}{dt} = -\\lambda (T-T_a),$$ subject to the initial condition\n", "$T(0)$. This equation can be solved by *separation of variables*,\n", "whereby all expressions involving the independent variable $t$ are moved\n", "to the right hand side, and all those involving the dependent variable\n", "$T$ are moved to the left $$\\frac{dT}{T-T_a} = -\\lambda dt.$$ The\n", "resulting expression is integrated from time $0$ to $t$\n", "$$\\int_{T(0)}^{T(t)} \\frac{dS}{S-T_a} = -\\int_0^t\\lambda ds,$$ (where\n", "$s$ and $S$ are dummy variables of integration), which then leads to the\n", "relationship $$\\ln \\left( T(t)-T_a)-\\ln(T(0)-T_a \\right) = -\\lambda t,$$\n", "or, after exponentiating both sides and rearranging,\n", "$$T(t) = T_a + (T(0)-T_a)e^{-\\lambda t},$$ which is exactly the [Conduction Solution](#lab1:eq:conduction-soln) equation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "\n", "\n", "
\n", "Boyce, W. E. and R. C. DiPrima, 1986: Elementary Differential Equations and Boundary Value Problems. John Wiley & Sons, New York, NY, 4th edition.\n", "
\n", "
\n", "Burden, R. L. and J. D. Faires, 1981: Numerical Analysis. PWS-Kent, Boston, 4th edition.\n", "
\n", "
\n", "Chen, J.-P., 1994: Predictions of saturation ratio for cloud microphysical models. Journal of the Atmospheric\n", "Sciences, 51(10), 1332–1338.\n", "
\n", "Garcia, A. L., 1994: Numerical Methods for Physics. Prentice-Hall, Englewood Cliffs, NJ.\n", "
\n", "Strang, G., 1986: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Glossary\n", "\n", "\n", "**backward difference discretization:** used to estimate a derivative – uses the current points and points with smaller independent variable.\n", "\n", "**boundary value problem:** a differential equation (or set of differential equations) along with boundary values for the unknown functions. Abbreviated BVP.\n", "\n", "**BVP:** see *boundary value problem*\n", "\n", "**centre difference discretization:** used to estimate a derivative – uses a discretization symmetric (in\n", "independent variable) around the current point.\n", "\n", "**closed domain:** a domain for which the value of the dependent variables is known on the boundary of the domain.\n", "\n", "**converge:** as the discretization step (eg. ∆t) is reduced the solutions generated approach one solution curve.\n", "\n", "**DE:** see *differential equation*\n", "\n", "**dependent variable:** a variable which is a (possibly unknown) function of the independent variables in a problem; for example, in a fluid the pressure can be thought of as a dependent variable, which depends on the time t and position (x, y, z).\n", "\n", "**differential equation:** an equation involving derivatives. Abbreviated DE.\n", "\n", "**discretization:** when referring to DE’s, it is the process whereby the independent variables are replaced by a *grid* of discrete points; the dependent variables are replaced by approximations at the grid points; and the derivatives appearing in the problem are replaced by a *finite difference* approximation. The discretization process replaces the DE (or DE’s) with an algebraic equation or finite system of algebraic equations which can be solved on a computer.\n", "\n", "**finite difference:** an approximation of the derivative of a function by a difference quotient involving values of the function at discrete points. The simplest method of deriving finite difference formulae is using Taylor series.\n", "\n", "**first order differential equation:** a differential equation involving only first derivatives of the unknown functions.\n", "\n", "**forward difference discretization:** used to calculate a derivative – uses the current points and points with larger independent variable.\n", "\n", "**grid:** when referring to discretization of a DE, a grid is a set of discrete values of the independent variables, defining a *mesh* or array of points, at which the solution is approximated.\n", "\n", "**independent variable:** a variable that does not depend on other quantities (typical examples are time, position, etc.)\n", "\n", "**initial value problem:** a differential equation (or set of differential equations) along with initial values for the unknown functions. Abbreviated IVP.\n", "\n", "**interpolation:** a method for estimating the value of a function at points intermediate to those where its values are known.\n", "\n", "**IVP:** initial value problem\n", "\n", "**linear:** pertaining to a function or expression in which the quantities appear in a linear combination. If $x_i$ are the variable quantities, and $c_i$ are constants, then any linear function of the $x_i$ can be written in the form $c_0 + \\sum_i c_i \\cdot x_i$.\n", "\n", "**linear interpolation:** interpolation using straight lines between the known points\n", "\n", "**Navier-Stokes equations:** the system of non-linear PDE’s that describe the time evolution of the flow of\n", "a fluid.\n", "\n", "**non-linear:** pertaining to a function or expression in which the quantities appear in a non-linear combination.\n", "\n", "**numerical instability:** although the continuous differential equation has a finite solution, the numerical solution grows without bound as the numerical interation proceeds.\n", "\n", "**ODE:** see *ordinary differential equation*\n", "\n", "**open domain:** a domain for which the value of one or more dependent variables is unknown on a portion\n", "of the boundary of the domain or a domain for which one boundary (say time very large) is not specified.\n", "\n", "**ordinary differential equation:** a differential equation where the derivatives appear only with respect to one independent variable. Abbreviated ODE.\n", "\n", "**partial differential equation:** a differential equation where derivatives appear with respect to more than one independent variable. Abbreviated PDE.\n", "\n", "**PDE:** see *partial differential equation*\n", "\n", "**second order differential equation:** a differential equation involving only first and second derivatives of the unknown functions.\n", "\n", "**separation of variables:** a technique whereby a function with several dependent variables is written as a product of several functions, each of which depends on only one of the dependent variables. For example, a function of three unknowns, u(x, y, t), might be written as u(x, y, t) = X(x) · Y (y) · T (t)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "all", "encoding": "# -*- coding: utf-8 -*-", "formats": "ipynb,py:percent", "notebook_metadata_filter": "all,-language_info,-toc,-latex_envs" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "meta-9" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": { "height": "512px", "width": "252px" }, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }